Humeral and glenoid articular surface implant systems and methods

One embodiment of the present disclosure provides a humeral implant. The humeral implant includes a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site. The humeral implant also includes a liner including a body defining a load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said implant is coupled to said tray.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 62/817,497, filed Mar. 12, 2019, which is hereby incorporated by reference in its entirety.

FIELD

The present disclosure is related to devices and methods for the repair of defects that occur in articular cartilage on the surface of bones, and particularly to systems and methods for repairing the humeral head and/or glenoid.

BACKGROUND

Articular cartilage, found at the ends of articulating bones in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load-bearing surface. When injured, however, hyaline cartilage cells are not typically replaced by new hyaline cartilage cells. Healing is dependent upon the occurrence of bleeding from the underlying bone and formation of scar or reparative cartilage called fibrocartilage. While similar, fibrocartilage does not possess the same unique aspect of native hyaline cartilage and tends to be less durable.

In some cases, it may be necessary or desirable to repair the damaged articular cartilage using one or more implants. While implants may be successfully used, the implant should be designed to maximize the patient's comfort, minimize damage to surrounding areas, minimize potential further injury, maximize the functional life of the implant, and be easy to install.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention are set forth by description of embodiments consistent with the present invention, which description should be considered in conjunction with the accompanying drawings wherein:

FIG. 1 generally illustrates one example of a first implant system and first excision site consistent with the present disclosure;

FIG. 2 generally illustrates one example of establishing a working axis consistent with the present disclosure;

FIG. 3 generally illustrates one example of pin and a threaded instrument along the working axis consistent with the present disclosure;

FIG. 4 generally illustrates one example of first reamer along the working axis consistent with the present disclosure;

FIG. 5 generally illustrates one example of an arcuate surface formed on the first bone consistent with the present disclosure;

FIG. 6 generally illustrates one example of second reamer along the working axis consistent with the present disclosure;

FIG. 7 generally illustrates one example of an intermediate central surface formed on the first bone consistent with the present disclosure;

FIG. 8 generally illustrates one example of third reamer along the working axis consistent with the present disclosure;

FIG. 9 generally illustrates one example of a socket formed on the first bone consistent with the present disclosure;

FIG. 10 generally illustrates one example of forming a pilot hole along the working axis consistent with the present disclosure;

FIG. 11 generally illustrates one example of an implant trial consistent with the present disclosure;

FIG. 12 generally illustrates one example of an anchor along the working axis consistent with the present disclosure;

FIGS. 13A-F generally illustrate various views of one example of the anchor consistent with the present disclosure;

FIG. 14 generally illustrates one example of the anchor being advanced along the working axis consistent with the present disclosure;

FIG. 15 generally illustrates one example of the anchor secured in the first bone consistent with the present disclosure;

FIGS. 16-17 generally illustrate one example of a trial along the working axis consistent with the present disclosure;

FIG. 18 generally illustrates one example of a tray secured to the anchor and a liner consistent with the present disclosure;

FIGS. 19A-E generally illustrate various views of one example of the tray consistent with the present disclosure;

FIGS. 20A-H generally illustrate various views of one example of the liner consistent with the present disclosure;

FIG. 21 generally illustrates an exploded view of one example of the first implant system and the first excision site consistent with the present disclosure;

FIG. 22 generally illustrates an assemble view of one example of the first implant system and the first excision site consistent with the present disclosure;

FIG. 23 generally illustrates an assembled view of one example of a second implant system and a second excision site consistent with the present disclosure;

FIG. 24 generally illustrates an exploded view of one example of the second implant system and the second excision site consistent with the present disclosure;

FIG. 25 generally illustrates an assembled view of one example of the second implant system and the second excision site consistent with the present disclosure;

FIG. 26 generally illustrates one example of establishing a working axis consistent with the present disclosure;

FIG. 27 generally illustrates one example of pin and a pilot bit along the working axis consistent with the present disclosure;

FIG. 28 generally illustrates one example of an anchor along the working axis consistent with the present disclosure;

FIG. 29 generally illustrates one example of an anchor secured in the second bone along the working axis consistent with the present disclosure;

FIGS. 30A-F generally illustrate various views of one example of the anchor consistent with the present disclosure;

FIG. 31 generally illustrates one example of a reamer for forming the second excision site along the working axis consistent with the present disclosure;

FIG. 32 generally illustrates one example of the second excision site in the second bone consistent with the present disclosure;

FIG. 33 generally illustrate one example of a baseplate being and the second excision site consistent with the present disclosure;

FIGS. 34A-G generally illustrate various views of one example of the baseplate consistent with the present disclosure;

FIG. 35 generally illustrate one example of a baseplate being advanced to the second excision site consistent with the present disclosure;

FIGS. 36-37 generally illustrate one example of a baseplate being on the second excision site consistent with the present disclosure;

FIG. 38 generally illustrate one example of a pilot holes being formed in the second excision site consistent with the present disclosure;

FIG. 39 generally illustrate one example of a baseplate being secured to the second excision site consistent with the present disclosure;

FIG. 40 generally illustrate one example of an implant and a baseplate consistent with the present disclosure;

FIG. 41 generally illustrate one example of an implant secured to a baseplate consistent with the present disclosure;

FIGS. 42A-E generally illustrate various views of one example of the implant consistent with the present disclosure;

FIGS. 43-49 generally illustrate various examples of the first implant system and the second implant system.

DETAILED DESCRIPTION

With reference to FIG. 1, a non-limiting example of a first implant site 10 formed in a first bone 12 and a first implant system 14 is generally illustrated. While aspects/embodiments of the first implant site 10 and the first implant system 14 may be described in the context of a humeral excision site formed in the humeral bone and a humeral implant system, it should be appreciated that the first implant site 10 may be formed in other bones (e.g., other than the humerus 12) and the first implant system 14 is not limited to a humeral implant system. As such, the systems and method described herein may be used to form a first implant site 10 on any bone 12 and the first implant system 14 may be used to repair/replace the articular surface of any bone 12.

The humeral implant site 10 may be formed in the humerus 12 in such a manner to aid in the positioning of the humeral implant system 14 and to reduce and/or prevent movement of the humeral implant system 14 relative to the humerus 12. At least a portion of the humeral implant site 10 may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of at least a portion of the humeral implant system 14. As described herein, the humeral implant system 14 may include an anchor 16, an intermediate component or tray 18, and an implant or liner 20. The anchor 16 may be configured to be secured to the bone 12 within the humeral implant site 10, the tray 18 may be configured to be secured to the anchor 16, and the liner 20 may be configured to be secured to the tray 18. As shown, the liner 20 includes a load bearing surface 22 having a generally concaved surface contour (e.g., a reverse shoulder). While aspects/embodiments of the humeral implant system 14 may be described in the context of a reverse shoulder, it should be appreciated that the humeral implant system 14 is not limited to a reverse shoulder configuration. As such, the humeral implant system 14 may include a load bearing surface 22 having any shape/contour/profile such as, but no limited to, a shape/contour/profile that corresponds to the patient's original, native shape/contour/profile.

Turning now to FIG. 2, a portion of one example of a system and method for forming the humeral implant site 10 in the humerus 12 to mate with the humeral implant system 14 is generally illustrated. In particular, a working axis 200 may be established. In the illustrated example, the working axis 200 extends at an angle normal to the crown or highest point on the patient's native articular surface 202; however, it should be appreciated that the working axis 200 may extend at any angle (which may be greater than or less than 90 degrees) and/or from any point along the patient's native articular surface 202. The crown or highest point on the patient's native articular surface 202 may be defined at the point on the patient's native articular surface 202 that is furthest away from the longitudinal axis 207 of the bone 12.

The working axis 200 may be established using a guide 204. The guide 204 may define a passageway 206 formed in a guide body 208 extending along the working axis 200. The passageway 206 may be configured to receive one or more pins 205 such that the pin 205 may be advanced through the passageway 206 and secured into the bone 12 along the working axis 200, for example, using a drill or the like (not shown for clarity). The passageway 206 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 205 to align the pin 205 along the working axis 200. The depth that the pin 205 is secured into the bone 12 may be set using the guide 202. For example, the pin 205 and/or the guide 202 may include indicia (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the pin 205 into the bone 12.

The guide body 208 may include one or more locating features 210 such as, but not limited to, arms 212. The locating features 210 may be configured to contact native articular surface 202 and align/position the passageway 206 relative to the native articular surface 202. For example, the arms 212 may include tips 214 configured to engage and/or contact specific points of the humerus 12. The arms 212 may therefore have sizes and/or shapes based on the size and/or shape of the patient. The arms 212 may extend in one or more planes. For example, the arms 212 may extend in two mutually perpendicular planes. In one example, the arms 212 may be configured to substantially continuously contact against the native articular surface 202 along one or more planes; however, it should be appreciated that the arms 212 may only contact a plurality of discrete points (such as, but not limited to, the tips 216). The guide 202 may also optionally include a handle 218 configured to allow a surgeon to grasp and position the guide 202 relative to the native articular surface 202.

Once the pin 205 is secured to the bone 12 along the working axis 200, the guide 202 may be removed. Next, a cannulated threaded instrument 300, FIG. 3, may be advanced over the pin 205 and secured into the bone 12. The cannulated threaded instrument 300 may include a cannulated shaft 302 and a distal end region 304 having a threaded tip 306 configured to be secured into the bone 12. The distal end region 304 may also include a shoulder 308. The shoulder 308 may extend radially outward beyond the cross-section (e.g., diameter) of the shaft 302. The cross-section (e.g., diameter) of the passageway 310 of the cannulated threaded instrument 300 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 205. The depth that the cannulated threaded instrument 300 is secured into the bone 12, and thus the shoulder 308 relative to the native articular surface 202, may be set using the pin 205. For example, the cannulated threaded instrument 300 and/or the pin 205 may include indicate (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the cannulated threaded instrument 300 into the bone 12. In one example, the top of the shoulder 308 may be set to be substantially flush with the native articular surface 202 surrounding the cannulated threaded instrument 300.

Turning now FIG. 4, optionally a first reamer 400 may be rotated and advanced along the working axis 200 to form at least a portion of the humeral implant site 10. In the illustrated example, the first reamer 400 may include a cannulated shaft 402 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300. A distal end region 404 of the first reamer 400 may include one or more cutting surfaces 406 configured to remove at least a portion of the native articular surface 202. For example, the first reamer 400 may include one or more cutting arms 408 extending radially outward from the shaft 402. The cutting arms 408 may include one or more cutting surfaces 406 having an arcuate shape. The arcuate shape of the cutting surfaces 406 may be configured to remove at least some of the native articular surface 202 and form an arcuate surface 407 (as shown in FIGS. 4-5) revolved around the working axis 200. For example, the cutting surfaces 406 may be configured to form a generally semi-spherical shape/surface (e.g., convex surface) on the bone 12. Alternatively (or in addition), the cutting surfaces 406 may be formed by two or more tangential curves and/or having one or more inflection points, for example, configured to form a semi-ellipsoidal shape. The first reamer 400 may be advanced along the working axis 200 until a portion of the first reamer 400 (e.g., a central portion) contacts/abuts against a portion of the shoulder 308 of the cannulated threaded instrument 300. Alternatively (or in addition), the depth of the first reamer 400 along the working axis 200 may be set/determined using indicia/markings on the pin 205 and/or the cannulated threaded instrument 300.

Referring to FIG. 6, optionally a second (or additional) cut may be made using a second reamer 600. The second cut may be made to a portion of the arcuate surface 407 formed using the first reamer 400 (e.g., the semi-spherical surface). For example, the first reamer 400 may be removed from working axis 200, and the second reamer 600 may be rotated and advanced along the working axis 200 (e.g., to form at least a portion of the humeral implant site 10). In the illustrated example, the second reamer 600 may include a cannulated shaft 602 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300 and revolved around the working axis 200. A distal end region 604 of the second reamer 600 may include one or more cutting surfaces 606 configured to remove at least a portion of the arcuate surface 407. For example, the second reamer 600 may include one or more cutting arms 608 extending radially outward from the shaft 602. The cutting arms 608 may include one or more cutting surfaces 606, for example, having a generally flat, planar, and/or arcuate shape. The second reamer 600 may used to remove a central region 609 of the arcuate surface 407, for example, to form an intermediate central surface 700 (FIG. 7) revolved around the working axis 200.

The cutting surfaces 606 may be configured to remove at least some of the central region 609 of the intermediate central surface 700 revolved around the working axis 200, while leaving behind an arcuate (e.g., semi-spherical) outer ring 702 of the arcuate surface 407 centered around the working axis 200. As described herein, the arcuate outer ring 702 may inversely correspond to a portion of an inner surface of the tray 18 of the humeral implant system 14. As such, the at least a portion of the profile of the cutting surface 406 of the first reamer 400, when revolved around the working axis 200, may correspond to the portion of the inner surface of the tray 18 of the humeral implant system 14.

In at least one example, the cutting surfaces 606 of the second reamer 600 may be configured to form a generally planar shape/surface. Alternatively (or in addition), the cutting surfaces 606 may be formed by one curves, two or more tangential curves, and/or curves having one or more inflection points. The second reamer 600 may be advanced along the working axis 200 until a portion of the second reamer 600 (e.g., a central portion) contacts/abuts against a portion of the shoulder 308 of the cannulated threaded instrument 300. Alternatively (or in addition), the depth of the second reamer 600 along the working axis 200 may be set/determined using indicia/markings on the pin 205 and/or the cannulated threaded instrument 300. While the intermediate central surface 700 is shown having a generally planar surface and the central region 609 formed by the first reamer 400 is shown having a semi-spherical surface, it should be appreciated that the present disclosure is not limited to either of these configurations unless specifically claimed as such since these surfaces will ultimately be removed.

Turning to FIG. 8, optionally a third (or additional) cut may be made using a third reamer 800. The third cut may be made to at least a portion of the intermediate central surface 700 formed using the second reamer 600. For example, the second reamer 600 may be removed from working axis 200, and the third reamer 800 may be rotated and advanced along the working axis 200 (e.g., to form at least a portion of the humeral implant site 10). In the illustrated example, the third reamer 800 may include a cannulated shaft 802 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300. A distal end region 804 of the third reamer 800 may include one or more cutting surfaces 806 configured to remove at least a portion of the intermediate central surface 700. For example, the third reamer 800 may include one or more cutting arms 808 extending radially outward from the shaft 802. The cutting arms 808 may include one or more cutting surfaces 806 configured to form a convex socket/surface 900 (FIG. 9) revolved around the working axis 200.

A peripheral rim 902 may be formed between the convex socket/surface 900. In at least one example, the peripheral rim 902 may be formed by a remaining portion of the intermediate central surface 700. As such, the third reamer 800 may remove only a portion of the intermediate central surface 700. Alternatively, peripheral rim 902 may be formed by the intersection of the arcuate outer ring 702 with the convex socket/surface 900. As such, the third reamer 800 may remove all of the intermediate central surface 700. As described herein, the convex surface/socket 900 and/or the peripheral rim 902 may inversely correspond to a portion of an inner surface of the tray 18. As such, the at least a portion of the profile of the cutting surface 806 of the third reamer 800, when revolved around the working axis 200, may correspond to the portion of the inner surface of the tray 18. Once the convex surface/socket 900 has been formed, the cannulated threaded instrument 300 may be removed as shown in FIG. 9.

With reference to FIG. 10, optionally a fourth (or additional) cut may be made using a fourth reamer 1000. The fourth cut may be made to at least a portion of the convex surface/socket 900 formed using the third reamer 800. For example, the third reamer 800 may be removed from working axis 200, and the fourth reamer 1000 may be rotated and advanced along the working axis 200 to form a pilot hole for the anchor 16 of the humeral implant system 14. In the illustrated example, the fourth reamer 1000 may include a cannulated shaft 1002 configured to be rotated and advanced over the pin 205. A distal end region 1004 of the fourth reamer 1000 may include one or more cutting surfaces 1006 configured to remove at least a portion of the socket 900 to form a pilot hole 1008.

Optionally, a trial implant 1010 may be used to set the depth of the fourth reamer 1000 (e.g., using indicate on the pin 205 and/or the trial implant 1010 such as, but not limited to, laser markings, windows, shoulders, or the like). Alternatively (or in addition), the trial implant 1010 may be used to verify the surface contour of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902. For example, the trial implant 1010 may include a trial 1012 coupled to a handle 1014. The trial 1012 and the handle 1014 may be cannulated and configured to be advanced along the working axis 200. In the illustrated example, the trial 1012 and the handle 1014 may include a passageway 1016 configured to receive the cannulated shaft 1002 of the fourth reamer 1000. The trial 1012 may have an inner surface 1018 which corresponds to the inner surface of the tray 18 of the humeral implant system 14. The trial 1012 may therefore be advanced along the working axis 200 and used to verify that the surface contour of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 matches the profile of the tray 18. The trial 1012 (e.g., the inner surface 1018) may contact three portions of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 and/or may contact the entire surface of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 (e.g., as generally illustrated in FIG. 11).

The reamers 400, 600, 800, 1000 may therefore be used to form the humeral implant site 10 (e.g., as generally illustrated in FIG. 12). The humeral implant site 10 may be formed in the humerus 12 in such a manner to aid in the positioning of the humeral implant system 14 and to reduce and/or prevent movement of the humeral implant system 14 relative to the humerus 12. At least a portion of the humeral implant site 10 (e.g., the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902) may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of tray 18 of the humeral implant system 14. While the system and method for forming the humeral implant site 10 has been described using a plurality of reamers 400, 600, 800, 1000, it should be appreciated that two or more of the reamers 400, 600, 800, 1000 may be combined into a single reamer. A benefit of the use of multiple reamers 400, 600, 800, 1000 as described herein is that it minimizes the likelihood of damaging the bone 12, while also ensuring proper alignment and fit of the resulting humeral implant site 10. Moreover, while the system and method for forming the humeral implant site 10 has been described using a pin 205, it should be appreciated that the pin 205 may be eliminated. For example, the system and method for forming the humeral implant site 10 may be performed using a computer numerical control (CNC) machine such as, but not limited to, a robot controlled multiple axis CNC machine or the like.

Before and/or after the fit of the surface of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 have been verified, the anchor 16 of the humeral implant system 14 may be advanced and secured into the bone 12 along the working axis 200, e.g., into the pilot hole 1008 as shown in FIG. 12. Turning now to FIGS. 13A-F, various views of one example of an anchor 16 consistent with the present disclosure are generally illustrated. The anchor 16 may include a body 1302, for example, having a tapered profile. The outside of the body 1302 may include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like 1304) configured to engage the bone 12 and secure the anchor 16 to the bone 12. The anchor 16 may optionally be used with bone cement or the like. The outer surface of the anchor 16 may be configured to facilitate bone regrow. The body 1302 may include a cannulated passageway 1306, for example, configured to be advanced over the pin 205.

A proximal end 1308 of the anchor 16 may include a fixation element 1310 configured to be coupled to a corresponding fixation element of the tray 18 to secure the anchor 16 to the tray 18. For example, the fixation element 1310 includes a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 1310 is a female tapered recess configured to mate with a corresponding tapered male protrusion formed on the tray 18; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation element 1310 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 16 to the tray 18 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.

The proximal end 1308 of the anchor 16 may optionally include a driving feature 1312. The driving feature 1312 may be configured to mate with a driver (such as a drill or the like) to secure the anchor 16 into the bone 12. For example, the driving feature 1312 may be configured to allow a drill to rotate the anchor 16 into the bone. In the non-limiting example, the driving feature 1312 is a hex recess.

Referring to FIG. 14, the anchor 16 may be advanced over the pin 205 using a driver 1400 (e.g., a hand drill or the like) having a corresponding driving feature 1402 (e.g., a hex head) configured to engage with the driving feature 1312 of the anchor 16. The driver 1400 may optionally be configured to be received through the trial implant 1010 along the working axis 200. For example, the anchor 16, trial implant 1010, and then the driver 1400 may be advanced over the pin 205. The driving feature 1402 of the driver 1400 may then be coupled to the driving feature 1312 of the anchor 16 to secure (e.g., rotate) the anchor 16 into the bone 12 within the pilot hole 1008. The depth of the anchor 16 within the bone 12 may be set using indicia on the driver 1400, pin 205, and/or trial implant 1010 (such as, but not limited to, laser markings, windows, shoulders, or the like) as generally illustrated in FIG. 15. For example, the trial implant 1010 may be advanced over the pin 205 such that the inner surface 1018 of the trial 1012 engages against the humeral implant site 10 (e.g., the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902).

The trial 1012 may be removably coupled to the handle 1016. In the illustrated example, the handle 1016 and the driver may be once the anchor 16 is set within the bone 12, for example, as generally illustrated in FIG. 16. The trial 1012 may optionally include a fixation element corresponding to the fixation element 1310 of the anchor 16. As such, the trial 1012 may be urged into engagement with the anchor 16 to ensure proper alignment of the anchor 16 within the bone 12, for example, as generally illustrated in FIG. 17.

Once proper fit of the trial 1012 with the humeral implant site 10 has been confirmed, the pin 205 and the trial 1012 may be removed. Next, the tray 18 may be coupled to the anchor 16 that is secured in the bone 12, for example, as generally illustrated in FIG. 18, and the liner 20 may thereafter be coupled to the tray 18.

Turning now to FIGS. 19A-E, various views of one example of a tray 18 consistent with the present disclosure are generally illustrated. The tray 18 may include a body 1902 defining a bone facing recess 1904 and a liner recess 1906. The bone facing recess 1904 may include a ring surface 1906 and a convex surface 1908. In particular, the ring surface 1906 may have a profile substantially inversely corresponding to the profile of the arcuate outer ring 702 of the humeral excision site 10. Similarly, the convex surface 1908 may have a profile substantially inversely corresponding to the profile of the convex socket/surface 900 of the humeral excision site 10. The ring surface 1906 and/or the convex surface 1908 may therefore correspond to the cutting surface of the reamers revolved around the working axis 200. The bone facing recess 1904 may also optionally include a peripheral region 1912 corresponding to the peripheral rim 902 of the humeral excision site 10. The peripheral region 1912 may be disposed between the ring surface 1906 and the convex surface 1908.

The tray 18 may include a fixation element 1910 configured to be coupled to the corresponding fixation element 1310 of the anchor 16 to secure the tray 18 to the anchor 16. As discussed herein, the fixation elements 1310, 1910 includes a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 1910 is a male tapered protrusion extending outward from the bone facing recess 1904 configured to mate with a corresponding tapered female recess formed on the anchor 16; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 1310, 1910 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 16 to the tray 18 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The fixation elements 1310, 1910 may be aligned along the working axis 200. Alternatively, the fixation elements 1310, 1910 may not be coaxial with the working axis 200.

The ring surface 1906, the convex surface 1908, and/or the peripheral region 1912 may optionally include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like) configured to engage the bone 12 of the humeral excision site 10 and secure the tray 18 to the bone 12. The tray 18 may optionally be used with bone cement or the like. The bone facing recess 1904 of the tray 18 may be configured to facilitate bone regrow.

The liner recess 1906 of the tray 18 may be configured to be coupled to the implant 20. The liner recess 1906 may have a generally concave shape configured to receive at least a portion of the implant 20. For example, the liner recess 1906 may have a generally concave shape that generally inversely corresponds to a tray interface surface of the implant 20. According to one example, the tray 18 may include one or more fixation elements 1920 configured to be coupled to a corresponding fixation element of the implant/liner 20 to secure the implant/liner 20 to the tray 18. In the illustrated example, the fixation element 1920 may form a snap fit connection with the implant/liner 20. For example, the fixation element 1920 may include a tab or latch configured to deform when the implant 20 is urged into the liner recess 1906, and then resiliently snap back into a recess and/or groove on the implant 20. Of course, the fixation element 1920 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 20 to the tray 18 such as, but not limited to, tapered interference connections (e.g., a Morse taper or the like), threaded connections, adhesives, or the like.

The tray 18 may have a thickness 1922 configured to position the implant 20 at the desired position relative to the bone 12. The outer surface 1924 of the body 1902 of the tray 18 may have a generally frusto-conical and/or frusto-spherical shape. The generally frusto-conical and/or frusto-spherical shape may be configured to allow the humerus 12 to move relative to the glenoid while minimizing the potential for the humerus 12 to contact the glenoid.

Turning now to FIGS. 20A-H, various views of one example of an implant/liner 20 consistent with the present disclosure are generally illustrated. The implant 20 may include a body 2002 defining a load bearing surface 2004 and a tray interface surface 2006. The load bearing surface 2004 may include a recessed and/or concaved surface 2008. The concaved surface 2008 may therefore be used in a reverse shoulder application in which the native arrangement of the ball and socket of the shoulder is reversed. For example, the concaved surface 2008 may include a semi-spherical shape and/or a semi-ellipsoidal shape. Alternatively, the load bearing surface may include convex surface. The convex surface (e.g., a generally spherical and/or semi-ellipsoid) may generally correspond native articular surface of the patient's humerus 12.

The tray interface surface 2006 is configured to be at least partially received in the liner recess 1906 of the tray 18 such that the implant 20 is coupled to the tray 18. The tray interface surface 2006 may have a generally convex shape that generally inversely corresponds to the liner recess 1906 of the tray 18. As discussed herein, the implant 20 may include one or more fixation elements 1940 configured to be coupled to a corresponding fixation element 1920 of the tray 18 to secure the implant 20 to the tray 18. In the illustrated example, the fixation elements 1920, 1940 may form a snap fit connection. For example, the fixation element 1940 may include a recess and/or groove configured to deform a tab or latch 1920 of the tray 18 when the implant 20 is urged into the liner recess 1906. Of course, the arrangement of the latch and groove may be reversed and the fixation elements 1920, 1940 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 20 to the tray 18 such as, but not limited to, tapered interference connections (e.g., a Morse taper or the like), threaded connections, adhesives, or the like.

With reference to FIG. 21, an exploded cross-sectional view of the humeral excision site 10 and the humeral implant system 14 is generally illustrated, while FIG. 22 generally illustrates an assembled cross-sectional view the humeral implant system 14 in the humeral excision site 10. The anchor 16, the tray 18, and/or the implant 20 may be made from metal such as, but not limited to, cobalt chromium, stainless steel, and/or titanium (and alloys thereof). The tray 18 and/or the implant 20 may optionally be made from biocompatible plastic such as, but not limited to, ultra-high-molecular-weight polyethylene (UHMWPE) or the like.

With reference to FIG. 23, a non-limiting example of a second implant site 2300 formed in a second bone 2302 and a second implant system 2404 is generally illustrated. While aspects/embodiments of the second implant site 2300 and the second implant system 2404 may be described in the context of a glenoid excision site formed in the glenoid bone and a glenoid implant system, it should be appreciated that the second implant site 2300 may be formed in other bones (e.g., other than the glenoid 2302) and the second implant system 2404 is not limited to a glenoid implant system. As such, the systems and method described herein may be used to form a second implant site 2300 on any bone 2302 and the second implant system 2404 may be used to repair/replace the articular surface of any bone 2302.

The glenoid implant site 2300 may be formed in the glenoid 2302 in such a manner to aid in the positioning of the glenoid implant system 2404 and to reduce and/or prevent movement of the glenoid implant system 2404 relative to the glenoid 2302. At least a portion of the glenoid implant site 2300 may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of at least a portion of the glenoid implant system 2404. As described herein, the glenoid implant system 2404, FIGS. 24-25, may include an anchor 2402, an intermediate component or base plate 2404, an implant 2406, an optionally one or more fasteners 2408 (such as, but not limited to, bone screws or the like). The anchor 2402 may be configured to be secured to the bone 2302 within the glenoid implant site 2300, the base plate 2404 may be configured to be secured to the anchor 2402 (and optionally to the bone 2302 using the fasteners 2408), and the implant 2406 may be configured to be secured to the base plate 2404. As shown, the implant 2406 includes a load bearing surface 2410 having a generally convex (e.g., semi-spherical and/or semi-ellipsoidal surface contour). While aspects/embodiments of the glenoid implant system 2304 may be described in the context of a reverse shoulder, it should be appreciated that the glenoid implant system 2304 is not limited to a reverse shoulder configuration. As such, the glenoid implant system 2304 may include a load bearing surface 2410 having any shape/contour/profile such as, but no limited to, a shape/contour/profile that corresponds to the patient's original, native shape/contour/profile.

Turning now to FIG. 26, a portion of one example of a system and method for forming the glenoid implant site 2300 in the glenoid 2302 to mate with glenoid implant system 2404 is generally illustrated. In particular, a working axis 2600 may be established. In the illustrated example, the working axis 2600 extends at an angle normal to lowest point on the patient's native articular surface 2602; however, it should be appreciated that the working axis 2600 may extend at any angle (which may be greater than or less than 90 degrees) and/or from any point along the patient's native articular surface 2602. The lowest point on the patient's native articular surface 2602 may be defined at the point on the patient's native articular surface 2602 that at the base of the glenoid socket.

The working axis 2600 may be established using a guide 2604. The guide 2604 may define a passageway 2606 formed in a guide body 2608 extending along the working axis 2600. The passageway 2606 may be configured to receive one or more pins 2605 such that the pin 2605 may be advanced through the passageway 2606 and secured into the bone 2302 along the working axis 2600, for example, using a drill or the like (not shown for clarity). The passageway 2606 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 2605 to align the pin 2605 along the working axis 2600. The depth that the pin 2605 is secured into the bone 2302 may be set using the guide 2602. For example, the pin 2605 and/or the guide 2602 may include indicia (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the pin 2605 into the bone 2302.

The guide body 2608 may include one or more locating features 2610. The locating features 2610 may be sized and shaped to contact native articular surface 2602 and align/position the passageway 2606 relative to the native articular surface 2602. For example, the locating features 2610 may include a bottom surface having a contour that substantially matches and/or corresponds to the native contour of the patient's native articular surface 2602. As such, the locating features 2610 may be configured to engage and/or contact specific points of the glenoid 2300. The locating features 2610 may therefore have sizes and/or shapes based on the size and/or shape of the patient. The locating features 2610 may extend in one or more planes. For example, portions of the locating features 2610 may extend in two mutually perpendicular planes and/or portions of the locating features 2610 may extend along one or more arcs and/or circles. The guide body 2608 may include one or more windows 2612 configured to allow a surgeon to see portions of the native articular surface 2602. In one example, the locating features 2610 may be configured to substantially continuously contact against the native articular surface 2602 along one or more planes; however, it should be appreciated that the locating features 2610 may only contact a plurality of discrete points (such as, but not limited to, the outer periphery 2616). The guide 2602 may also optionally include a handle 2618 configured to allow a surgeon to grasp and position the guide 2602 relative to the native articular surface 2602.

Once the pin 2605 is secured to the bone 2302 along the working axis 2300, the guide 2602 may be removed. Next, a cannulated drill 2700, FIG. 27, may be advanced over the pin 2605 to form a pilot hole 2800 in the bone 2302 centered around the pin 2605 as generally illustrated in FIG. 28. Once the pilot hole 2800 has been formed, an anchor 2402 of the glenoid implant system 2304 may be advanced and secured into the bone 2302 along the working axis 2600, e.g., into the pilot hole 2800 as shown in FIG. 29.

Turning now to FIGS. 30A-F, various views of one example of an anchor 2402 consistent with the present disclosure are generally illustrated. The anchor 2402 may include a body 3002, for example, having a tapered profile. The outside of the body 3002 may include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like 3004) configured to engage the bone 2302 and secure the anchor 2402 to the bone 2302. The anchor 2402 may optionally be used with bone cement or the like. The outer surface of the anchor 2402 may be configured to facilitate bone regrow. The body 3002 may include a cannulated passageway 3006, for example, configured to be advanced over the pin 2605.

A proximal end 3008 of the anchor 2402 may include a fixation element 3010 configured to be coupled to a corresponding fixation element of the baseplate 2404 to secure the anchor 2402 to the baseplate 2404. For example, the fixation element 3010 may include a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 3010 is a female tapered recess configured to mate with a corresponding tapered male protrusion formed on the baseplate 2404; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation element 3010 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 2402 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.

The proximal end 3008 of the anchor 2402 may optionally include a driving feature 3012. The driving feature 3012 may be configured to mate with a driver (such as a drill or the like) to secure the anchor 2402 into the bone 2302. For example, the driving feature 3012 may be configured to allow a drill to rotate the anchor 2402 into the bone 2302. In the non-limiting example, the driving feature 3012 is a hex recess.

Referring back to FIGS. 28-29, the anchor 2402 may be advanced over the pin 2605 using a driver 2802 (e.g., a hand drill or the like) having a corresponding driving feature 2804 (e.g., a hex head) configured to engage with the driving feature 3012 of the anchor 2402. The driver 2802 may include a cannulated shaft 2806 (defining a passageway 2808) with the driving feature 2804 at one end, and a handle 2810 proximate the other end. The anchor 2402 and the driver 2802 may be advanced over the pin 2505 along the working axis 2600. The driving feature driving feature 2804 of the driver 2802 may then be coupled to the driving feature 3012 of the anchor 2402 to secure (e.g., rotate) the anchor 2402 around the working axis 2600 into the bone 2302 within the pilot hole 2800. The depth of the anchor 2402 within the bone 2302 may be set using indicia on the driver 2802 and/or pin 2505 (such as, but not limited to, laser markings, windows, shoulders, or the like) as generally illustrated in FIG. 29.

Turning now to FIG. 31, once the anchor 2402 has been set in place in the bone 2302, the driver 2802 may be removed. Optionally, an initial cut (e.g., a scrim cut) may be performed on the native articular surface 2602 to true-up and create a uniform surface, which may at least partially form the glenoid implant site 2300 (FIG. 32). For example, a truing reamer 3102 (FIG. 31) may be rotated and advanced along the working axis 2600 (e.g., to form at least a portion of the glenoid implant site 2300). In the illustrated example, the truing reamer 3102 may include a cannulated shaft 3103 configured to be rotated and advanced over the pin 2505 and revolved around the working axis 2600. A distal end region 3104 of the truing reamer 3102 may include one or more cutting surfaces 3106 configured to remove at least a portion of the native articular surface 2602. For example, the truing reamer 3102 may include one or more cutting arms 3108 extending radially outward from the shaft 3102. The cutting arms 3108 may include one or more cutting surfaces 3106, for example, having a generally flat, planar, and/or arcuate shape. The truing reamer 3102 may be used to form at least a portion of the glenoid implant site 2300 (FIG. 32) which is revolved around the working axis 2600. The cutting surfaces 3106, when revolved around the working axis 2600, may inversely correspond to (e.g., define) the contours of the bone facing surface of the baseplate 2404 as described herein.

In at least one example, the cutting surfaces 3106 of the truing reamer 3102 may be configured to form a generally planar shape/surface. Alternatively (or in addition), the cutting surfaces 3106 may be formed by one curves, two or more tangential curves, and/or curves having one or more inflection points. The truing reamer 3102 may be advanced along the working axis 2600 until a portion of the truing reamer 3102 (e.g., a central portion) contacts/abuts against a portion of the anchor 2402. Alternatively (or in addition), the depth of the truing reamer 3102 along the working axis 2600 may be set/determined using indicia/markings on the pin 2505 and/or the truing reamer 3102. While the glenoid implant site 2300 (FIG. 32) is shown having a generally concaved surface formed by the truing reamer 3102, it should be appreciated that the glenoid implant site 2300 may alternatively (or in addition) have a generally planar and/or convex shape. As such, the glenoid implant site 2300 is not limited to the illustrated shape unless specifically claimed as such.

Turning now to FIG. 33, the pin 2505 may optionally be removed and the baseplate 2404 may be secured to the anchor 2402. FIGS. 34A-E generally illustrates various views of one example of a baseplate 2404 consistent with the present disclosure. The baseplate 2404 may include a body 3402 defining a bone facing surface 3404 and an implant facing surface 3406. The bone facing surface 3604 may have a profile substantially inversely corresponding to the profile of the glenoid implant site 2300 (e.g., a profile substantially inversely corresponding to the profile of the cutting surfaces 3106 of the truing reamer 3102 when revolved around the working axis 2600). For example, the bone facing surface 3604 may have generally convex surface corresponding to the concaved surface of the glenoid implant site 2300. The bone facing surface 3604 may therefore have a cross-section (e.g., a diameter) that corresponds to the cross-section (e.g., diameter) of the cutting surfaces 3106 of the truing reamer 3102 when revolved around the working axis 2600.

The baseplate 2404 may include an anchor fixation element 3410 configured to be coupled to the corresponding fixation element 3010 of the anchor 2402 to secure the baseplate 2404 to the anchor 2402. As discussed herein, the fixation elements 3010, 3410 may include a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the anchor fixation element 3410 is a male tapered protrusion extending outward from the bone facing surface 3404 configured to mate with a corresponding tapered female recess formed on the anchor 2402; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 3010, 3410 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 2402 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The fixation elements 3010, 3410 may be aligned along the working axis 2600. Alternatively, the fixation elements 3010, 3410 may not be coaxial with the working axis 2600.

The bone facing surface 3604 may optionally include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like) configured to engage the bone 2302 of the glenoid excision site 2300 and secure the baseplate 2404 to the bone 2302. The baseplate 2404 may optionally be used with bone cement or the like. The bone facing surface 3404 of the baseplate 2404 may be configured to facilitate bone regrow.

The implant facing surface 3406 of the baseplate 2404 may be configured to be coupled to the implant 2406. The implant facing surface 3406 may have a generally planar, concave, and/or convex shape configured to receive at least a portion of the implant 2406. For example, the implant facing surface 3406 may have a generally planar shape that generally corresponds to a baseplate interface surface of the implant 2304. According to one example, the baseplate 2404 may include one or more implant fixation elements 3420 configured to be coupled to a corresponding fixation element of the implant 2304 to secure the implant 2304 to the baseplate 2404. In at least one example, the implant may include a tapered interference connection (e.g., a Morse taper or the like). For example, implant fixation element 3420 may include a male tapered protrusion extending outward from the implant facing surface 3406 configured to mate with a corresponding tapered female recess formed on the implant 2406; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 3420 may include any other mechanism and/or fastener for either permanently or removably coupling the baseplate 2404 to the implant 2306 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The implant fixation element 3420 may be aligned along the working axis 2600. Alternatively, the implant fixation element 3420 may not be coaxial with the working axis 2600.

The baseplate 2404 may have a thickness 3422 configured to position the implant 2306 at the desired position relative to the bone 2302. The outer surface 3424 of the body 3402 of the baseplate 2404 may have a generally frusto-conical, frusto-spherical shape, and/or generally cylindrical shape.

The baseplate 2404 may optionally include one or more apertures 3426 configured to receive one or more fasteners (e.g., a bone screw or the like). The apertures 3426 may extend through the body 3402 (e.g., between the bone facing surface 3404 and the implant facing surface 3406). The fasteners may aid in retaining the baseplate 2404 to the bone 2302 and/or prevent movement (e.g., rotation) of the baseplate 2404 relative to the bone 2302.

The baseplate 2404 (e.g., the implant facing surface 3406) may optionally include one or more implant alignment elements or features 3428. The implant alignment features 3428 may be configured to generally align the implant 2406 relative to the baseplate 2404 and/or prevent movement (e.g., rotation) of the implant 2406 relative to the baseplate 2404. In the illustrated embodiment, the implant alignment features 3428 includes a post extending outward from the implant facing surface 3406 that is configured to be received in a corresponding recess formed in the implant 2406. The post may optionally be tapered (e.g., to form a Morse taper or the like). Of course, the implant alignment features 3428 are not limited to this configuration. For example, the arrangement of the post and the recess may be reversed.

With reference to FIGS. 35-36, the baseplate 2404 may be located on the glenoid implant site 2300 using a holder 3500. The holder 3500 may include a shaft 3502, a handle 3504 at one end region 3506 of the shaft 3502, and a coupler 3508 at the other end region 3510 of the shaft 3502. In the illustrated example, the coupler 3508 may be configured to be secured to the implant fixation element 3420 of the baseplate 2404 (e.g., using a Morse taper connection or the like); however, it should be appreciated that this is only one example and that the coupler 3508 may be configured to be secured to the baseplate 2404 in any manner known to those skilled in the art.

Once the baseplate 2404 has been set in place relative to the glenoid implant site 2300, the baseplate 2404 may be secured to the anchor 2402 as generally illustrated in FIG. 37. For example, the anchor fixation element 3410 configured to be coupled to the corresponding fixation element 3010 of the anchor 2402 to secure the baseplate 2404 to the anchor 2402. Optionally, the baseplate 2404 may be secured to the bone 2302 using one or more fasteners (e.g., bone screws) disposed through the apertures 3426 in the body 3402 baseplate 2404. In the illustrated example, pilot holes may be formed that are aligned with the apertures 3426. For example, a pilot hole drill guide 3800, FIG. 38, may be used to create pilot holes in the bone 2302 within the glenoid implant site 2300 that are aligned with the apertures 3426. The pilot hole drill guide 3800 may include a bushing 3802 or the like configured to be received in a portion of the aperture 3426 (or a cavity configured to receive a portion of the baseplate 2404) that aligns a passageway 3804 of the bushing 3802 with the aperture 3426. Next, a drill bit may be advanced through the passageway 3804 of the bushing 3802 and into the bone 2302 to form the pilot holes. The bushing 3802 may be aligned with (e.g., coupled to) all of the apertures 3426 to form the desired pilot holes. After the pilot holes are formed, one or more fasteners 3900, FIG. 39, may be advanced through the apertures 3426 to secure the baseplate 2404 to the bone 2302. The fasteners 3900 may include any fastener known to those skilled in the art such as, but not limited to, bone screws, posts, pins, or the like.

Once the baseplate 2404 has been secured to the anchor 2402, the implant 2406 may be secured to the baseplate 2404 as generally illustrated in FIGS. 40-41. Turning now to FIGS. 42A-E, various views of one example of an implant 2406 consistent with the present disclosure are generally illustrated. The implant 2406 (also generally referred to as a glenosphere) may include a body 4202, defining a load bearing surface 2410 and a baseplate interface surface 4206. The load bearing surface 2410 may include a convex surface 4208. The convex surface 4208 may therefore be used in a reverse shoulder application in which the native arrangement of the ball and socket of the shoulder is reversed. For example, the convex surface 4208 may include a semi-spherical shape and/or a semi-ellipsoidal shape. Alternatively, the load bearing surface may include concaved surface. The concaved surface (e.g., a generally spherical and/or semi-ellipsoid) may generally correspond native articular surface of the patient's glenoid 2302.

The baseplate interface surface 4206 is configured to at least partially receive the implant facing surface 3406 and/or the outer surface 3424 of the body 3402 of the baseplate 2404 such that the implant 2406 is coupled to the baseplate 2404. A portion 4205 of the baseplate interface surface 4206 may have a generally concaved shape that generally inversely corresponds to the implant facing surface 3406 of the baseplate 2404. Alternatively (or in addition), a portion 4207 of the baseplate interface surface 4206 may have a generally cylindrical shape that generally inversely corresponds to the outer surface 3424 of the body 3402 of the baseplate 2404 (optionally to form a tapered connection).

As discussed herein, the implant 2406 may include one or more baseplate fixation elements 4240 configured to be coupled to a corresponding implant fixation element 3420 of the baseplate 2404 to secure the implant 2406 to the baseplate 2404. In the illustrated example, the fixation elements 3420, 4240 may form Morse taper connection or the like. For example, the baseplate fixation element 4240 may include a tapered configured to receive the tapered male protrusion 3420 of the baseplate 2404. Of course, the arrangement of the male and female portions of the fixation elements 3420, 4240 may be reversed and the fixation elements 3420, 4240 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 2406 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.

The implant 2406 may also optionally include one or more implant alignment features 4228 configured to generally align the implant 2406 relative to the baseplate 2404 and/or prevent movement (e.g., rotation) of the implant 2406 relative to the baseplate 2404. In the illustrated embodiment, the implant alignment features 4228 includes a recess configured to receive at least a portion of a post 3428 extending outward from the implant facing surface 3406 of the baseplate 2404. The post and recess 3428, 4228 may optionally be tapered (e.g., to form a Morse taper or the like). Of course, the implant alignment features 3428, 4228 are not limited to this configuration. For example, the arrangement of the post and the recess may be reversed.

Optionally, a set-screw or the like may be advanced through an implant passageway 4250. The implant passageway 4250 may extend through the body 4202 (e.g., from the load bearing surface 2410 and a baseplate interface surface 4206). The implant passageway 4250 may be configured to receive a fastener (e.g. a threaded fastener) to aid in coupling the implant 2406 to the baseplate 2404 and/or the anchor 2402.

Alternatively (or in addition), a fastener or the like may be coupled directly to the baseplate 2404 and/or the anchor 2402 and may be used to remove (e.g., uncouple) the implant 2406 from the baseplate 2404 and/or the anchor 2402. For example, fastener 2321 (FIG. 23) may be threaded to the baseplate 2404 and/or the anchor 2402. To uncouple the implant 2406 from the baseplate 2404 and/or the anchor 2402, the user may advance a tool (e.g., a driver or the like) through the implant passageway 4250 and rotate the fastener. Rotation of the fastener may cause the fastener to advance out of the baseplate 2404 and/or the anchor 2402 and engage against the implant 2406, thereby urging the implant 2406 away from the baseplate 2404 and/or the anchor 2402 and uncoupling the implant 2406 from the baseplate 2404 and/or the anchor 2402. This arrangement may be particularly useful if a subsequent revision to the implant system 2304 is desired.

The anchor 2402, baseplate 2404, and/or the implant 2406 may be made from metal such as, but not limited to, cobalt chromium, stainless steel, and/or titanium (and alloys thereof). The baseplate 2404 and/or the implant 2406 may optionally be made from biocompatible plastic such as, but not limited to, ultra-high-molecular-weight polyethylene (UHMWPE) or the like.

Turning now to FIGS. 43-49, various examples of the first implant system 14 and the second implant system 2304 are shown. In the illustrated examples, the first implant system 14 and the second implant system 2304 are a humeral implant system and a glenoid implant system, respectively, through it should be appreciated that the first implant system 14 and the second implant system 2304 may be used in other joints. The humeral implant system 14 and glenoid implant system 2304 as illustrated form a reverse shoulder system in which the ball and socket arrangement has been switch from the native anatomical configuration; however, it should be appreciated that humeral implant system 14 and glenoid implant system 2304 consistent with the present disclosure may also be used to form a traditional, anatomical should replacement (either a partial or total shoulder replacement).

As used herein, “substantially corresponds” or “generally corresponds” means that the contour/profile of the articulating surface is within 15% of the contour/profile of the patient's native articular surface being replaced and/or within engineering and/or anatomical tolerance. In some instances, the contour/profile of the articulating surface may not correspond to the contour/profile of the patient's native articular surface being replaced.

The foregoing description of several methods and embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the claims to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims.

Claims

1. A humeral implant comprising:

a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site;
a liner including a body defining a load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said liner is coupled to said tray; and
an anchor configured to be secured to bone within the excision site, said anchor including a first fixation element; wherein the tray further comprises a second fixation element configured to be coupled to said first fixation element to secure said tray to said anchor and wherein the first fixation element of the anchor includes a female tapered recess and the second fixation element includes a male taper post to engage the female taper recess.

2. The humeral implant of claim 1, wherein the anchor has a body portion having a tapered profile.

3. The humeral implant of claim 1, wherein the anchor has a body portion including one or more retaining elements disposed on an outer portion of the body portion to engage the patient's humeral bone within the excision site; wherein the one or more retaining elements is selected from the group of threads, protrusions, ribs, barbs, and/or recesses.

4. The humeral implant of claim 1, wherein an internal side of the ring surface is configured to receive the outer ring of bone such that the outer ring of bone is bound by the ring surface.

5. The humeral implant of claim 1, wherein the tray further includes a peripheral region between the ring surface and the convex surface, the peripheral region is configured to receive a rim portion of the outer ring of bone in the excision site of the patient.

6. An implant system comprising:

a humeral implant comprising: a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site; a liner including a body defining a humeral load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said liner is coupled to said tray; and an anchor configured to be secured to bone within the excision site, said anchor including a first fixation element; wherein the tray further comprises a second fixation element configured to be coupled to said first fixation element to secure said tray to said anchor and wherein the first fixation element of the anchor includes a female tapered recess and the second fixation element includes a male taper post to engage the female taper recess; and
a glenoid implant comprising: a baseplate including a body defining a bone facing surface and an implant facing surface; the bone facing surface having a profile substantially inversely corresponding to a profile of a glenoid implant site; and an implant having a glenoid load bearing surface and a baseplate interface surface; the glenoid load bearing surface having a shape to cooperate with the humeral load bearing surface of the liner.

7. The implant system of claim 6, wherein the anchor has a body portion having a tapered profile.

8. The implant system of claim 6, wherein the anchor has a body portion including one or more retaining elements disposed on an outer portion of the body portion to engage the patient's humeral bone within the excision site; wherein the one or more retaining elements is selected from the group of threads, protrusions, ribs, barbs, and/or recesses.

9. The implant system of claim 6, wherein an internal side of the ring surface is configured to receive the outer ring of bone such that the outer ring of bone is bound by the ring surface.

10. The implant system of claim 6, wherein the tray further includes a peripheral region between the ring surface and the convex surface, the peripheral region is configured to receive a rim portion of the outer ring of bone in the excision site of the patient.

11. The implant system of claim 6, wherein the humeral load bearing surface of the liner is a concave surface and the glenoid load bearing surface of the implant is a convex surface.

12. The implant system of claim 6, wherein the baseplate further comprises an alignment element protrusion on the implant facing surface.

13. The implant system of claim 12, wherein the implant further comprises a recess formed in the baseplate interface surface; wherein the recess is dimensioned to receive the alignment element protrusion to secure the implant to the baseplate.

14. The implant system of claim 6, wherein the implant and baseplate are configured to be coupled together using a friction fit.

Referenced Cited
U.S. Patent Documents
103645 May 1870 Muscroft
992819 May 1911 Springer
1451610 April 1923 Gestas
2267925 December 1941 Johnston
2379984 July 1943 Nereaux
2381102 October 1943 Boyd
2570465 October 1951 Lundholm
2919692 January 1960 Ackermann
3176395 April 1965 Warner et al.
3351115 November 1967 Boehlow
3664345 May 1972 Dabbs
3715763 February 1973 Link
3840905 October 1974 Deane
3852830 December 1974 Marmor
3910281 October 1975 Kletschka et al.
3976079 August 24, 1976 Samuels et al.
4016651 April 12, 1977 Kawahara et al.
4016874 April 12, 1977 Maffei et al.
4034418 July 12, 1977 Jackson et al.
D245259 August 2, 1977 Shen
4044464 August 30, 1977 Schiess et al.
4158894 June 26, 1979 Worrell
4304011 December 8, 1981 Whelan, III
4309778 January 12, 1982 Buechel et al.
4319577 March 16, 1982 Bofinger et al.
4330891 May 25, 1982 Brånemark et al.
4340978 July 27, 1982 Buechel et al.
4344192 August 17, 1982 Imbert
4433687 February 28, 1984 Burke et al.
4462120 July 31, 1984 Rambert et al.
4474177 October 2, 1984 Whiteside
4484570 November 27, 1984 Sutter et al.
4531517 July 30, 1985 Forte et al.
4535768 August 20, 1985 Hourahane et al.
4565768 January 21, 1986 Nonogaki et al.
4567885 February 4, 1986 Androphy
4634720 January 6, 1987 Dorman et al.
4655752 April 7, 1987 Honkanen et al.
4661536 April 28, 1987 Dorman et al.
4662371 May 5, 1987 Whipple et al.
4664669 May 12, 1987 Ohyabu et al.
4673407 June 16, 1987 Martin
4693986 September 15, 1987 Vit et al.
4703761 November 3, 1987 Rathbone et al.
4708139 November 24, 1987 Dunbar, IV
4712545 December 15, 1987 Honkanen
4714478 December 22, 1987 Fischer
4719908 January 19, 1988 Averill et al.
4722331 February 2, 1988 Fox
4729761 March 8, 1988 White
4741330 May 3, 1988 Hayhurst
4743262 May 10, 1988 Tronzo
4778473 October 18, 1988 Matthews et al.
4781182 November 1, 1988 Purnell et al.
4787383 November 29, 1988 Kenna
4788970 December 6, 1988 Kara et al.
4823780 April 25, 1989 Odensten et al.
4842604 June 27, 1989 Dorman et al.
4896663 January 30, 1990 Vandewalls
4911153 March 27, 1990 Border
4911720 March 27, 1990 Collier
4919671 April 24, 1990 Karpf
4920958 May 1, 1990 Walt et al.
4927421 May 22, 1990 Goble et al.
4936853 June 26, 1990 Fabian et al.
4938778 July 3, 1990 Ohyabu et al.
4940467 July 10, 1990 Tronzo
4945904 August 7, 1990 Bolton et al.
4955916 September 11, 1990 Carignan et al.
4976037 December 11, 1990 Hines
4978258 December 18, 1990 Lins
4979957 December 25, 1990 Hodorek
4989110 January 29, 1991 Zevin et al.
4990163 February 5, 1991 Ducheyne et al.
4997434 March 5, 1991 Seedhom et al.
4998938 March 12, 1991 Ghajar et al.
5007930 April 16, 1991 Dorman et al.
5019104 May 28, 1991 Whiteside et al.
5030219 July 9, 1991 Matsen, III et al.
5053049 October 1, 1991 Campbell
5078731 January 7, 1992 Hayhurst
5092895 March 3, 1992 Albrektsson et al.
5100405 March 31, 1992 McLaren
5122144 June 16, 1992 Bert et al.
5127413 July 7, 1992 Ebert
5127920 July 7, 1992 MacArthur
5147386 September 15, 1992 Carignan et al.
5152797 October 6, 1992 Luckman et al.
5154720 October 13, 1992 Trott et al.
5180384 January 19, 1993 Mikhail
5192291 March 9, 1993 Pannek, Jr.
5194066 March 16, 1993 Van Zile
5201881 April 13, 1993 Evans
5207753 May 4, 1993 Badrinath
5211647 May 18, 1993 Schmieding
5224945 July 6, 1993 Pannek, Jr.
5234435 August 10, 1993 Seagrave, Jr.
5254119 October 19, 1993 Schreiber
5255838 October 26, 1993 Gladdish, Jr. et al.
5263498 November 23, 1993 Caspari et al.
5263987 November 23, 1993 Shah
5269784 December 14, 1993 Mast
5282863 February 1, 1994 Burton
5290313 March 1, 1994 Heldreth
5306278 April 26, 1994 Dahl et al.
5306290 April 26, 1994 Martins et al.
5306301 April 26, 1994 Graf et al.
5312411 May 17, 1994 Steele
5314478 May 24, 1994 Oka et al.
5314482 May 24, 1994 Goodfellow et al.
5324295 June 28, 1994 Shapiro
5326366 July 5, 1994 Pascarella et al.
5336224 August 9, 1994 Selman
5336266 August 9, 1994 Caspari et al.
5354300 October 11, 1994 Goble et al.
5358525 October 25, 1994 Fox et al.
5360446 November 1, 1994 Kennedy
5374270 December 20, 1994 McGuire et al.
5383937 January 24, 1995 Mikhail
5387218 February 7, 1995 Meswania
5395376 March 7, 1995 Caspari et al.
5395401 March 7, 1995 Bahler
5409490 April 25, 1995 Ethridge
5409494 April 25, 1995 Morgan
5411504 May 2, 1995 Vilas
5413608 May 9, 1995 Keller
5423822 June 13, 1995 Hershberger
5423823 June 13, 1995 Schmieding
5425733 June 20, 1995 Schmieding
5458643 October 17, 1995 Oka et al.
5480443 January 2, 1996 Elias
5486178 January 23, 1996 Hodge
5509918 April 23, 1996 Romano
5514139 May 7, 1996 Goldstein et al.
5520695 May 28, 1996 Luckman
5522900 June 4, 1996 Hollister
5522901 June 4, 1996 Thomas et al.
5529075 June 25, 1996 Clark
5534031 July 9, 1996 Matsuzaki et al.
5540696 July 30, 1996 Booth, Jr. et al.
5562664 October 8, 1996 Durlacher et al.
5580352 December 3, 1996 Sekel
5580353 December 3, 1996 Mendes et al.
5591170 January 7, 1997 Spievack et al.
5593448 January 14, 1997 Dong
5593450 January 14, 1997 Scott et al.
5595193 January 21, 1997 Walus et al.
5597273 January 28, 1997 Hirsch
5601550 February 11, 1997 Esser
5607480 March 4, 1997 Beaty
5609639 March 11, 1997 Walker
5616146 April 1, 1997 Murray
5620055 April 15, 1997 Javerlhac
5624463 April 29, 1997 Stone et al.
5632745 May 27, 1997 Schwartz
5634927 June 3, 1997 Houston et al.
5645598 July 8, 1997 Brosnahan, III
5681311 October 28, 1997 Foley et al.
5681320 October 28, 1997 McGuire
5682886 November 4, 1997 Delp et al.
5683400 November 4, 1997 McGuire
5683465 November 4, 1997 Shinn et al.
5683466 November 4, 1997 Vitale
5700264 December 23, 1997 Zucherman et al.
5700265 December 23, 1997 Romano
5702401 December 30, 1997 Shaffer
5702461 December 30, 1997 Pappas et al.
5702465 December 30, 1997 Burkinshaw
5702467 December 30, 1997 Gabriel et al.
5720753 February 24, 1998 Sander et al.
5741266 April 21, 1998 Moran et al.
5765973 June 16, 1998 Hirsch et al.
5769855 June 23, 1998 Bertin et al.
5769894 June 23, 1998 Ferragamo
5769899 June 23, 1998 Schwartz et al.
5771310 June 23, 1998 Vannah
5776137 July 7, 1998 Katz
5782835 July 21, 1998 Hart et al.
5782866 July 21, 1998 Wenstrom, Jr.
5800440 September 1, 1998 Stead
5810851 September 22, 1998 Yoon
5816811 October 6, 1998 Beaty
5817095 October 6, 1998 Smith
5824087 October 20, 1998 Aspden et al.
5824105 October 20, 1998 Ries et al.
5827285 October 27, 1998 Bramlet
RE36020 December 29, 1998 Moore et al.
5871545 February 16, 1999 Goodfellow et al.
5879396 March 9, 1999 Walston et al.
5882350 March 16, 1999 Ralph et al.
5885297 March 23, 1999 Matsen, III
5885298 March 23, 1999 Herrington et al.
5888210 March 30, 1999 Draenert
5891150 April 6, 1999 Chan
5893889 April 13, 1999 Harrington
5895390 April 20, 1999 Moran et al.
5911126 June 8, 1999 Massen
5918604 July 6, 1999 Whelan
5919196 July 6, 1999 Bobic et al.
5921986 July 13, 1999 Bonutti
5928239 July 27, 1999 Mirza
5928241 July 27, 1999 Menut et al.
5928286 July 27, 1999 Ashby et al.
5951603 September 14, 1999 O'Neil et al.
5957979 September 28, 1999 Beckman et al.
5964752 October 12, 1999 Stone
5964768 October 12, 1999 Huebner
5964805 October 12, 1999 Stone
5964808 October 12, 1999 Blaha et al.
5968050 October 19, 1999 Torrie
5989269 November 23, 1999 Vibe-Hansen et al.
5990382 November 23, 1999 Fox
5997543 December 7, 1999 Truscott
5997582 December 7, 1999 Weiss
6004323 December 21, 1999 Park et al.
6007566 December 28, 1999 Wenstrom, Jr.
6010502 January 4, 2000 Bagby
6015411 January 18, 2000 Ohkoshi et al.
6017348 January 25, 2000 Hart et al.
6019767 February 1, 2000 Howell
6019790 February 1, 2000 Holmberg et al.
6033410 March 7, 2000 McLean et al.
6045554 April 4, 2000 Grooms et al.
6045564 April 4, 2000 Walen
6052909 April 25, 2000 Gardner
6053945 April 25, 2000 O'Neil et al.
6059831 May 9, 2000 Braslow
6063091 May 16, 2000 Lombardo et al.
6069295 May 30, 2000 Leitao
6071310 June 6, 2000 Picha et al.
6081741 June 27, 2000 Hollis
6086593 July 11, 2000 Bonutti
6086614 July 11, 2000 Mumme
6099568 August 8, 2000 Simonian et al.
6099571 August 8, 2000 Knapp
6102948 August 15, 2000 Brosnahan, III
6102954 August 15, 2000 Albrektsson et al.
6110207 August 29, 2000 Eichhorn et al.
6120511 September 19, 2000 Chan
6120542 September 19, 2000 Camino et al.
6132433 October 17, 2000 Whelan
6139508 October 31, 2000 Simpson et al.
6146385 November 14, 2000 Torrie et al.
6149654 November 21, 2000 Lanny
6152960 November 28, 2000 Pappas
6159216 December 12, 2000 Burkinshaw et al.
6165223 December 26, 2000 Metzger et al.
6168626 January 2, 2001 Hyon et al.
6171340 January 9, 2001 McDowell
6193724 February 27, 2001 Chan
6206885 March 27, 2001 Ghahremani et al.
6206926 March 27, 2001 Pappas
6207218 March 27, 2001 Layrolle et al.
6217549 April 17, 2001 Selmon et al.
6217619 April 17, 2001 Keller
6228119 May 8, 2001 Ondrla et al.
6231611 May 15, 2001 Mosseri
6235060 May 22, 2001 Kubein-Meesenburg et al.
6245074 June 12, 2001 Allard et al.
6251143 June 26, 2001 Schwartz et al.
6254605 July 3, 2001 Howell
6270347 August 7, 2001 Webster et al.
6280474 August 28, 2001 Cassidy et al.
6299645 October 9, 2001 Ogden
6299648 October 9, 2001 Doubler et al.
6306142 October 23, 2001 Johanson et al.
6310116 October 30, 2001 Yasuda et al.
6315798 November 13, 2001 Ashby et al.
6322500 November 27, 2001 Sikora et al.
6328752 December 11, 2001 Sjostrom et al.
6342075 January 29, 2002 MacArthur
6358251 March 19, 2002 Mirza
6358253 March 19, 2002 Torrie et al.
6364910 April 2, 2002 Shultz et al.
6375658 April 23, 2002 Hangody et al.
6383188 May 7, 2002 Kuslich
6402785 June 11, 2002 Zdeblick et al.
6415516 July 9, 2002 Tirado et al.
6416518 July 9, 2002 DeMayo
6443954 September 3, 2002 Bramlet et al.
6451023 September 17, 2002 Salazar et al.
6461373 October 8, 2002 Wyman et al.
6468309 October 22, 2002 Lieberman
6478801 November 12, 2002 Ralph et al.
6478822 November 12, 2002 Leroux et al.
6482210 November 19, 2002 Skiba et al.
6494914 December 17, 2002 Brown
6517541 February 11, 2003 Sesic
6517542 February 11, 2003 Papay et al.
6517578 February 11, 2003 Hein
6520964 February 18, 2003 Tallarida et al.
6527754 March 4, 2003 Tallarida et al.
6530956 March 11, 2003 Mansmann
6540786 April 1, 2003 Chibrac et al.
6547823 April 15, 2003 Scarborough et al.
6551322 April 22, 2003 Lieberman
6554866 April 29, 2003 Aicher et al.
6558422 May 6, 2003 Baker et al.
6569202 May 27, 2003 Whiteside
6575980 June 10, 2003 Robie et al.
6575982 June 10, 2003 Bonutti
6585666 July 1, 2003 Suh et al.
6589281 July 8, 2003 Hyde, Jr.
6591581 July 15, 2003 Schmieding
6599321 July 29, 2003 Hyde et al.
6602258 August 5, 2003 Katz
6607561 August 19, 2003 Brannon
6610067 August 26, 2003 Tallarida
6610095 August 26, 2003 Pope et al.
6623474 September 23, 2003 Ponzi
6626950 September 30, 2003 Brown et al.
6629997 October 7, 2003 Mansmann
6632246 October 14, 2003 Simon et al.
6638279 October 28, 2003 Bonutti
6679916 January 20, 2004 Frankle et al.
6679917 January 20, 2004 Ek
6720469 April 13, 2004 Curtis et al.
6746451 June 8, 2004 Middleton et al.
6755837 June 29, 2004 Ebner
6755865 June 29, 2004 Tarabishy
6770078 August 3, 2004 Bonutti
6783550 August 31, 2004 MacArthur
6783551 August 31, 2004 Metzger
6802864 October 12, 2004 Tornier
6814735 November 9, 2004 Zirngibl
6827722 December 7, 2004 Schoenefeld
6860902 March 1, 2005 Reiley
6881228 April 19, 2005 Zdeblick et al.
6884246 April 26, 2005 Sonnabend et al.
6884621 April 26, 2005 Liao et al.
6893467 May 17, 2005 Bercovy
6913463 July 5, 2005 Blacklock
6923813 August 2, 2005 Phillips et al.
6926739 August 9, 2005 Oconnor
6951538 October 4, 2005 Ritland
6953478 October 11, 2005 Bouttens et al.
6962577 November 8, 2005 Tallarida et al.
6969393 November 29, 2005 Pinczewski et al.
6984248 January 10, 2006 Hyde, Jr.
6989016 January 24, 2006 Tallarida et al.
7029479 April 18, 2006 Tallarida
7048767 May 23, 2006 Namavar
7063717 June 20, 2006 St. Pierre et al.
7105027 September 12, 2006 Lipman et al.
7112205 September 26, 2006 Carrison
7115131 October 3, 2006 Engh et al.
7118578 October 10, 2006 West, Jr. et al.
7156880 January 2, 2007 Evans et al.
7160305 January 9, 2007 Schmieding
7163541 January 16, 2007 Ek
7166133 January 23, 2007 Evans et al.
7169184 January 30, 2007 Dalla Pria
7192431 March 20, 2007 Hangody et al.
7192432 March 20, 2007 Wetzler et al.
7204839 April 17, 2007 Dreyfuss et al.
7204854 April 17, 2007 Guederian et al.
7229448 June 12, 2007 Goble et al.
7235091 June 26, 2007 Thornes
7235107 June 26, 2007 Evans et al.
7238189 July 3, 2007 Schmieding et al.
7241316 July 10, 2007 Evans et al.
7264634 September 4, 2007 Schmieding
7290347 November 6, 2007 Augustino et al.
7303577 December 4, 2007 Dean
7311702 December 25, 2007 Tallarida et al.
7361195 April 22, 2008 Schwartz et al.
7368065 May 6, 2008 Yang et al.
7371260 May 13, 2008 Malinin
7455683 November 25, 2008 Geissler et al.
7462199 December 9, 2008 Justin et al.
7468075 December 23, 2008 Lang et al.
7476250 January 13, 2009 Mansmann
7491235 February 17, 2009 Fell
7501073 March 10, 2009 Wen et al.
7510558 March 31, 2009 Tallarida
7531000 May 12, 2009 Hodorek
7559932 July 14, 2009 Truckai et al.
7569059 August 4, 2009 Cerundolo
7572291 August 11, 2009 Gil et al.
7575578 August 18, 2009 Wetzler et al.
7578824 August 25, 2009 Justin et al.
7604641 October 20, 2009 Tallarida et al.
7611653 November 3, 2009 Elsner et al.
7618451 November 17, 2009 Berez et al.
7618462 November 17, 2009 Ek
7632294 December 15, 2009 Milbodker et al.
7641658 January 5, 2010 Shaolian et al.
7641689 January 5, 2010 Fell et al.
7670381 March 2, 2010 Schwartz
7678151 March 16, 2010 Ek
7682540 March 23, 2010 Boyan et al.
7687462 March 30, 2010 Ting et al.
7708741 May 4, 2010 Bonutti
7713305 May 11, 2010 Ek
7722676 May 25, 2010 Hanson et al.
7731720 June 8, 2010 Sand et al.
7731738 June 8, 2010 Jackson et al.
7738187 June 15, 2010 Pazidis et al.
7740662 June 22, 2010 Barnett et al.
7758643 July 20, 2010 Stone et al.
7776085 August 17, 2010 Bernero et al.
7806872 October 5, 2010 Ponzi
7815645 October 19, 2010 Haines
7815681 October 19, 2010 Ferguson
7828853 November 9, 2010 Ek et al.
7842042 November 30, 2010 Reay-Young et al.
7857817 December 28, 2010 Tallarida et al.
7875058 January 25, 2011 Holmes, Jr.
7896883 March 1, 2011 Ek et al.
7896885 March 1, 2011 Miniaci et al.
7901408 March 8, 2011 Ek et al.
7901431 March 8, 2011 Shumas
7914545 March 29, 2011 Ek
7931683 April 26, 2011 Weber et al.
7951163 May 31, 2011 Ek
7951204 May 31, 2011 Chambat et al.
7955382 June 7, 2011 Flanagan et al.
7959636 June 14, 2011 Schmieding
7959650 June 14, 2011 Kaiser et al.
7959681 June 14, 2011 Lavi
7967823 June 28, 2011 Ammann et al.
7993360 August 9, 2011 Hacker et al.
7993369 August 9, 2011 Dreyfuss
7998206 August 16, 2011 Shepard
3012206 September 2011 Schmieding
3021367 September 2011 Bourke et al.
8038652 October 18, 2011 Morrison et al.
8038678 October 18, 2011 Schmieding et al.
8043315 October 25, 2011 Shepard
8043319 October 25, 2011 Lyon et al.
8048079 November 1, 2011 Iannarone
8048157 November 1, 2011 Albertorio
8057478 November 15, 2011 Kuczynski et al.
8062301 November 22, 2011 Ammann et al.
8062319 November 22, 2011 O'Quinn et al.
8083746 December 27, 2011 Novak
8083749 December 27, 2011 Taber
8083803 December 27, 2011 Albertorio et al.
8097040 January 17, 2012 Russo et al.
8114163 February 14, 2012 Berelsman et al.
8137406 March 20, 2012 Novak et al.
8137407 March 20, 2012 Todd et al.
8142502 March 27, 2012 Stone et al.
8147514 April 3, 2012 Bonutti
8147559 April 3, 2012 Tallarida et al.
8152847 April 10, 2012 Strzepa et al.
8157867 April 17, 2012 Goble et al.
8162947 April 24, 2012 Dreyfuss
8163027 April 24, 2012 Rhodes et al.
8167951 May 1, 2012 Ammann et al.
8177738 May 15, 2012 Schmieding et al.
8177841 May 15, 2012 Ek
8182489 May 22, 2012 Horacek
8202282 June 19, 2012 Schmieding et al.
8202296 June 19, 2012 Burkhart
8202297 June 19, 2012 Burkhart
8202298 June 19, 2012 Cook et al.
8202306 June 19, 2012 Dreyfuss
8202318 June 19, 2012 Willobee
8211112 July 3, 2012 Novak et al.
8221455 July 17, 2012 Shumas et al.
8231653 July 31, 2012 Dreyfuss
8231674 July 31, 2012 Albertorio et al.
8236000 August 7, 2012 Ammann et al.
8267977 September 18, 2012 Roth
8277459 October 2, 2012 Sand et al.
8298247 October 30, 2012 Sterrett et al.
8298284 October 30, 2012 Cassani
8303830 November 6, 2012 Tong et al.
8308662 November 13, 2012 Lo
8308732 November 13, 2012 Millett et al.
8308781 November 13, 2012 Wilson et al.
8317870 November 27, 2012 Wagner et al.
8323347 December 4, 2012 Guederian et al.
8328716 December 11, 2012 Schmieding et al.
8333774 December 18, 2012 Morrison
8337563 December 25, 2012 Roche et al.
8343186 January 1, 2013 Dreyfuss et al.
8348960 January 8, 2013 Michel et al.
8348975 January 8, 2013 Dreyfuss
8353915 January 15, 2013 Helenbolt et al.
8361159 January 29, 2013 Ek
8377068 February 19, 2013 Aker et al.
8382789 February 26, 2013 Weber et al.
8382810 February 26, 2013 Peterson et al.
8388624 March 5, 2013 Ek et al.
8398678 March 19, 2013 Baker et al.
8409209 April 2, 2013 Ammann et al.
8409250 April 2, 2013 Schmieding et al.
8414908 April 9, 2013 Jin et al.
8419794 April 16, 2013 ElAttrache et al.
8425554 April 23, 2013 Denove et al.
8430909 April 30, 2013 Dreyfuss
8435272 May 7, 2013 Dougherty et al.
8439976 May 14, 2013 Albertorio et al.
8444680 May 21, 2013 Dooney, Jr. et al.
8460317 June 11, 2013 Merves
8460318 June 11, 2013 Murray et al.
8460350 June 11, 2013 Albertorio et al.
8460379 June 11, 2013 Albertorio et al.
8470047 June 25, 2013 Hazebrouck et al.
8475536 July 2, 2013 Tong et al.
8486072 July 16, 2013 Haininger
8496662 July 30, 2013 Novak et al.
8506573 August 13, 2013 Dreyfuss et al.
8512376 August 20, 2013 Thornes
8512411 August 20, 2013 Sluss et al.
8523872 September 3, 2013 Ek
8535330 September 17, 2013 Sherman et al.
8535703 September 17, 2013 Schmieding et al.
8540717 September 24, 2013 Tallarida et al.
8540777 September 24, 2013 Ammann et al.
8540778 September 24, 2013 Rhodes et al.
8551101 October 8, 2013 Kuczynski
8556984 October 15, 2013 Calamel
8579940 November 12, 2013 Dreyfuss et al.
8579944 November 12, 2013 Holloway et al.
8591514 November 26, 2013 Sherman
8591523 November 26, 2013 Weber
8591544 November 26, 2013 Jolly et al.
8591578 November 26, 2013 Albertorio et al.
8591592 November 26, 2013 Dreyfuss
8591594 November 26, 2013 Parisi et al.
8597361 December 3, 2013 Sidebotham et al.
8623052 January 7, 2014 Dreyfuss et al.
8628573 January 14, 2014 Roller et al.
8652139 February 18, 2014 Sterrett et al.
8663230 March 4, 2014 Miniaci et al.
8663250 March 4, 2014 Weber
8663251 March 4, 2014 Burkhart et al.
8663279 March 4, 2014 Burkhart et al.
8663324 March 4, 2014 Schmieding et al.
8663333 March 4, 2014 Metcalfe et al.
8668738 March 11, 2014 Schmieding et al.
8690952 April 8, 2014 Dallmann
8702715 April 22, 2014 Ammann et al.
8702752 April 22, 2014 Schmieding et al.
8709052 April 29, 2014 Ammann et al.
8709091 April 29, 2014 Rhodes et al.
8721722 May 13, 2014 Shah et al.
8728131 May 20, 2014 Di Giacomo et al.
8734449 May 27, 2014 Schmied et al.
8753375 June 17, 2014 Albertorio
8758356 June 24, 2014 Fearon et al.
8764797 July 1, 2014 Dreyfuss et al.
8764807 July 1, 2014 Michel et al.
8764839 July 1, 2014 Rhodes et al.
8771279 July 8, 2014 Philippon et al.
8771351 July 8, 2014 ElAttrache et al.
8784423 July 22, 2014 Kowarsch et al.
8790401 July 29, 2014 Schmieding et al.
8801755 August 12, 2014 Dreyfuss et al.
8821541 September 2, 2014 Dreyfuss et al.
8834475 September 16, 2014 Ammann et al.
8834521 September 16, 2014 Pinto et al.
8840619 September 23, 2014 Zajac et al.
8840643 September 23, 2014 Dreyfuss
8840676 September 23, 2014 Belew et al.
8852190 October 7, 2014 Sherman
8852201 October 7, 2014 Schmieding et al.
8858560 October 14, 2014 Bradley et al.
8864827 October 21, 2014 Ek
8870877 October 28, 2014 Koogle, Jr.
8870962 October 28, 2014 Roche et al.
8876900 November 4, 2014 Guederian et al.
8882833 November 11, 2014 Saylor et al.
8882845 November 11, 2014 Wirth et al.
8882847 November 11, 2014 Burdulis, Jr. et al.
8888781 November 18, 2014 Sterrett
8888785 November 18, 2014 Ammann et al.
8888815 November 18, 2014 Holmes, Jr.
8888855 November 18, 2014 Roche et al.
8906026 December 9, 2014 Ammann et al.
8911457 December 16, 2014 Koogle, Jr. et al.
8920497 December 30, 2014 Albertorio et al.
8920508 December 30, 2014 Iannotti et al.
8926615 January 6, 2015 Ek
8927283 January 6, 2015 Komvopoulos et al.
8939980 January 27, 2015 Schmieding et al.
8939999 January 27, 2015 Sterrett et al.
8956369 February 17, 2015 Millett et al.
8961538 February 24, 2015 Koogle, Jr. et al.
8961575 February 24, 2015 Choinski
8961614 February 24, 2015 Ek et al.
8974537 March 10, 2015 Dreyfuss
8986346 March 24, 2015 Dreyfuss
9005245 April 14, 2015 Thornes et al.
9005246 April 14, 2015 Burkhart et al.
9044343 June 2, 2015 Ek
9055955 June 16, 2015 Ek et al.
9066716 June 30, 2015 Sikora et al.
9072510 July 7, 2015 Thornes et al.
9072555 July 7, 2015 Michel
9078650 July 14, 2015 Weber
9078661 July 14, 2015 Gallo
9089363 July 28, 2015 Dooney, Jr. et al.
9089433 July 28, 2015 Karnes et al.
9095641 August 4, 2015 Albertorio
9101366 August 11, 2015 Sterrett et al.
9101461 August 11, 2015 Albertorio et al.
9107653 August 18, 2015 Sullivan
9107676 August 18, 2015 Burkhart et al.
9113859 August 25, 2015 Dooney, Jr. et al.
9113920 August 25, 2015 Ammann et al.
9138223 September 22, 2015 Jolly et al.
9138237 September 22, 2015 Meade et al.
9138241 September 22, 2015 Kuczynski
9138246 September 22, 2015 Anderson et al.
9138274 September 22, 2015 Biesinger et al.
9146576 September 29, 2015 Schmieding et al.
9168124 October 27, 2015 Guerra et al.
9179907 November 10, 2015 ElAttrache et al.
9179950 November 10, 2015 Zajac et al.
9186432 November 17, 2015 Mazzocca et al.
9204873 December 8, 2015 Tallarida et al.
9204874 December 8, 2015 Denove et al.
9204960 December 8, 2015 Albertorio et al.
9211126 December 15, 2015 Sikora et al.
9216017 December 22, 2015 Burkhart
9216022 December 22, 2015 Karnes et al.
9216090 December 22, 2015 Metcalfe
9216091 December 22, 2015 Hardy et al.
9226743 January 5, 2016 Dreyfuss et al.
9226815 January 5, 2016 Schmieding et al.
9233003 January 12, 2016 Roche et al.
9278413 March 8, 2016 Sperling
9283076 March 15, 2016 Sikora et al.
9289221 March 22, 2016 Gelaude et al.
9295556 March 29, 2016 Perez, III et al.
9301745 April 5, 2016 Dreyfuss
9301847 April 5, 2016 Guederian et al.
9320512 April 26, 2016 Dooney, Jr.
9332979 May 10, 2016 Sullivan et al.
9333019 May 10, 2016 Khosla et al.
9345471 May 24, 2016 Sullivan
9351722 May 31, 2016 Koogle, Jr. et al.
9351743 May 31, 2016 Kehres et al.
9351745 May 31, 2016 Ek et al.
9357989 June 7, 2016 Tallarida et al.
9358029 June 7, 2016 Sikora et al.
9364214 June 14, 2016 Courage
9381022 July 5, 2016 Bradley et al.
9381053 July 5, 2016 Parsons et al.
9393010 July 19, 2016 Murray et al.
9402730 August 2, 2016 Lederman et al.
9421007 August 23, 2016 Brady et al.
9421008 August 23, 2016 Burkhart et al.
9421010 August 23, 2016 Dreyfuss
9421086 August 23, 2016 Roller et al.
9421105 August 23, 2016 Metcalfe et al.
9421106 August 23, 2016 Splieth et al.
9451951 September 27, 2016 Sullivan et al.
9463011 October 11, 2016 Dreyfuss et al.
9468448 October 18, 2016 Sikora et al.
9485475 November 1, 2016 Speier et al.
9486207 November 8, 2016 Dooney, Jr. et al.
9486317 November 8, 2016 Milano et al.
9492200 November 15, 2016 Sikora et al.
9498232 November 22, 2016 Perez, III
9498344 November 22, 2016 Hodorek et al.
9504462 November 29, 2016 Dooney, Jr. et al.
9510840 December 6, 2016 Sikora et al.
9510951 December 6, 2016 Bachmaier
9521999 December 20, 2016 Dreyfuss et al.
9526493 December 27, 2016 Dreyfuss et al.
9526510 December 27, 2016 Sterrett
9549701 January 24, 2017 Peterson et al.
9549726 January 24, 2017 Dreyfuss et al.
9603712 March 28, 2017 Bachmaier
9610167 April 4, 2017 Hardy et al.
9615821 April 11, 2017 Sullivan
9622738 April 18, 2017 Dreyfuss et al.
9622739 April 18, 2017 Dreyfuss et al.
9622775 April 18, 2017 Jolly et al.
9622869 April 18, 2017 Nerot et al.
9629725 April 25, 2017 Gargac et al.
9642609 May 9, 2017 Holmes, Jr.
9642610 May 9, 2017 Albertorio et al.
9662126 May 30, 2017 Sikora et al.
9687222 June 27, 2017 Dreyfuss et al.
9687256 June 27, 2017 Granberry et al.
9687338 June 27, 2017 Albertorio et al.
9693765 July 4, 2017 Sullivan et al.
9693787 July 4, 2017 Ammann et al.
9706986 July 18, 2017 ElAttrache et al.
9707023 July 18, 2017 Ammann et al.
9724138 August 8, 2017 Palmer et al.
9724168 August 8, 2017 Yeung
9737292 August 22, 2017 Sullivan et al.
9750850 September 5, 2017 Fonte et al.
9763798 September 19, 2017 Chavarria et al.
9775599 October 3, 2017 ElAttrache et al.
9795392 October 24, 2017 Zajac
9801625 October 31, 2017 Dooney, Jr. et al.
9801707 October 31, 2017 Cassani
9801726 October 31, 2017 Karnes et al.
9808240 November 7, 2017 Parsons et al.
9814455 November 14, 2017 Dooney, Jr. et al.
9814499 November 14, 2017 Buscaglia et al.
9833260 December 5, 2017 Jolly et al.
9839438 December 12, 2017 Eash
9839462 December 12, 2017 Zajac
9855029 January 2, 2018 Sullivan
9855036 January 2, 2018 Palmer et al.
9855064 January 2, 2018 Albertorio et al.
9855132 January 2, 2018 Hoover et al.
9855146 January 2, 2018 Schmieding
9861357 January 9, 2018 Palmer et al.
9861413 January 9, 2018 Palmer et al.
9861417 January 9, 2018 Helenbolt et al.
9861492 January 9, 2018 Ek
9867607 January 16, 2018 Sullivan
9877712 January 30, 2018 Provencher et al.
9877758 January 30, 2018 Michel
9888997 February 13, 2018 Dreyfuss et al.
9895177 February 20, 2018 Hientzsch et al.
9907655 March 6, 2018 Ingwer et al.
9907657 March 6, 2018 Fonte et al.
9913640 March 13, 2018 Perez, III
9918769 March 20, 2018 Provencher et al.
9931115 April 3, 2018 Morgan et al.
9931211 April 3, 2018 Ek et al.
9931219 April 3, 2018 Sikora et al.
9956083 May 1, 2018 Humphrey
9962265 May 8, 2018 Ek et al.
9974537 May 22, 2018 Coughlin et al.
9974550 May 22, 2018 Seitlinger et al.
9999416 June 19, 2018 Kelly et al.
10034759 July 31, 2018 Deransart et al.
10045770 August 14, 2018 Burkhart et al.
10045788 August 14, 2018 Sikora et al.
10052091 August 21, 2018 Dreyfuss et al.
10058322 August 28, 2018 Dooney, Jr. et al.
10064983 September 4, 2018 Weber et al.
10076321 September 18, 2018 Crane et al.
10076322 September 18, 2018 Dreyfuss
10076343 September 18, 2018 Ek
10076407 September 18, 2018 Albertorio et al.
10080557 September 25, 2018 Laviano et al.
10085739 October 2, 2018 Dooney, Jr. et al.
10092340 October 9, 2018 Choinski et al.
10111649 October 30, 2018 Laviano et al.
10117657 November 6, 2018 Guederian
10143558 December 4, 2018 Frankle
10159518 December 25, 2018 Holowecky et al.
10172606 January 8, 2019 Sullivan et al.
10172607 January 8, 2019 Burkhart
10172703 January 8, 2019 Adams et al.
10172714 January 8, 2019 Hatzidakis et al.
10182917 January 22, 2019 Zajac
10188504 January 29, 2019 Cassani
10194899 February 5, 2019 Benavitz et al.
10206670 February 19, 2019 Thornes
10206694 February 19, 2019 Libby et al.
10213219 February 26, 2019 Garlock et al.
10238484 March 26, 2019 Albertorio et al.
10245016 April 2, 2019 Zajac et al.
10251655 April 9, 2019 Sterrett
10251656 April 9, 2019 Granberry et al.
10251686 April 9, 2019 Zajac et al.
10258320 April 16, 2019 Dreyfuss et al.
10265060 April 23, 2019 Dooney, Jr. et al.
10271858 April 30, 2019 Guilloux et al.
10285801 May 14, 2019 Roller et al.
10299841 May 28, 2019 Dunlop et al.
10307154 June 4, 2019 Michalik et al.
10363024 July 30, 2019 Koogle, Jr. et al.
10398426 September 3, 2019 Burkhart et al.
10398514 September 3, 2019 Ryan et al.
10405904 September 10, 2019 Hientzsch et al.
10413341 September 17, 2019 Chaudot et al.
10420597 September 24, 2019 Papangelou et al.
10420649 September 24, 2019 Overes et al.
10426495 October 1, 2019 Bonin, Jr. et al.
10441298 October 15, 2019 Eash
10448945 October 22, 2019 Bachmaier et al.
10456145 October 29, 2019 Laviano et al.
10478200 November 19, 2019 Sikora et al.
10485670 November 26, 2019 Maale
10499932 December 10, 2019 Koogle, Jr. et al.
10512543 December 24, 2019 Ingwer et al.
10537390 January 21, 2020 Varadarajan et al.
10548737 February 4, 2020 Hodorek et al.
10575957 March 3, 2020 Ek
10583012 March 10, 2020 Longobardi
10595886 March 24, 2020 Termanini
10624748 April 21, 2020 Ek et al.
10624749 April 21, 2020 Ek et al.
10624752 April 21, 2020 Sikora et al.
10624754 April 21, 2020 Ek et al.
10631992 April 28, 2020 Hopkins
10695096 June 30, 2020 Sikora et al.
10709565 July 14, 2020 Humphrey et al.
10736751 August 11, 2020 Hodorek et al.
10945743 March 16, 2021 Sikora et al.
10959740 March 30, 2021 Sikora et al.
10966814 April 6, 2021 Hansen et al.
10973645 April 13, 2021 Deransart et al.
10987176 April 27, 2021 Poltaretskyi et al.
11020128 June 1, 2021 Guilloux et al.
11033399 June 15, 2021 Hatzidakis et al.
11065125 July 20, 2021 Ball
11071596 July 27, 2021 Ryan et al.
11083525 August 10, 2021 Varadarajan et al.
11090123 August 17, 2021 Yeung
11103357 August 31, 2021 Gargac et al.
11129724 September 28, 2021 Knox et al.
11166733 November 9, 2021 Neichel et al.
11173037 November 16, 2021 Deransart et al.
11197764 December 14, 2021 Mutchler et al.
11229522 January 25, 2022 Nerot et al.
11234721 February 1, 2022 Gargac et al.
20010010023 July 26, 2001 Schwartz et al.
20010012967 August 9, 2001 Mosseri
20010016775 August 23, 2001 Scarborough et al.
20010034526 October 25, 2001 Kuslich et al.
20010039455 November 8, 2001 Simon et al.
20010053914 December 20, 2001 Landry et al.
20010056266 December 27, 2001 Tallarida et al.
20020022847 February 21, 2002 Ray, III et al.
20020022889 February 21, 2002 Chibrac et al.
20020022890 February 21, 2002 Jacobsson et al.
20020049444 April 25, 2002 Knox
20020055783 May 9, 2002 Tallarida et al.
20020082701 June 27, 2002 Zdeblick et al.
20020106393 August 8, 2002 Bianchi et al.
20020138150 September 26, 2002 Leclercq
20020143342 October 3, 2002 Hangody et al.
20020147498 October 10, 2002 Tallarida et al.
20020155144 October 24, 2002 Troczynski et al.
20020156480 October 24, 2002 Overes et al.
20020173797 November 21, 2002 Van Zile et al.
20020183760 December 5, 2002 McGovern et al.
20030028196 February 6, 2003 Bonutti
20030060887 March 27, 2003 Ek
20030065332 April 3, 2003 TenHuisen et al.
20030065391 April 3, 2003 Re et al.
20030083751 May 1, 2003 Tornier
20030100953 May 29, 2003 Rosa et al.
20030105465 June 5, 2003 Schmieding et al.
20030120276 June 26, 2003 Tallarida et al.
20030120278 June 26, 2003 Morgan et al.
20030130741 July 10, 2003 McMinn
20030144736 July 31, 2003 Sennett
20030171756 September 11, 2003 Fallin et al.
20030171820 September 11, 2003 Wilshaw et al.
20030181878 September 25, 2003 Tallarida et al.
20030195470 October 16, 2003 Ponzi
20030204195 October 30, 2003 Keane et al.
20030204267 October 30, 2003 Hazebrouck et al.
20030216669 November 20, 2003 Lang et al.
20030216742 November 20, 2003 Wetzler et al.
20030225456 December 4, 2003 Ek
20030225457 December 4, 2003 Justin et al.
20030229352 December 11, 2003 Penenberg
20040015170 January 22, 2004 Tallarida et al.
20040033212 February 19, 2004 Thomson et al.
20040034359 February 19, 2004 Schmieding et al.
20040034437 February 19, 2004 Schmieding
20040039389 February 26, 2004 West, Jr. et al.
20040064190 April 1, 2004 Ball et al.
20040082906 April 29, 2004 Tallarida et al.
20040083005 April 29, 2004 Jacobsson et al.
20040092946 May 13, 2004 Bagga et al.
20040106928 June 3, 2004 Ek
20040133276 July 8, 2004 Lang et al.
20040138754 July 15, 2004 Lang et al.
20040138758 July 15, 2004 Evans et al.
20040148030 July 29, 2004 Ek
20040153086 August 5, 2004 Sanford
20040153087 August 5, 2004 Sanford et al.
20040167632 August 26, 2004 Wen et al.
20040167633 August 26, 2004 Wen et al.
20040176775 September 9, 2004 Burkus et al.
20040186582 September 23, 2004 Yasuda et al.
20040193172 September 30, 2004 Ross et al.
20040193175 September 30, 2004 Maroney et al.
20040193267 September 30, 2004 Jones et al.
20040193268 September 30, 2004 Hazebrouck
20040193281 September 30, 2004 Grimes
20040199166 October 7, 2004 Schmieding et al.
20040204760 October 14, 2004 Fitz et al.
20040210309 October 21, 2004 Denzer et al.
20040220574 November 4, 2004 Pelo et al.
20040230315 November 18, 2004 Ek
20040236339 November 25, 2004 Pepper
20040254585 December 16, 2004 Whittaker et al.
20040260298 December 23, 2004 Kaiser et al.
20040260303 December 23, 2004 Carrison
20050015092 January 20, 2005 Rathbun et al.
20050015153 January 20, 2005 Gobel et al.
20050038520 February 17, 2005 Binette et al.
20050043805 February 24, 2005 Chudik
20050043808 February 24, 2005 Felt et al.
20050049716 March 3, 2005 Wagener et al.
20050065612 March 24, 2005 Winslow
20050071014 March 31, 2005 Barnett et al.
20050075642 April 7, 2005 Felt
20050085909 April 21, 2005 Eisermann
20050090905 April 28, 2005 Hawkins et al.
20050107799 May 19, 2005 Graf et al.
20050119758 June 2, 2005 Alexander et al.
20050143731 June 30, 2005 Justin et al.
20050143745 June 30, 2005 Hodorek et al.
20050143821 June 30, 2005 Zdeblick et al.
20050143831 June 30, 2005 Justin et al.
20050149044 July 7, 2005 Justin et al.
20050154398 July 14, 2005 Miniaci et al.
20050165407 July 28, 2005 Diaz
20050165487 July 28, 2005 Muhanna et al.
20050177171 August 11, 2005 Wetzler et al.
20050209705 September 22, 2005 Niederauer et al.
20050222687 October 6, 2005 Vunjak-Novakovic et al.
20050229323 October 20, 2005 Mills et al.
20050234461 October 20, 2005 Burdulis, Jr. et al.
20050245932 November 3, 2005 Fanton et al.
20050251268 November 10, 2005 Truncale
20050273112 December 8, 2005 McNamara
20050287187 December 29, 2005 Mansmann
20060004461 January 5, 2006 Justin et al.
20060009774 January 12, 2006 Goble et al.
20060009852 January 12, 2006 Winslow et al.
20060020343 January 26, 2006 Ek
20060041261 February 23, 2006 Osypka
20060052878 March 9, 2006 Schmieding
20060058744 March 16, 2006 Tallarida et al.
20060058809 March 16, 2006 Zink et al.
20060058883 March 16, 2006 Aram et al.
20060069394 March 30, 2006 Weiler et al.
20060074430 April 6, 2006 Deffenbaugh et al.
20060085006 April 20, 2006 Ek
20060085077 April 20, 2006 Cook et al.
20060105015 May 18, 2006 Perla et al.
20060111787 May 25, 2006 Bailie et al.
20060121080 June 8, 2006 Lye et al.
20060142772 June 29, 2006 Ralph et al.
20060149370 July 6, 2006 Schmieding et al.
20060154206 July 13, 2006 Petersson et al.
20060167560 July 27, 2006 Heck et al.
20060184187 August 17, 2006 Surti
20060190002 August 24, 2006 Tallarida
20060195112 August 31, 2006 Ek
20060217728 September 28, 2006 Chervitz et al.
20060229726 October 12, 2006 Ek
20060271059 November 30, 2006 Reay-Young et al.
20070005143 January 4, 2007 Ek
20070016208 January 18, 2007 Thornes
20070038302 February 15, 2007 Shultz et al.
20070038307 February 15, 2007 Webster et al.
20070073394 March 29, 2007 Seedhom et al.
20070093842 April 26, 2007 Schmieding
20070093848 April 26, 2007 Harris et al.
20070093890 April 26, 2007 Eliasen et al.
20070093896 April 26, 2007 Malinin
20070118136 May 24, 2007 Ek
20070118224 May 24, 2007 Shah et al.
20070123921 May 31, 2007 Ek
20070129808 June 7, 2007 Justin et al.
20070134291 June 14, 2007 Ting et al.
20070173850 July 26, 2007 Rangaiah et al.
20070179531 August 2, 2007 Thornes
20070179608 August 2, 2007 Ek
20070233128 October 4, 2007 Schmieding et al.
20070244484 October 18, 2007 Luginbuehl
20070250067 October 25, 2007 Schmieding et al.
20070255399 November 1, 2007 Eliasen et al.
20070255412 November 1, 2007 Hajaj et al.
20070265700 November 15, 2007 Eliasen et al.
20070270711 November 22, 2007 Gil et al.
20070270873 November 22, 2007 Flickinger et al.
20070282455 December 6, 2007 Luginbuehl et al.
20070288031 December 13, 2007 Dreyfuss et al.
20070299519 December 27, 2007 Schmieding
20070299529 December 27, 2007 Rhodes et al.
20080004659 January 3, 2008 Burkhart et al.
20080015607 January 17, 2008 D'Alessio et al.
20080015709 January 17, 2008 Evans et al.
20080027430 January 31, 2008 Montgomery et al.
20080033443 February 7, 2008 Sikora et al.
20080033447 February 7, 2008 Sand
20080046009 February 21, 2008 Albertorio et al.
20080046084 February 21, 2008 Sledge
20080071381 March 20, 2008 Buscher et al.
20080077182 March 27, 2008 Geissler et al.
20080086139 April 10, 2008 Bourke et al.
20080086152 April 10, 2008 McKay et al.
20080091271 April 17, 2008 Bonitati et al.
20080091272 April 17, 2008 Aram et al.
20080097618 April 24, 2008 Baker et al.
20080103506 May 1, 2008 Volpi et al.
20080114463 May 15, 2008 Auger et al.
20080138611 June 12, 2008 Yasuzawa et al.
20080154271 June 26, 2008 Berberich et al.
20080172125 July 17, 2008 Ek
20080177200 July 24, 2008 Ikehara et al.
20080183290 July 31, 2008 Baird et al.
20080188935 August 7, 2008 Saylor et al.
20080195113 August 14, 2008 Sikora
20080200904 August 21, 2008 Cluff et al.
20080208201 August 28, 2008 Moindreau et al.
20080243262 October 2, 2008 Lee
20080243263 October 2, 2008 Lee et al.
20080262500 October 23, 2008 Collazo
20080262625 October 23, 2008 Spriano et al.
20080275451 November 6, 2008 McAllister et al.
20080275512 November 6, 2008 Albertirio et al.
20080294168 November 27, 2008 Wieland
20080306483 December 11, 2008 Iannarone
20080317807 December 25, 2008 Lu et al.
20090018543 January 15, 2009 Ammann et al.
20090018581 January 15, 2009 Anderson et al.
20090035722 February 5, 2009 Balasundaram et al.
20090036893 February 5, 2009 Kartalian et al.
20090054899 February 26, 2009 Ammann et al.
20090069816 March 12, 2009 Sasing et al.
20090076512 March 19, 2009 Ammann et al.
20090088753 April 2, 2009 Aram et al.
20090088858 April 2, 2009 Zinger et al.
20090105772 April 23, 2009 Seebeck et al.
20090112211 April 30, 2009 Johnstone
20090138077 May 28, 2009 Weber et al.
20090143783 June 4, 2009 Dower
20090143784 June 4, 2009 Petersen et al.
20090149860 June 11, 2009 Scribner et al.
20090192621 July 30, 2009 Winslow et al.
20090198288 August 6, 2009 Hoof et al.
20090210057 August 20, 2009 Liao et al.
20090216268 August 27, 2009 Panter
20090216285 August 27, 2009 Ek et al.
20090220561 September 3, 2009 Jin et al.
20090222012 September 3, 2009 Karnes et al.
20090228031 September 10, 2009 Ritter et al.
20090228105 September 10, 2009 Son et al.
20090234452 September 17, 2009 Steiner et al.
20090254094 October 8, 2009 Knapp et al.
20090264889 October 22, 2009 Long et al.
20090264928 October 22, 2009 Blain
20090275950 November 5, 2009 Sterrett et al.
20090276052 November 5, 2009 Regala et al.
20090283701 November 19, 2009 Ogawa
20100003638 January 7, 2010 Collins et al.
20100015244 January 21, 2010 Jain et al.
20100028387 February 4, 2010 Balasundaram et al.
20100028999 February 4, 2010 Nain
20100036381 February 11, 2010 Vanleeuwen et al.
20100057197 March 4, 2010 Weber et al.
20100069958 March 18, 2010 Sullivan et al.
20100082035 April 1, 2010 Keefer
20100087829 April 8, 2010 Metzger et al.
20100092535 April 15, 2010 Cook et al.
20100112519 May 6, 2010 Hall et al.
20100136289 June 3, 2010 Extrand et al.
20100152752 June 17, 2010 Denove et al.
20100168505 July 1, 2010 Inman et al.
20100168854 July 1, 2010 Luers et al.
20100185294 July 22, 2010 Ek
20100191342 July 29, 2010 Byrd et al.
20100211071 August 19, 2010 Lettmann et al.
20100217315 August 26, 2010 Jolly et al.
20100227372 September 9, 2010 Bilek et al.
20100241236 September 23, 2010 Katrana et al.
20100249930 September 30, 2010 Myers
20100249935 September 30, 2010 Slivka et al.
20100249942 September 30, 2010 Goswami et al.
20100256645 October 7, 2010 Zajac et al.
20100256758 October 7, 2010 Gordon et al.
20100268227 October 21, 2010 Tong et al.
20100268238 October 21, 2010 Sikora et al.
20100268273 October 21, 2010 Albertorio et al.
20100268330 October 21, 2010 Tong et al.
20100268346 October 21, 2010 Tong et al.
20100268347 October 21, 2010 Tong et al.
20110009964 January 13, 2011 Schwartz et al.
20110035012 February 10, 2011 Linares
20110059312 March 10, 2011 Howling et al.
20110066242 March 17, 2011 Lu et al.
20110071641 March 24, 2011 Ek et al.
20110085968 April 14, 2011 Jin et al.
20110087280 April 14, 2011 Albertorio
20110093085 April 21, 2011 Morton
20110098822 April 28, 2011 Walch et al.
20110106271 May 5, 2011 Regala et al.
20110118780 May 19, 2011 Holmes, Jr.
20110123951 May 26, 2011 Lomicka
20110125263 May 26, 2011 Webster et al.
20110125277 May 26, 2011 Nygren et al.
20110137341 June 9, 2011 Thornes et al.
20110152869 June 23, 2011 Ek et al.
20110153023 June 23, 2011 Deffenbaugh et al.
20110159070 June 30, 2011 Jin et al.
20110178557 July 21, 2011 Rush et al.
20110190902 August 4, 2011 Tong et al.
20110196367 August 11, 2011 Gallo
20110213375 September 1, 2011 Sikora et al.
20110224729 September 15, 2011 Baker et al.
20110236435 September 29, 2011 Biris
20110238069 September 29, 2011 Zajac et al.
20110251621 October 13, 2011 Sluss et al.
20110257753 October 20, 2011 Gordon et al.
20110300186 December 8, 2011 Hellstrom et al.
20110301648 December 8, 2011 Lofthouse et al.
20110301716 December 8, 2011 Sirivisoot et al.
20120016428 January 19, 2012 White et al.
20120022656 January 26, 2012 Lavi
20120027837 February 2, 2012 DeMuth et al.
20120029647 February 2, 2012 Winslow et al.
20120051489 March 1, 2012 Varanasi et al.
20120058328 March 8, 2012 Tourvieille et al.
20120059418 March 8, 2012 Denham et al.
20120065732 March 15, 2012 Roller et al.
20120065734 March 15, 2012 Barrett et al.
20120071935 March 22, 2012 Keith et al.
20120101502 April 26, 2012 Kartalian et al.
20120109136 May 3, 2012 Bourque et al.
20120109222 May 3, 2012 Goel et al.
20120116502 May 10, 2012 Su et al.
20120123474 May 17, 2012 Zajac et al.
20120123541 May 17, 2012 Albertorio et al.
20120128666 May 24, 2012 Pébay et al.
20120150203 June 14, 2012 Brady et al.
20120150225 June 14, 2012 Burkart et al.
20120150286 June 14, 2012 Weber et al.
20120165868 June 28, 2012 Burkhart et al.
20120183799 July 19, 2012 Steele et al.
20120185058 July 19, 2012 Albertorio et al.
20120189833 July 26, 2012 Suchanek et al.
20120189844 July 26, 2012 Jain et al.
20120209278 August 16, 2012 Ries et al.
20120214128 August 23, 2012 Collins et al.
20120215310 August 23, 2012 Sharp et al.
20120221111 August 30, 2012 Burkhead, Jr. et al.
20120253467 October 4, 2012 Frankle
20120265298 October 18, 2012 Schmieding et al.
20120323338 December 20, 2012 Vanasse
20120330322 December 27, 2012 Sand et al.
20120330357 December 27, 2012 Thal
20130006374 January 3, 2013 Le Couedic et al.
20130022943 January 24, 2013 Collins et al.
20130023907 January 24, 2013 Sterrett et al.
20130023927 January 24, 2013 Cassani
20130046312 February 21, 2013 Millett et al.
20130096563 April 18, 2013 Meade et al.
20130096612 April 18, 2013 Zajac et al.
20130103104 April 25, 2013 Krupp et al.
20130110165 May 2, 2013 Burkhart et al.
20130138108 May 30, 2013 Dryfuss et al.
20130138150 May 30, 2013 Baker et al.
20130150885 June 13, 2013 Dreyfuss
20130150975 June 13, 2013 Iannotti et al.
20130165954 June 27, 2013 Dreyfuss et al.
20130165972 June 27, 2013 Sullivan
20130178871 July 11, 2013 Koogle, Jr. et al.
20130184818 July 18, 2013 Coughlin et al.
20130190819 July 25, 2013 Norton
20130190885 July 25, 2013 Ammann et al.
20130197651 August 1, 2013 McDaniel et al.
20130204257 August 8, 2013 Zajac
20130204259 August 8, 2013 Zajac
20130205936 August 15, 2013 Schmieding et al.
20130218176 August 22, 2013 Denove et al.
20130218286 August 22, 2013 Stahl Wernersson et al.
20130237987 September 12, 2013 Graham
20130238099 September 12, 2013 Hardy et al.
20130245775 September 19, 2013 Metcalfe
20130261750 October 3, 2013 Lappin
20130268073 October 10, 2013 Albertorio et al.
20130282129 October 24, 2013 Phipps
20130289570 October 31, 2013 Chao
20130304209 November 14, 2013 Schmieding et al.
20130331886 December 12, 2013 Thornes
20130338722 December 19, 2013 Yalizis
20130338792 December 19, 2013 Schmieding et al.
20130344600 December 26, 2013 Jin et al.
20130345747 December 26, 2013 Dreyfuss
20130345748 December 26, 2013 Dreyfuss
20140012267 January 9, 2014 Skiora et al.
20140012389 January 9, 2014 Ek
20140025173 January 23, 2014 Cardon et al.
20140052178 February 20, 2014 Dooney, Jr.
20140052179 February 20, 2014 Dreyfuss et al.
20140066933 March 6, 2014 Ek et al.
20140074164 March 13, 2014 Dreyfuss et al.
20140074239 March 13, 2014 Albertorio et al.
20140079921 March 20, 2014 De Volder
20140081273 March 20, 2014 Sherman
20140081399 March 20, 2014 Roller et al.
20140088601 March 27, 2014 Kuczynski
20140088602 March 27, 2014 Ammann et al.
20140114322 April 24, 2014 Perez, III
20140114367 April 24, 2014 Jolly et al.
20140121700 May 1, 2014 Dreyfuss et al.
20140121701 May 1, 2014 Dreyfuss et al.
20140128889 May 8, 2014 Sullivan et al.
20140128915 May 8, 2014 Dreyfuss et al.
20140128921 May 8, 2014 Parsons et al.
20140155902 June 5, 2014 Sikora et al.
20140188232 July 3, 2014 Metcalfe et al.
20140194880 July 10, 2014 Schmieding et al.
20140228849 August 14, 2014 Sterrett et al.
20140236306 August 21, 2014 Karnes et al.
20140243439 August 28, 2014 Papangelou et al.
20140243891 August 28, 2014 Schmieding et al.
20140243892 August 28, 2014 Choinski
20140243976 August 28, 2014 Schmieding et al.
20140257297 September 11, 2014 Koogle, Jr. et al.
20140257299 September 11, 2014 Berelsman et al.
20140257384 September 11, 2014 Dreyfuss et al.
20140276841 September 18, 2014 Albertorio et al.
20140276990 September 18, 2014 Perez, III
20140277020 September 18, 2014 Koogle et al.
20140277121 September 18, 2014 Pilgeram et al.
20140277134 September 18, 2014 ElAttrache et al.
20140277181 September 18, 2014 Garlock
20140277186 September 18, 2014 Granberry et al.
20140277214 September 18, 2014 Helenbolt et al.
20140277448 September 18, 2014 Guerra et al.
20140288657 September 25, 2014 Lederman et al.
20140309689 October 16, 2014 Sikora et al.
20140324167 October 30, 2014 Schmieding et al.
20140335145 November 13, 2014 Jin et al.
20140350688 November 27, 2014 Michel et al.
20150073424 March 12, 2015 Couture et al.
20150134066 May 14, 2015 Bachmaier
20150142052 May 21, 2015 Koogle, Jr. et al.
20150157462 June 11, 2015 Ek et al.
20150164648 June 18, 2015 Lizak et al.
20150201951 July 23, 2015 Bradley et al.
20150216541 August 6, 2015 Schmieding et al.
20150245831 September 3, 2015 Sullivan
20150250472 September 10, 2015 Ek et al.
20150250475 September 10, 2015 Ek
20150250594 September 10, 2015 Ek
20150250602 September 10, 2015 Sikora et al.
20150265328 September 24, 2015 Viola
20150313586 November 5, 2015 Burkhart et al.
20160022374 January 28, 2016 Haider et al.
20160030035 February 4, 2016 Zajac et al.
20160051268 February 25, 2016 Seitlinger et al.
20160051367 February 25, 2016 Gervasi et al.
20160106444 April 21, 2016 Ek
20160151060 June 2, 2016 Albertorio et al.
20160151119 June 2, 2016 Michel et al.
20160287243 October 6, 2016 Benedict et al.
20160287266 October 6, 2016 Sikora et al.
20160310132 October 27, 2016 Meislin et al.
20160331404 November 17, 2016 Jolly et al.
20160354197 December 8, 2016 Roller et al.
20170056180 March 2, 2017 Schmieding
20170100251 April 13, 2017 Ek et al.
20170119528 May 4, 2017 Ek et al.
20170128085 May 11, 2017 Sikora et al.
20170209196 July 27, 2017 Zajac et al.
20170215935 August 3, 2017 Taft
20170239696 August 24, 2017 Weber
20170252147 September 7, 2017 Albertorio et al.
20170252521 September 7, 2017 Guerra et al.
20170281200 October 5, 2017 Sikora et al.
20170296328 October 19, 2017 Albertorio et al.
20170311983 November 2, 2017 Sikora et al.
20170333020 November 23, 2017 Laviano et al.
20180055507 March 1, 2018 Bachmaier et al.
20180085104 March 29, 2018 Schmieding et al.
20180085109 March 29, 2018 Petry et al.
20180103963 April 19, 2018 Bradley et al.
20180116682 May 3, 2018 Albertorio et al.
20180132869 May 17, 2018 Sikora et al.
20180154041 June 7, 2018 Altschuler et al.
20180161169 June 14, 2018 Cardon et al.
20180344447 December 6, 2018 Albertorio et al.
20190021719 January 24, 2019 Dooney et al.
20190029836 January 31, 2019 Ek
20190038426 February 7, 2019 Ek
20190059910 February 28, 2019 Adams et al.
20190105160 April 11, 2019 Ek et al.
20190105165 April 11, 2019 Sikora et al.
20190105166 April 11, 2019 Ek et al.
20190201185 July 4, 2019 Albertorio et al.
20190239902 August 8, 2019 Sikora et al.
20190350578 November 21, 2019 Petry et al.
20200046383 February 13, 2020 Ek
20200155174 May 21, 2020 Sikora et al.
20200275960 September 3, 2020 Ek et al.
20200323544 October 15, 2020 Sikora et al.
20210022877 January 28, 2021 Ek
20210030549 February 4, 2021 Ek et al.
20210030550 February 4, 2021 Ek et al.
20210038395 February 11, 2021 Ek et al.
20210038398 February 11, 2021 Sikora et al.
Foreign Patent Documents
2001262308 December 2001 AU
2001259327 February 2005 AU
2002248198 May 2007 AU
2005202099 June 2007 AU
2002357284 August 2007 AU
2006202337 May 2008 AU
2003262428 August 2009 AU
2007216648 November 2009 AU
2004216106 June 2010 AU
2008207536 March 2011 AU
2759027 October 2010 CA
2470194 February 2011 CA
2933174 April 1980 DE
3516743 November 1986 DE
3840466 June 1990 DE
19505083 November 1995 DE
102004053606 May 2006 DE
112013003358 March 2015 DE
0240004 October 1987 EP
0241240 October 1987 EP
0290736 November 1988 EP
0350780 January 1990 EP
0485678 May 1992 EP
0327387 September 1992 EP
0505634 September 1992 EP
0736292 October 1996 EP
0903125 March 1999 EP
0903127 March 1999 EP
0993812 April 2000 EP
0661023 August 2001 EP
1374782 January 2004 EP
1426013 September 2004 EP
1870060 December 2007 EP
1927328 June 2008 EP
1278460 April 2009 EP
2062541 May 2009 EP
2455002 May 2012 EP
2314257 February 2013 EP
2572650 March 2013 EP
2574313 April 2013 EP
2689750 January 2014 EP
2595534 June 2014 EP
2804565 October 2014 EP
2481368 December 2014 EP
2901971 August 2015 EP
2986232 February 2016 EP
2 400 930 December 2017 EP
2986232 November 2018 EP
2242068 March 1975 FR
2642301 March 1990 FR
2676917 December 1992 FR
2693650 January 1994 FR
2718014 October 1995 FR
2733904 November 1996 FR
2739151 March 1997 FR
2281577 March 1995 GB
2372707 September 2002 GB
61502029 September 1986 JP
63300758 December 1988 JP
3504932 October 1991 JP
H03-092328 November 1992 JP
518511 March 1993 JP
06339490 December 1994 JP
11244315 September 1999 JP
2964035 October 1999 JP
2001525210 December 2001 JP
2002291779 October 2002 JP
2003534096 November 2003 JP
198803781 June 1988 WO
8909578 October 1989 WO
9409730 May 1994 WO
9427507 December 1994 WO
9624304 August 1996 WO
1997022306 June 1997 WO
199725006 July 1997 WO
9920192 April 1999 WO
0013597 March 2000 WO
0105336 January 2001 WO
0166021 September 2001 WO
0166022 September 2001 WO
0182677 November 2001 WO
0191648 December 2001 WO
0191672 December 2001 WO
0217821 March 2002 WO
02086180 October 2002 WO
03047470 June 2003 WO
03051210 June 2003 WO
03051211 June 2003 WO
03061516 July 2003 WO
03065909 August 2003 WO
2004014261 February 2004 WO
2004026170 April 2004 WO
2004052216 June 2004 WO
2004075777 September 2004 WO
2004100839 November 2004 WO
2005051231 June 2005 WO
2006004885 January 2006 WO
2006074321 July 2006 WO
2006091686 August 2006 WO
2010135156 November 2010 WO
2012003548 January 2012 WO
2012021857 February 2012 WO
2012058349 May 2012 WO
2013064569 May 2013 WO
2013152102 October 2013 WO
2014008126 January 2014 WO
2014172347 October 2014 WO
2016154393 September 2016 WO
2019028344 February 2019 WO
2019079104 April 2019 WO
2020092335 May 2020 WO
Other references
  • Extended Search Report dated Nov. 26, 2018, issued in European Patent Application No. 16769660.8, 7 pages.
  • Office Action dated Dec. 21, 2018, issued in U.S. Appl. No. 15/388,808, 7 pages.
  • Notice of Allowance dated Jan. 22, 2019, issued in U.S. Appl. No. 15/296,772, 7 pages.
  • Office Action dated Mar. 1, 2019, issued in U.S. Appl. No. 15/388,808, 9 pages.
  • Office Action dated Apr. 2, 2019, issued in U.S. Appl. No. 13/723,902, 19 pages.
  • Office Action dated Apr. 10, 2019, issued in U.S. Appl. No. 15/865,734, 8 pages.
  • Office Action dated May 9, 2019, issued in U.S. Appl. No. 15/943,949, 8 pages.
  • Office Action dated May 15, 2019, issued in U.S. Appl. No. 14/640,667, 16 pages.
  • Office Action dated May 15, 2019, issued in U.S. Appl. No. 15/973,981, 6 pages.
  • Office Action dated Jun. 4, 2019, issued in U.S. Appl. No. 14/133,943, 13 pages.
  • Notice of Allowance dated Jun. 11, 2019, issued in Canadian Patent Application No. 2,759,027, 1 page.
  • Examination Report dated Jul. 2, 2019, issued in Brazilian Patent Application No. PI1014961-9, 2 pages.
  • Notice of Allowance dated Jul. 15, 2019, issued in U.S. Appl. No. 15/606,643, 5 pages.
  • Notice of Allowance dated Sep. 10, 2019, issued in U.S. Appl. No. 15/388,808, 8 pages.
  • Office Action dated Sep. 11, 2019, issued in U.S. Appl. No. 15/351,530, 15 pages.
  • VILEX—Restoring Mobility, Cannulated Implants for Forefoot Joints, QSD 8.12-11 Rev D, 2010, 4 pages.
  • Tornier Implants Chirurgicaux—Aequalis Reversed Shoulder Prosethesis, K132285, Dec. 5, 2013, 8 pages.
  • Tornier, Aequalis Reversed II Shoulder, Nov. 2014, 3 pages.
  • Johnson & Johnson Medical Devices Companies—Global PA Shoulder System, https://www.depuysynthes.com/hcp/shoulder/products/qs/DELTAXTEND-Reverse-Shoulder-System, Nov. 2014, 7 pages.
  • Zimmer Biomet—Joint Replacement Orthopaedic Devices_Hip_Knee_Shoulder, http://www.biomet.com/orthopedics/getfile.cfm?id=2905&rt=inline, Nov. 2014, 3 pages.
  • Notice of allowance dated Oct. 28, 2019, issued in U.S. Appl. No. 15/865,734, 7 pages.
  • Office Action dated Nov. 19, 2019, issued in U.S. Appl. No. 13/723,902, 16 pages.
  • Notice of allowance dated Dec. 12, 2019, issued in U.S. Appl. No. 15/388,808, 8 pages.
  • Notice of allowance dated Dec. 16, 2019, issued in U.S. Appl. No. 15/973,981, 8 pages.
  • Notice of allowance dated Dec. 17, 2019, issued in U.S. Appl. No. 15/943,949, 7 pages.
  • Notice of allowance dated Dec. 18, 2019, issued in U.S. Appl. No. 14/133,943, 5 pages.
  • Office Action dated Dec. 30, 3019, issued in U.S. Appl. No. 15/943,956, 16 pages.
  • Office Action dated Jan. 16, 2020, issued in U.S. Appl. No. 14/640,667, 10 pages.
  • International Search Report and Written Opinion dated Jan. 16, 2020, issued in PCT International Patent Application No. PCT/US2019/058517, 9 pages.
  • Office Action dated Dec. 16, 2019, issued in European Patent Application No. 05 763 817.3, 5 pages.
  • Preliminary Report on Patentability dated Feb. 13, 2020, issued in PCT Patent Application No. PCT/US2018/045157, 5 pages.
  • Notice of Allowance dated Feb. 24, 2020, issued in U.S. Appl. No. 15/351,530, 8 pages.
  • Office Action dated Mar. 16, 2020, issued in U.S. Appl. No. 15/079,342, 16 pages.
  • International Search Report and Written Opinion dated Apr. 8, 2020, issued in PCT Patent Application No. PCT/US2020/014980, 9 pages.
  • USPTO Office action dated Dec. 8, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
  • USPTO Office Action dated Aug. 31, 2005 issued in corresponding U.S. Appl. No. 10/308,718.
  • USPTO Office action dated Aug. 16, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
  • USPTO Office action dated Jan. 27, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
  • USPTO Office action dated Aug. 13, 2004 issued in corresponding U.S. Appl. No. 10/373,463.
  • USPTO Notice of Allowance dated Sep. 26, 2003 in U.S. Appl. No. 10/162,533.
  • USPTO Notice of Allowance dated May 12, 2003 in U.S. Appl. No. 10/024,077.
  • USPTO Office Action dated Apr. 1, 2003 issued in U.S. Appl. No. 10/162,533.
  • USPTO Office action dated Mar. 28, 2003 issued in corresponding U.S. Appl. No. 10/024,077.
  • USPTO Notice of Allowance dated Sep. 30, 2002 in U.S. Appl. No. 09/846,657.
  • USPTO Office Action dated Apr. 2, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
  • USPTO Office Action dated Feb. 27, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
  • USPTO Office Action dated Jan. 3, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
  • AU Examiners report dated Jan. 18, 2006 issued in corresponding Australian patent application No. 2005202099.
  • AU Examiners report dated Jan. 12, 2007 issued in corresponding Australian patent application No. 2006202337.
  • AU Examiners report dated Feb. 21, 2007 issued in corresponding Australian patent application No. 2005202099.
  • AU Examiners report dated May 23, 2007 issued in corresponding Australian patent application No. 2005202099.
  • AU Notice of Acceptance dated Aug. 6, 2007 in Patent Application No. 20022357284.
  • EPO supplementary partial search report dated May 10, 2004 issued in corresponding European application 01932833.5-231-/US0114061.
  • EPO supplementary search report dated Aug. 30, 2004 issued in corresponding European application 01932833.5.
  • EPO Office Action dated Aug. 23, 2004, received in related EPO application No. 03 026 286.9 (4 pgs).
  • EPO Office Action dated Mar. 15, 2005, received in related EPO application No. 03 026 286.9, (3 pgs).
  • EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Feb. 26, 2004 (5pgs).
  • EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Apr. 27, 2004 (6pgs).
  • Examination Report dated Feb. 22, 2005 received in corresponding European Application No. 01932833.5 (3pages).
  • EPO Office Action dated Sep. 22, 2005 issued in corresponding European application 01932833.5-2310.
  • EPO Office Action dated Sep. 11, 2006 issued in corresponding European application 01932833.5-2310.
  • International Preliminary Examination Report dated Nov. 5, 2002 issued in corresponding PCT patent application No. PCT/US01/14061.
  • U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Feb. 25, 2008.
  • International Preliminary Examination Report dated Nov. 12, 2002 issued in corresponding PCT patent application No. PCT/US01/48821.
  • International Preliminary Examination Report dated Sep. 12, 2003 issued in corresponding PCT patent application No. PCT/US02/40310.
  • International Preliminary Examination Report dated Oct. 27, 2003 issued in corresponding PCT patent application No. PCT/US01/48821.
  • International Preliminary Examination Report dated Aug. 19, 2004 issued in corresponding PCT patent application No. PCT/US02/40310.
  • Notice of Allowance issued in corresponding U.S. Appl. No. 10/618,887 dated Sep. 13, 2007.
  • International Preliminary Report on Patentability and Written Opinion dated May 22, 2006 in corresponding PCT patent application No. PCT/US04/039181.
  • English language translation of Japanese Office Action dated Aug. 9, 2007 issued in corresponding Japanese application No. 2003-552148.
  • Canadian Office Action dated Jan. 2, 2008 issued in corresponding Canadian Application No. 2407440.
  • International Preliminary Report on Patentability and Written Opinion dated Mar. 1, 2007 in corresponding PCT patent application No. PCT/US05/030120.
  • International Preliminary Report on Patentability and Written Opinion dated Jun. 28, 2007 in corresponding PCT patent application No. PCT/US2005/005980.
  • International Preliminary Report on Patentability and Written Opinion dated Jul. 19, 2007 in corresponding PCT patent application No. PCT/US2006/000380.
  • International Search Report dated Dec. 27, 2001 issued in corresponding PCT patent application No. PCT/US01/14061.
  • Office Action issued in corresponding U.S. Appl. No. 10/741,044 dated Oct. 26, 2005.
  • International Search Report dated May 23, 2003 issued in corresponding PCT patent application No. PCT/US02/40310.
  • International Search Report and Written Opinion dated Dec. 30, 2004 issued in corresponding PCT patent application No. PCT/US04/05539.
  • International Search Report and Written Opinion dated Jan. 30, 2006 issued in corresponding PCT patent application No. PCT/US04/39181.
  • International Search Report and Written Opinion dated Aug. 30, 2006 issued in corresponding PCT patent application No. PCT/US06/06323.
  • International Search Report and Written Opinion dated Sep. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/30120.
  • International Search Report and Written Opinion dated Nov. 27, 2006 issued in corresponding PCT patent application No. PCT/US06/00380.
  • International Search Report and Written Opinion dated Nov. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/023200.
  • International Search Report and Written Opinion dated May 22, 2007 issued in corresponding PCT patent application No. PCT/US05/05980.
  • U.S. Office Action dated Apr. 29, 2014, issued in U.S. Appl. No. 13/037,929, 11 pages.
  • U.S. Office Action dated May 19, 2014, issued in U.S. Appl. No. 13/436,188, 10 pages.
  • U.S. Office Action dated May 28, 2014, issued in U.S. Appl. No. 13/752,858, 8 pages.
  • U.S. Office Action dated Jun. 4, 2014, issued in U.S. Appl. No. 12/762,920, 10 pages.
  • Notice of Allowance dated Jun. 19, 2014, issued in U.S. Appl. No. 13/470,678, 5 pages.
  • Intent to Grant dated Jun. 27, 2014, issued in European Patent Application No. 12 002 103.5, 6 pages.
  • U.S. Office Action dated Jul. 7, 2014, issued in U.S. Appl. No. 12/979,992, 6 pages.
  • U.S. Office Action dated Jul. 7, 2014, issued in U.S. Appl. No. 12/001,473, 15 pages.
  • Partial supplementary European search report dated Mar. 25, 2015, issued in EP Patent Application No. 11751521.3, 6 pages.
  • U.S. Examiner interview summary dated Apr. 8, 2015, issued in U.S. Appl. No. 12/001,473, 4 pages.
  • U.S. Final Office Action dated Apr. 16, 2015, issued in U.S. Appl. No. 12/762,920, 15 pages.
  • U.S. Supplemental Notice of Allowance dated Apr. 21, 2015, issued in U.S. Appl. No. 13/436,188, 6 pages.
  • U.S. Final Office Action dated Apr. 28, 2015, issued in U.S. Appl. No. 13/785,867, 8 pages.
  • U.S. Office Action dated May 1, 2015, issued in U.S. Appl. No. 14/133,943, 25 pages.
  • U.S. Final Office Action dated May 22, 2015, issued in U.S. Appl. No. 13/438,095, 7 pages.
  • U.S. Final Office Action dated Jun. 2, 2015, issued in U.S. Appl. No. 12/001,473, 18 pages.
  • U.S. Office Action dated Jun. 25, 2015, issued in U.S. Appl. No. 12/711,039, 10 pages.
  • U.S. Final Office Action dated Jul. 7, 2015, issued in U.S. Appl. No. 12/762,948, 15 pages.
  • Intent to Grant dated Jul. 8, 2015, issued in European Patent Application No. 08 729 178.7, 7 pages.
  • Notice of Allowance dated Jul. 31, 2015, issued in U.S. Appl. No. 13/438,095, 8 pages.
  • Extended Search Report dated Sep. 9, 2015, issued in European Patent Application No. 11751521.3, 13 pages.
  • U.S. Final Office Action dated Sep. 17, 2015, issued in U.S. Appl. No. 14/035,061, 10 pages.
  • International Preliminary Report on Patentability dated Oct. 29, 2015, issued in PCT Patent Application No. PCT/US/2014/034157, 5 pages.
  • European Examination Report dated Oct. 28, 2015, issued in European Patent Application No. 05 763 817.3, 4 pages.
  • U.S. Notice of Allowance dated Oct. 30, 2015, issued in U.S. Appl. No. 12/762,920, 8 pages.
  • Partial Supplementary European Search Report dated Nov. 5, 2015, issued in European Patent Application No. 12860168.9, 6 pages.
  • U.S. Office Action dated Nov. 17, 2015, issued in U.S. Appl. No. 13/930,737, 9 pages.
  • U.S. Office Action dated Nov. 25, 2015, issued in U.S. Appl. No. 13/723,902, 13 pages.
  • U.S. Office Action dated Nov. 25, 2015, issued in U.S. Appl. No. 13/863,917, 12 pages.
  • European Examination Report dated Dec. 7, 2015, issued in European Patent Application No. 10 765 332.1, 4 pages.
  • U.S. Office Action dated Dec. 8, 2015, issued in U.S. Appl. No. 13/796,675, 16 pages.
  • European Decision to Grant dated Dec. 17, 2015, issued in European Patent Application No. 08729178.7, 2 pages.
  • European Examination Report dated Jul. 22, 2015, issued in European Patent Application No. 09 002 088.4, 4 pages.
  • U.S. Office Action dated Jan. 21, 2016, issued in U.S. Appl. No. 12/762,948, 14 pages.
  • U.S. Final Office Action dated Jan. 21, 2016, issued in U.S. Appl. No. 14/133,943, 27 pages.
  • U.S. Notice of Allowance dated Feb. 8, 2016, issued in U.S. Appl. No. 13/785,867, 8 pages.
  • U.S. Notice of Allowance dated Feb. 12, 2016, issued in U.S. Appl. No. 12/001,473, 14 pages.
  • Canadian Office Action dated Feb. 15, 2016, issued in Canadian Patent Application No. 2,407,440, 3 pages.
  • U.S. Notice of Allowability dated Feb. 17, 2016, issued in U.S. Appl. No. 13/785,867, 4 pages.
  • U.S. Notice of Allowance dated Feb. 17, 2016, issued in U.S. Appl. No. 12/979,992, 5 pages.
  • U.S. Final Office Action dated Feb. 25, 2016, issued in U.S. Appl. No. 12/711,039, 7 pages.
  • European Extended Search Report dated Feb. 29, 2016, issued in European Patent Application No. 12860168.9, 11 pages.
  • Canadian Examiner Requisition dated Mar. 10, 2016, issued in Canadian Patent Application No. 2,759,027, 3 pages.
  • European Examination Report dated Mar. 21, 2016, issued in European Patent Application No. 10 746 863.9, 3 pages.
  • U.S. Office Action dated Mar. 22, 2016, issued in U.S. Appl. No. 14/640,602, 8 pages.
  • U.S. Office Action dated Jun. 2, 2016, issued in U.S. Appl. No. 14/035,061, 9 pages.
  • U.S. Notice of Allowance dated Jun. 7, 2016, issued in U.S. Appl. No. 13/930,737, 5 pages.
  • International Search Report and Written Opinion dated Jun. 10, 2016, issued in PCT Patent Application No. PCT/US2016/023930, 13 pages.
  • U.S. Notice of Allowance dated Jun. 29, 2016, issued in U.S. Appl. No. 13/863,917, 9 pages.
  • U.S. Final Office Action dated Jul. 6, 2016, issued in U.S. Appl. No. 13/723,902, 15 pages.
  • Official Communication dated Jun. 21, 2016, issued in European Patent Application No. 11 751 521.3, 3 pages.
  • Final Office Action dated Jul. 19, 2016, issued in U.S. Appl. No. 13/796,675, 17 pages.
  • Official Communication dated Aug. 23, 2016, issued in European Patent Application No. 10 765 332.1, 4 pages.
  • Office Action dated Sep. 8, 2016, issued in U.S. Appl. No. 14/640,529, 15 pages.
  • Office Action dated Sep. 20, 2016, issued in U.S. Appl. No. 14/133,943, 24 pages.
  • Final Office Action dated Sep. 30, 2016, issued in U.S. Appl. No. 14/640,602, 5 pages.
  • Office Action dated Oct. 10, 2016, issued in European Patent Application No. 10 746 863.9, 4 pages.
  • Extended Search Report dated Nov. 16, 2016, issued in European Patent Application No. 14785702.3, 7 pages.
  • Office Action dated Nov. 22, 2016, issued in U.S. Appl. No. 14/640,774, 10 pages.
  • Office Action dated Nov. 24, 2016, issued in European Patent Application No. 12 860 168.9, 4 pages.
  • Office Action dated Dec. 1, 2016, issued in European Patent Application No. 05 763 817.3, 3 pages.
  • Notice of Allowance dated Jan. 27, 2017, issued in U.S. Appl. No. 12/762,948, 5 pages.
  • Office Action dated Jan. 27, 2017, issued in U.S. Appl. No. 14/035,061, 9 pages.
  • Office Action dated Feb. 7, 2017, issued in U.S. Appl. No. 13/723,902, 16 pages.
  • Office Action dated Feb. 22, 2017, issued in U.S. Appl. No. 13/796,675, 19 pages.
  • Final Office Action dated Mar. 28, 2017, issued in U.S. Appl. No. 14/133,943, 29 pages.
  • Canadian Office Action dated Jan. 9, 2017, issued in Canadian Patent Application No. 2,759,027, 3 pages.
  • Canadian Office Action dated Mar. 22, 2017, issued in Canadian Patent Application No. 2,407,440, 7 pages.
  • U.S. Notice of Allowance dated Apr. 14, 2017, issued in U.S. Appl. No. 14/640,602, 7 pages.
  • U.S. Office Action dated Apr. 28, 2017, issued in U.S. Appl. No. 15/153,113, 11 pages.
  • U.S. Final Office Action dated May 9, 2017, issued in U.S. Appl. No. 14/640,529, 15 pages.
  • U.S. Final Office Action dated Jun. 15, 2017, issued in U.S. Appl. No. 14/640,774, 10 pages.
  • Notice of Allowance dated Aug. 7, 2017, issued in U.S. Appl. No. 14/640,602, 8 pages.
  • Office Action dated Aug. 25, 2017, issued in U.S. Appl. No. 14/728,216, 10 pages.
  • Final Office Action dated Aug. 25, 2017, issued in U.S. Appl. No. 14/035,061, 10 pages.
  • Final Office Action dated Sep. 22, 2017, issued in U.S. Appl. No. 13/723,902, 21 pages.
  • Preliminary Report on Patentability dated Oct. 5, 2017, issued in PCT Patent Application No. PCT/US2016/023930, 11 pages.
  • Intent to Grant dated Oct. 6, 2017, issued in European Patent Application No. 11 751 521.3, 7 pages.
  • Final Office Action dated Oct. 6, 2017, issued in U.S. Appl. No. 13/796,675, 18 pages.
  • Intent to Grant dated Oct. 6, 2017, issued in European Patent Application No. 12 860 168.9, 7 pages.
  • Office Action dated Oct. 16, 2017, issued in European Patent Application No. 05 763 817.3, 5 pages.
  • Office Action dated Oct. 17, 2017, issued in U.S. Appl. No. 14/640,667, 10 pages.
  • Office Action dated Oct. 16, 2017, issued in Canadian Patent Application No. 2,759,027, 3 pages.
  • U.S. Notice of Allowance dated Nov. 30, 2017, issued in U.S. Appl. No. 14/640,529, 7 pages.
  • European Intent to Grant dated Dec. 1, 2017, issued in European Patent Application Serial No. 09 002 088.4, 6 pages.
  • U.S. Notice of Allowance dated Dec. 8, 2017, issued in U.S. Appl. No. 15/153,113, 5 pages.
  • U.S. Office Action dated Dec. 12, 2017, issued in U.S. Appl. No. 14/133,943, 28 pages.
  • Canadian Notice of Allowance dated Dec. 14, 2017, issued in Canadian Patent Application Serial No. 2,407,440, 1 page.
  • U.S. Notice of Allowance dated Jan. 10, 2018, issued in U.S. Appl. No. 14/640,774, 8 pages.
  • U.S. Notice of Allowance dated Apr. 16, 2018, issued in U.S. Appl. No. 15/153,170, 10 pages.
  • Office Action dated May 16, 2018, issued in U.S. Appl. No. 15/388,808, 7 pages.
  • U.S. Notice of Allowance dated May 16, 2018, issued in U.S. Appl. No. 14/728,216, 5 pages.
  • Office Action dated May 31, 2018, issued in U.S. Appl. No. 13/723,902, 15 pages.
  • Office Action dated Jun. 19, 2018, issued in U.S. Appl. No. 15/296,772, 8 pages.
  • Office Action dated Jun. 29, 2018, issued in U.S. Appl. No. 14/640,667, 11 pages.
  • Office Action dated Sep. 5, 2018, issued in U.S. Appl. No. 15/606,643, 6 pages.
  • Office Action dated Sep. 13, 2018, issued in U.S. Appl. No. 14/133,943, 28 pages.
  • International Search Report and Written Opinion dated Oct. 23, 2018, issued in PCT Patent Application No. PCT/US18/45157, 11 pages.
  • Office Action dated Nov. 9, 2018, issued in Canadian Patent Application No. 2,759,027, 4 pages.
  • Notice of Allowance dated Dec. 3, 2020, issued in U.S. Appl. No. 16/101,620, 10 pages.
  • Office Action dated Feb. 12, 2021, issued in U.S. Appl. No. 16/430,947, 8 pages.
  • International Search Report and Written Opinion dated May 22, 2020, issued in PCT Patent Application No. PCT/U2020/022464, 12 pages.
  • European Office Action dated Apr. 16, 2013 issued in European Patent Application No. 12 002 103.5, 5 pages.
  • U.S. Applicant Initiated Interview Summary dated May 15, 2013 issued in U.S. Appl. No. 12/762,920, 3 pages.
  • European Office Action dated May 15, 2013 issued in European Patent Application No. 05 763 817.3, 4 pages.
  • U.S. Final Office Action dated Jun. 5, 2013 issued in U.S. Appl. No. 12/942,923, 26 pages.
  • U.S. Final Office Action dated Jun. 24, 2013 issued in U.S. Appl. No. 13/042,382, 28 pages.
  • U.S. Notice of Allowance dated Jun. 14, 2013 issued in U.S. Appl. No. 13/043,430, 10 pages.
  • U.S. Office Action dated Jul. 11, 2013 issued in U.S. Appl. No. 12/711,039, 10 pages.
  • U.S. Notice of Allowance dated Jul. 29, 2013 issued in U.S. Appl. No. 12/725,181, 7 pages.
  • U.S. Final Office Action dated Jul. 30, 2013 issued in U.S. Appl. No. 13/075,006, 10 pages.
  • U.S. Corrected Notice of Allowance dated Jul. 30, 2013 issued in U.S. Appl. No. 11/623,513, 2 pages.
  • Corrected Notice of Allowability dated Sep. 10, 2013 issued in U.S. Appl. No. 13/043,430, 7 pages.
  • Decision to Grant dated Sep. 19, 2013 issued in European Patent Application No. 07862736.1, 1 page.
  • U.S. Office Action dated Oct. 8, 2013 issued in U.S. Appl. No. 13/438,095, 8 pages.
  • International Search Report and Written Opinion dated Oct. 22, 2013 issued in PCT International Patent Application No. PCT/US2013/048569, 15 pages.
  • Notice of Allowance dated Oct. 30, 2013 issued in U.S. Appl. No. 13/037,998, 28 pages.
  • U.S. Final Office Action dated Nov. 29, 2013 issued in U.S. Appl. No. 12/762,920, 9 pages.
  • U.S. Final Office Action dated Dec. 5, 2013 issued in U.S. Appl. No. 13/470,678, 8 pages.
  • U.S. Office Action dated Dec. 12, 2013 issued in U.S. Appl. No. 12/979,992, 12 pages.
  • U.S. Office Action dated Dec. 17, 2013 issued in U.S. Appl. No. 12/001,473, 21 pages.
  • U.S. Office Action dated Feb. 5, 2014, issued in U.S. Appl. No. 13/438,095, 9 pages.
  • U.S. Office Action dated Feb. 7, 2014, issued in U.S. Appl. No. 13/075,006, 9 pages.
  • Australian Examination Report dated Feb. 7, 2014, issued in Australian Patent Application No. 2010236182, 3 pages.
  • Australian Examination Report dated Feb. 14, 2014, issued in Australian Patent Application No. 2011222404, 3 pages.
  • European Extended Search Report dated Feb. 24, 2014, issue in European Patent Application No. 09716273.9, 7 pages.
  • Australian Examination Report dated Feb. 28, 2014, issued in Australian Patent Application No. 2010217907, 3 pages.
  • U.S. Final Office Action dated Mar. 20, 2014, issued in U.S. Appl. No. 12/711,039, 17 pages.
  • European Examination Report dated Mar. 20, 2014, issued in European Patent Application No. 12 002 103.5, 3 pages.
  • U.S. Office Action dated Mar. 21, 2014, issued in U.S. Appl. No. 12/942,923, 6 pages.
  • U.S. Notice of Allowance dated Apr. 1, 2014, issued in U.S. Appl. No. 13/470,678, 7 pages.
  • Australian Examination Report dated Apr. 3, 2014, issued in Australian Patent Application No. 2010217907, 3 pages.
  • U.S. Office Action dated Aug. 13, 2014, issued in U.S. Appl. No. 12/762,948, 12 pages.
  • U.S. Notice of Allowance dated Aug. 21, 2014, issued in U.S. Appl. No. 13/075,006, 5 pages.
  • U.S. Office Action dated Sep. 18, 2014, issued in U.S. Appl. No. 13/785,867, 8 pages.
  • U.S. Notice of Allowance dated Oct. 6, 2014, issued in U.S. Appl. No. 12/942,923, 5 pages.
  • U.S. Office Action issued in U.S. Appl. No. 13/438,095, dated Nov. 4, 2014, 11 pages.
  • International Search Report and Written Opinion issued in PCT Patent Application Serial No. PCT/US14/34157, dated Nov. 4, 2014, 12 pages.
  • European Extended Search Report issued in European Patent Application Serial No. 10765332.1, dated Nov. 10, 2014, 6 pages.
  • U.S. Office Action issued in U.S. Appl. No. 12/711,039, dated Nov. 10, 2014, 10 pages.
  • European Extended Search Report issued in European Patent Application Serial No. 10746863.9, dated Nov. 13, 2014, 5 pages.
  • European Decision to Grant issued in European Patent Application Serial No. 12002103.5, dated Nov. 20, 2014, 1 page.
  • European Office Action issued in European Patent Application No. 08 729 178.7, dated Nov. 25, 2014, 4 pages.
  • U.S. Notice of Allowance issued in U.S. Appl. No. 13/037,929, dated Dec. 11, 2014, 5 pages.
  • International Preliminary Report on Patentability dated Jan. 15, 2015, issued in PCT Patent Application No. PCT/US2013/048569, 9 pages.
  • Notice of Allowance dated Jan. 21, 2015, issued in U.S. Appl. No. 13/752,858, 7 pages.
  • Notice of Allowability dated Feb. 19, 2015, issued in U.S. Appl. No. 13/037,929, 2 pages.
  • U.S. Office Action dated Feb. 19, 2015, issued in U.S. Appl. No. 14/035,061, 6 pages.
  • Notice of Allowance dated Feb. 25, 2015, issued in U.S. Appl. No. 13/436,188, 8 pages.
  • Canadian Office Action dated Feb. 27, 2015 issued in Canadian Patent Application Serial No. 2,407,440, 7 pages.
  • Office Action dated Mar. 3, 2015, issued in U.S. Appl. No. 12/979,992, 11 pages.
  • Sullivan, “HALLUX RIGIDUS: MTP Implant Arthroplasty,” Foot Ankle Clin. N. Am. 14 (2009) pp. 33-42.
  • Cook, et al., “Meta-analysis of First Metatarsophalangeal Joint Implant Arthroplasty,” Journal of Foot and Ankle Surgery, vol. 48, Issue 2, pp. 180-190 (2009).
  • Derner, “Complications and Salvage of Elective Central Metatarsal Osteotomies,” Clin. Podiatr. Med. Surg. 26 (2009) 23-35.
  • Kirker-Head, et al., “Safety of, and Biological Functional Response to, a Novel Metallic Implant for the Management of Focal Full-Thickness Cartilage Defects: Preliminary Assessment in an Animal Model Out to 1 year,” Journal of Orthopedic Research, May 2006 pp. 1095-1108.
  • Becher, et al. “Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study,” Knee Surg Sports Traumatol Arthrosc. Jan. 2008; 16(1): 56-63.
  • United States Office Action dated May 13, 2009 issued in related U.S. Appl. No. 11/359,892.
  • United States Office Action dated May 18, 2009 issued in related U.S. Appl. No. 11/209,170.
  • United States Office Action dated May 1, 2009 issued in related U.S. Appl. No. 11/461,240.
  • Australian Office Action dated Jan. 29, 2009 issued in related Australian Patent Application No. 2004216106.
  • European Search Report dated Apr. 22, 2009 issued in related European Patent Application No. 09002088.4.
  • U.S. Office Action dated Aug. 30, 2006 issued in related U.S. Appl. No. 10/618,887.
  • U.S. Office Action dated Jan. 15, 2008 issued in related U.S. Appl. No. 10/618,887.
  • U.S. Office Action dated May 28, 2009 issued in related U.S. Appl. No. 11/359,891.
  • International Search Report and Written Opinion dated Jun. 1, 2009 issued in related International Patent Application No. PCT/US2009/035889.
  • International Preliminary Report and Patentability dated May 7, 2009 issued in related International Patent Application No. PCT/US2007/082262.
  • Supplemental European Search Report dated May 28, 2009 issued in related International European Patent Application No. 01997077.1.
  • Supplemental European Search Report dated May 11, 2009 issued in related International European Patent Application No. 02805182.9.
  • Notice of Allowance dated Feb. 20, 2009 issued in related U.S. Appl. No. 10/618,887.
  • Notice of Reasons for Rejection issued in related Japanese Patent Application No. 2003-394702 dated Jul. 21, 2009.
  • Notice of Reasons for Rejection issued in related Japanese Patent Application No. 20-541615 dated May 26, 2009.
  • International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2007/025284 dated Jun. 25, 2009.
  • Office Action issued in related Australian Patent Application No. 2007216648 dated Jul. 28, 2009.
  • European Search Report dated Jul. 10, 2009 issued in related European Patent Application No. 09002088.4.
  • International Preliminary Report on Patentability dated Aug. 20, 2009 issued in related International Patent Application No. 2008053194.
  • Notice of Allowance dated Aug. 25, 2009 issued in related U.S. Appl. No. 11/379,151.
  • Notice of Allowance dated Aug. 27, 2009 issued in related U.S. Appl. No. 10/760,965.
  • U.S. Office Action dated Sep. 2, 2009 issued in relation U.S. Appl. No. 10/994,453.
  • U.S. Office Action dated Oct. 5, 2009 issued in relation U.S. Appl. No. 10/789,545.
  • U.S. Office Action dated Oct. 15, 2009 issued in relation U.S. Appl. No. 11/551,912.
  • U.S. Office Action dated Oct. 14, 2009 issued in relation U.S. Appl. No. 11/461,240.
  • Australian Notice of Allowance dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007216648.
  • Notice of Allowance dated Oct. 9, 2009 issued in related U.S. Appl. No. 10/373,463.
  • Australian Office Action dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007203623.
  • Japanese Notice of Reasons for Rejection dated Sep. 8, 2009 issued in related Japanese Patent Application No. 2003552147.
  • Notice of Reasons for Rejection dated Nov. 17, 2009 issued in Japanese Patent Application No. 2007-519417.
  • European Search Report dated Dec. 3, 2009 issued in related European Patent Application No. 06735827.5.
  • Office Action dated Dec. 24, 2009 issued in related U.S. Appl. No. 10/994,453.
  • Supplemental Notice of Allowance dated Nov. 25, 2009 issued in related U.S. Appl. No. 10/373,463.
  • European Office Action dated Jan. 11, 2010 issued in related European Patent Application No. 2005218302.
  • U.S. Office Action dated Jan. 25, 2010 issued in related U.S. Appl. No. 11/326,133.
  • Australian Office Action dated Apr. 9, 2010 issued in related Australian Patent Application No. 2005260590.
  • U.S. Office Action dated Mar. 2, 2010 issued in related U.S. Appl. No. 11/169,326.
  • U.S. Office Action dated Mar. 9, 2010 issued in related U.S. Appl. No. 11/359,892.
  • Australian Office Action dated Feb. 26, 2010 issued in related Australian Patent Application No. 2008207536.
  • Supplemental Notice of Allowance dated Feb. 2, 2010 issued in related U.S. Appl. No. 10/373,463.
  • European office communication dated Feb. 10, 2010 issued in European Patent Application No. 09002088.4-2310.
  • International Search Report and Written Opinion dated Apr. 21, 2010 issued in related International Patent Application No. PCT/US2010/025095.
  • International Search Report and Written Opinion dated May 3, 2010 issued in related International Patent Application No. PCT/US2010/025464.
  • European Office Action dated Apr. 13, 2010 issued in related European Patent Application No. 02805182.9-2310.
  • European Office Action dated Mar. 25, 2010 issued in related European Patent Application No. 01997077.1-2310.
  • U.S. Office Action dated May 18, 2010 issued in related U.S. Appl. No. 12/415,503.
  • Japanese Notice of Reasons for Rejection dated Jun. 1, 2010 issued in related Japanese Patent Application No. 2003394702.
  • European Office Action dated Jun. 1, 2010 issued in related European Patent Application No. 04811836.8-2310.
  • Japanese Notice of Reasons for Rejection dated Jun. 29, 2010 issued in related Japanese Patent Application No. 2007519417.
  • Australian Office Action dated Jun. 11, 2010 issued in related Australian Patent Application No. 2005277078.
  • International Search Report dated Jun. 9, 2010 issued in related International Patent Application No. PCT/US2010/031594.
  • European Office Action dated May 7, 2010 issued in related European Patent Application No. 06733631.3-2310.
  • International Search Report dated Jun. 18, 2010 issued in related International Patent Application No. PCT/US2010/031602.
  • U.S. Office Action dated Jun. 8, 2010 issued in related U.S. Appl. No. 11/209,170.
  • Office Action dated Sep. 2, 2010 issued in related U.S. Appl. No. 12/415,503.
  • Office Action dated Aug. 30, 2010 issued in related U.S. Appl. No. 12/397,095.
  • Office Action dated Jul. 21, 2010 issued in related U.S. Appl. No. 11/551,912.
  • Office Action dated Aug. 5, 2010 issued in related U.S. Appl. No. 11/325,133.
  • Notice of Allowance dated Aug. 6, 2010 issued in related U.S. Appl. No. 11/359,892.
  • Canadian Office Action dated Jul. 29, 2010 issued in related Canadian Patent Application No. 2470936.
  • Supplemental European Search Report dated Aug. 9, 2010 issued in related European Patent Application No. 04714211.2-2300.
  • Australian Office Action dated Aug. 23, 2010 issued in related Australian Patent Application No. 2006203909.
  • Notice of Allowance dated Sep. 9, 2010 issued in related U.S. Appl. No. 10/994,453.
  • Office Action dated Sep. 21, 2010 issued in related U.S. Appl. No. 11/169,326.
  • Office Action dated Sep. 29, 2010 issued in related U.S. Appl. No. 11/461,240.
  • Office Action dated Oct. 11, 2010 issued in related Australian Patent Application No. 2006216725.
  • International Preliminary Report on Patentability dated Sep. 16, 2010 issued in related International Patent Application No. PCT/US2009/035889.
  • Supplemental Notice of Allowance dated Oct. 13, 2010 issued in related U.S. Appl. No. 10/994,453.
  • Supplemental Notice of Allowance dated Oct. 6, 2010 issued in related U.S. Appl. No. 12/415,503.
  • U.S. Office Action dated Oct. 15, 2010 received in related U.S. Appl. No. 12/027,121.
  • U.S. Supplemental Notice of Allowance dated Oct. 28, 2010 issued in related U.S. Appl. No. 12/415,503.
  • European Search Report dated Nov. 4, 2010 issued in related European Patent Application No. 07862736.1-1269.
  • Notice of Allowance dated Nov. 26, 2010 issued in related U.S. Appl. No. 11/209,170.
  • Supplemental Notice of Allowance dated Dec. 8, 2010 issued in related U.S. Appl. No. 11/209,170.
  • Notice of Allowance dated Dec. 13, 2010 issued in related U.S. Appl. No. 12/397,095.
  • Notice of Allowance dated Jan. 5, 2011 issued in related U.S. Appl. No. 11/326,133.
  • Supplemental Notice of Allowance dated Feb. 14, 2011 issued in related U.S. Appl. No. 11/326,133.
  • Canadian Office Action dated Jan. 7, 2011 issued in related Canadian Patent Application No. 2407440.
  • European Office Action dated Dec. 23, 2010 issued in related European Patent Application No. 028051882.9-2310.
  • European Office Action dated Dec. 30, 2010 issued in related European Patent Application No. 01997077.1-2310.
  • Extended Search Report dated Feb. 22, 2011 issued in European Patent Application No. 10012693.7, 8 pages.
  • Notice of Allowance dated Mar. 2, 2011 issued in Australian Patent Application No. 2008207536, 3 pages.
  • Notice of Allowance dated Mar. 15, 2011 issued in U.S. Appl. No. 11/551,912, 7pages.
  • U.S. Office Action dated Apr. 11, 2011 issued in U.S. Appl. No. 11/779,044, 10 pages.
  • Notice of Allowance dated Apr. 28, 2011 issued in U.S. Appl. No. 12/027,121, 9 pages.
  • U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 11/623,513, 12 pages.
  • U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 12/001,473, 18 pages.
  • U.S. Office Action dated May 16, 2011 issued in U.S. Appl. No. 12/582,345, 9 pages.
  • International Search Report and Written Opinion dated May 19, 2011 issued in PCT Application No. PCT/US2011/027451, 11 pages.
  • Canadian Notice of Allowance dated Jun. 1, 2011 issued in Canadian Patent Application No. 2,470,936, 1 page.
  • Examiner interview summary dated Jul. 1, 2011 issued in European Patent Application No. 02 805 182.9, 3 pages.
  • U.S. Final Office Action dated Jul. 8, 2011 issued in U.S. Appl. No. 11/169,326, 26 pages.
  • Ascension Orthopedics, Inc., Ascension Orthopedics Announces Market Release of TITAN™ Inset Mini Glenoid, PR Newswire, downloaded from internet Jul. 18, 2011, http://www.orthospinenews.com/ascension-orthopedics-announces-market-release-of-titan™-inset-mini-glenoid, Jul. 6, 2011, 2 pages.
  • PCT International Preliminary Report on Patentability dated Sep. 9, 2011 issued in PCT Patent Application No. PCT/US2010/025464, 7 pages.
  • Habermeyer, Peter, Atos News, Oct. 2005, “The Artificial Limb “Eclipse”—A new draft without shank in the implantation of artificial shoulder limbs”, cover page w/pp. 40-41, with English translation dated Jan. 13, 2006 (2 pgs).
  • Thermann, et al, ATOS Newsletter, Jun. 2005, Aktuelle Themen, (16 pages).
  • Gray, Henry, Anatomy of the Human Body, 1918, 6d. The Foot 1. The Tarsus, II. Osteology, cover page and 10 pgs, www.Bartleby.com/107/63.html#i268 Oct. 25, 2004.
  • Chainsaw, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chainsaw&printable=yes, Jun. 26, 2007 (3 pages).
  • Cannulated Hemi Implants from Vilex, (3 pages).
  • APTA | Knee,/http://www.apta.org/AM/PrinerTemplate.cfm?Section=Home&TEMPLATE=/CM/HTMLDisplay.dfg& . . . Jun. 25, 2007 (1page).
  • Arthrosurface, Restoring the Geometry of Motion, HemiCAP Patello—Femoral Resurfacing System (19 pages).
  • Anatomical Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages).
  • American Machinist, Full-radius milling cutters, http://www.americanmachinist.com/Classes/Article/ArticleDraw_P.aspx, Jun. 26, 2007 (1 page).
  • Chuck (engineering),Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chuck_%28engineering%29&printable=yes, Jun. 25, 2007, (4 pages).
  • Dovetail Rails, http://www.siskiyou.com/MDRSeries.htm, Jun. 25, 2007 (2 pages).
  • Knee Resurfacing, Permedica, GKS, Global Knee System. Cod. 104570 vers 1.0 del Mar. 15, 2006 (8pages).
  • Major Biojoint System, La nuova frontiera della biointegrazione naturale, Finceramica Biomedical solutions (4 pages).
  • Makita Industrial Power Tools, Product Details Print Out, Chain Mortiser, http://www.makita.com/menu.php?pg=product_det_prn&tag=7104L, Jun. 26, 2007 (3pgs).
  • Milling machine, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Milling_machine&printable=yes, Jun. 26, 2007 (4 pages).
  • Mortise and tenon, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Mortise_and_tenon&printable=yes, Jun. 25, 2007 (3 pages).
  • Oka et al, “Development of artificial articular cartilage”, Proc Instn Mech Engrs vol. 214 Part H, 2000 pp. 59-68 (10 pages).
  • Reversed Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages).
  • M. Siguier, MD et al, “Preliminary Results of Partial Surface Replacement of the Femoral Head in Osteonecrosis”, The Journal of Arthroplasty, vol. 14, No. 1, 1999, pp. 45-51.
  • T. Siguier, MD et al, Partial Resurfacing Arthroplasty of the Femoral Head in Avascular Necrosis, Clinical Orthopaedics and Related Research, No. 386, 2001, pp. 85-92.
  • Suganuma, et al—“Arthroscopically Assisted Treatment of Tibial Plateau Fractures”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 10, Dec. 2004, pp. 1084-1089 (6 pages).
  • The Mini Uni: A New Solution for Arthritic Knee Pain and Disability, AORI, 4 pages, www.aori.org/uniknee.htm Apr. 20, 2004.
  • The Stone Clinic, Orthopaedic Surgery Sports Medicine and Rehabilitation, Unicompartmental Replacement (partial knee joint replacement), Aug. 21, 2000, 3 pages, www.stoneclinic.com/unicopartrepl.htm, Apr. 20, 2004.
  • Ushio et al, “Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral head”, An Experimental Study in the Dog, The Journal of Bone and Joint Surgery, vol. 85-B, No. 6, Aug. 2003, pp. 922-930 (9 pages).
  • Russell E. Windsor, MD, In-Depth Topic Reviews, Unicompartmental Knee Replacement, Nov. 7, 2002, 9 pages.
  • Yaw angle, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Yaw_angle&printable=yes, Jun. 25, 2007 (1 page).
  • Bale, MD, Reto J., et al, “Osteochondral Lesions of the Talus: Computer=assisted Retrograde Drilling Feasibility and Accuracy in Initial Experiences1”, (Radiology. 2001;218:278-282) © RSNA, 2001.
  • Biomet/Copeland, “Aequalis® Resurfacing Head” Tornier, Scientific Vision, Surgical Leadership, SS-401 Jan. 2007.
  • Kumai, M.D., Tsukasa, et al Arthroscopic Drilling for the Treatment of Osteochondral Lesions of the Talus*, The Journal of Bone & Joint Surgery, American vol. 81:1229-35(1999).
  • Matsusue, M.D., Yoshitaka, et al, “Arthroscopic Osteochondral Autograft Transplantation for Chondral Lesion of the Tibial Plateau of the Knee”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 17, No. 6 (Jul.-Aug. 2001):pp. 653-659.
  • Pill M.S., P.T., Stephan G. et al, “Osteochondritis Dissecans of the Knee: Experiences at the Children's Hospital of Philadelphia and a Review of Literature”, the University of Pennsylvania Orthopaedic Journal 14: 25-33, 2001.
  • Schneider, T., et al, “Arthroscopy of the ankle joint. A list of indications and realistic expectations”, Foot and Ankle Surgery 1996 2:189-193, © 1996 Arnette Blackwell SA.
  • Taranow WS, et al, “Retrograde drilling of osteochondral lesions of the medial talar dome”, PubMed, www.pubmed.gov, a service of the National Library of Medicine and the National Institutes of Health, Foot Ankle Int.Aug. 1999; 20(8):474-80.
  • Ueblacker, M.D., Peter, et al, “Retrograde Cartilage Transplantation of the Proximal and Distal Tibia”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 1 (Jan. 2004): pp. 73-78.
  • USPTO Office Action dated Dec. 21, 2007 issued in corresponding U.S. Appl. No. 11/169,326.
  • USPTO Office Action dated Dec. 26, 2007 issued in U.S. Appl. No. 11/379,151.
  • USPTO Office Action dated Oct. 9, 2007 issued in U.S. Appl. No. 10/373,463.
  • USPTO Office Action dated Aug. 29, 2007 issued in U.S. Appl. No. 10/760,965.
  • USPTO Office Action dated May 31, 2007 issued in corresponding U.S. Appl. No. 11/326,133.
  • USPTO Office Action dated Apr. 26, 2007 issued in U.S. Appl. No. 10/373,463.
  • USPTO Office Action dated Apr. 4, 2007 issued in corresponding U.S. Appl. No. 10/789,545.
  • USPTO Office Action dated Mar. 15, 2007 issued in U.S. Appl. No. 10/760,965.
  • USPTO Office Action dated Feb. 20, 2007 issued in corresponding U.S. Appl. No. 11/326,133.
  • USPTO Office Action dated Nov. 6, 2006 issued in U.S. Appl. No. 10/760,965.
  • USPTO Office Action dated Oct. 17, 2006 issued in U.S. Appl. No. 10/373,463.
  • USPTO Office Action dated Oct. 31, 2006 issued in U.S. Appl. No. 10/760,965.
  • USPTO Office Action dated Jul. 25, 2006 issued in U.S. Appl. No. 10/760,965.
  • USPTO Office action dated May 10, 2006 issued in corresponding U.S. Appl. No. 10/373,463.
  • USPTO Office Action dated Apr. 21, 2006 issued in corresponding U.S. Appl. No. 10/308,718.
  • USPTO Office Action dated Nov. 9, 2005 issued in corresponding U.S. Appl. No. 10/308,718.
  • International Search Report and Written Opinion dated Aug. 8, 2007 issued in corresponding PCT patent application No. PCT/US06/29875.
  • Notice of Allowance issued in corresponding U.S. Appl. No. 10/308,718 dated Sep. 11, 2006.
  • Office Action issued in corresponding U.S. Appl. No. 11/326,133 dated Oct. 17, 2007.
  • United States Office Action issued is related U.S. Appl. No. 10/760,965 dated Feb. 19, 2008.
  • Australian Office Action issued in related Australian Patent Application No. 2003262428 dated Mar. 20, 2008.
  • Australian Office Action issued in related Australian Patent Application No. 2004293042 dated Feb. 20, 2008.
  • U.S. Office Action issued in related U.S. Appl. No. 11/326,133 dated Jun. 12, 2008.
  • International Search Report and Written Opinion dated Jun. 24, 2008 issued in related International Patent Application No. PCT/US07/73685.
  • International Search Report and Written Opinion dated Jun. 11, 2008 issued in related International Patent Application No. PCT/US07/25284.
  • International Search Report and Written Opinion dated Aug. 8, 2008 issued in related International Patent Application No. PCT/US08/53988.
  • U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Jun. 5, 2007.
  • Japanese Office Action dated Jul. 22, 2008 issued in related Japanese Patent Application No. 2006-501193.
  • U.S. Office Action issued in related U.S. Appl. No. 10/373,463 dated Apr. 21, 2008.
  • Notice Of Allowance received in U.S. Appl. No. 10/618,887 dated Aug. 15, 2008.
  • Australia Office Action issued in related Australian Patent Application No. 2007216648 dated May 30, 2008.
  • European Office Action issued in related European Patent Application No. 01932833.5-2310 dated Apr. 25, 2008.
  • U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jun. 30, 2008.
  • U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jul. 27, 2007.
  • U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Apr. 17, 2007.
  • U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Mar. 9, 2007.
  • Canadian Office Action issued in related Canadian Patent Application No. 2546582 dated Aug. 21, 2008.
  • U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Sep. 3, 2008.
  • U.S. Office Action dated Oct. 21, 2008 issued in related U.S. Appl. No. 11/461,240.
  • U.S. Office Action dated Jun. 25, 2008 issued in related U.S. Appl. No. 11/359,891.
  • U.S. Office Action dated Sep. 25, 2008 issued in related U.S. Appl. No. 11/326,133.
  • U.S. Office Action dated Jul. 2, 2008 issued in related U.S. Appl. No. 11/379,151.
  • European Office Action dated Oct. 6, 2008 issued in related European Patent Application No. 01932833.5-2310.
  • U.S. Office Action dated Jun. 27, 2008 issued in related U.S. Appl. No. 10/760,965.
  • International Search Report and Written Opinion dated Oct. 1, 2008 issued in related International Patent Application No. PCT/US08/53194.
  • International Search Report and Written Opinion dated Oct. 9, 2008 issued in related International Patent Application No. PCT/US07/82262.
  • European Search Report dated Nov. 4, 2008 issued in related European Patent Application No. 04811836.8-2310.
  • Habermeyer, “Eclipse, Schaftfreie Schulterprothese Operationsanleitung,” (dated unknown).
  • U.S. Office Action dated Jan. 9, 2009 issued in related U.S. Appl. No. 10/373,463.
  • Canadian Office Action dated Dec. 9, 2008 issued in related Canadian Patent Application No. 2407440.
  • Supplemental European Search Report dated Nov. 6, 2008 issued in related European Patent Application No. 05791453.3-2310.
  • Japanese Office Action dated Dec. 19, 2008 issued in Japanese Patent Application No. 2006501193.
  • Japanese Office Action dated Jan. 13, 2009 issued in Japanese Patent Application No. 2003552147.
  • International Search Report dated Jan. 30, 2006 issued in related International Patent Application No. PCT/US04/39181.
  • U.S. Office Action dated Mar. 27, 2009 issued in related U.S. Appl. No. 11/169,326.
  • European Office Action dated Feb. 26, 2009 in related European Patent Application No. 05791453.3.
  • McCarty, III., et al., “Nonarthroplasty Treatment of Glenohumeral Cartilage Lesions,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 21, No. 9; Sep. 2005 (pp. 1131-1142).
  • Bushnell, et al., “Bony Instability of the Shoulder,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 24, No. 9; Sep. 2005 (pp. 1061-1073).
  • Scalise, et al., “Resurfacing Arthroplasty of the Humerus: Indications, Surgical Technique, and Clinical Results,” Techniques in Shoulder and Elbow Surgery 8(3):152-160; 2007.
  • Davidson, et al., “Focal Anatomic Patellofemoral Inlay Resurfacing: Theoretic Basis, Surgical Technique, and Case Reports,” Orthop. Clin. N. Am., 39 (2008) pp. 337-346.
  • Provencher, et al., “Patellofemoral Kinematics After Limited Resurfacing of the Trochlea,” The Journal of Knee Surgery, vol. 22 No. 2 (2008) pp. 1-7.
  • Dawson, et al., “The Management of Localized Articular Cartilage Lesions of the Humeral Head in the Athlete,” Operative Techniques in Sports Medicine, vol. 16, Issue 1, pp. 14-20 (2008).
  • Uribe, et al., “Partial Humeral Head Resurfacing for Osteonecrosis,” Journal of Shoulder and Elbow Surgery, (2009) 6 pages.
  • Burks, “Implant Arthroplasty of the First Metatarsalphalangeal Joint,” Clin. Podiatr. Med. Surg., 23 (2006) pp. 725-731.
  • Hasselman, et al., “Resurfacing of the First Metatarsal Head in the Treatment of Hallux Rigidus,” Techniques in Foot & Ankle Surgery 7(1):31-40, 2008.
  • Jäger, et al., “Partial hemi-resurfacing of the hip joint—a new approach to treat local osteochondral defects?” Biomed Tech 2006; 51:371-376 (2006).
  • Office Action dated Sep. 2, 2020, issued in U.S. Appl. No. 14/640,667, 12 pages.
  • Office Action dated Sep. 23, 2020, issued in U.S. Appl. No. 15/943,956, 13 pages.
  • International Search Report and Written Opinion dated Oct. 2, 2020, issued in PCT International Patent Application No. PCT/US2020/037492, 12 pages.
  • Office Action dated Oct. 15, 2020, issued in European Patent Application No. 05763817.2, 3 pages.
  • Office Action dated Nov. 3, 2020, issued in U.S. Appl. No. 16/134,291, 7 pages.
  • Notice of Allowance dated Nov. 3, 2020, issued in U.S. Appl. No. 15/079,342, 7 pages.
  • Office Action dated Nov. 25, 2020, issued in U.S. Appl. No. 16/054,224, 12 pages.
  • International Preliminary Report on Patentability dated Sep. 1, 2011 issued in PCT International Patent Application No. PCT/US2010/025095, 8 pages.
  • International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031602, 8 pages.
  • International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031594, 7 pages.
  • U.S. Office Action dated Nov. 1, 2011 issued in U.S. Appl. No. 12/713,135, 10 pages.
  • U.S. Notice of Allowance dated Nov. 23, 2011 issued in U.S. Appl. No. 11/623,513, 19 pages.
  • U.S. Office Action dated Nov. 28, 2011 issued in U.S. Appl. No. 12/711,039, 6 pages.
  • Notice of Allowance dated Dec. 12, 2011 issued in U.S. Appl. No. 12/582,345, 19 pages.
  • U.S. Office Action dated Dec. 22, 2011 issued in U.S. Appl. No. 11/623,513, 8 pages.
  • U.S. Office Action dated Dec. 27, 2011 issued in U.S. Appl. No. 12/620,309, 10 pages.
  • U.S. Office Action dated Jan. 4, 2012 issued in U.S. Appl. No. 12/001,473, 19 pages.
  • U.S. Office Action dated Jan. 10, 2012 issued in U.S. Appl. No. 12/031,534, 9 pages.
  • U.S. Office Action dated Jan. 18, 2012 issued in U.S. Appl. No. 12/778,055, 9 pages.
  • European Office Action dated Jan. 23, 2012 issued in European Patent Application No. 01 997 077.1, 3 pages.
  • Examination Report dated Dec. 30, 2011 issued in European Patent Application No. 09 002 088.4, 6 pages.
  • Intent to Grant dated Feb. 17, 2012 issued in European Patent Application No. 02 805 182.9, 5 pages.
  • Notice of Allowance dated Feb. 24, 2012 issued in U.S. Appl. No. 12/027,121, 9 pages.
  • Intent to Grant dated Feb. 29, 2012 issued in European Patent Application No. 10 012 693.7, 5 pages.
  • Supplemental Notice of Allowance dated Mar. 2, 2012 issued in U.S. Appl. No. 12/027,121, 2 pages.
  • Office Action dated Mar. 2, 2012 issued in U.S. Appl. No. 12/713,135, 7 pages.
  • U.S. Office Action dated Mar. 29, 2012 issued in U.S. Appl. No. 10/789,545, 7 pages.
  • U.S. Office Action dated Apr. 18, 2012 issued in U.S. Appl. No. 12/725,181, 9 pages.
  • U.S. Notice of Allowance dated May 31, 2012 issued in U.S. Appl. No. 11/623,513, 5 pages.
  • Extended Search Report dated Jul. 3, 2012 issued in European Patent Application No. 12002103.5, 5 pages.
  • Decision to Grant dated Jul. 26, 2012 issued in European Patent Application No. 10012693.7, 1 page.
  • Final Office Action dated Aug. 13, 2012 issued in U.S. Appl. No. 12/711,039, 12 pages.
  • Office Action dated Aug. 14, 2012 issued in U.S. Appl. No. 12/001,473, 17 pages.
  • Office Action dated Aug. 20, 2012 issued in U.S. Appl. No. 13/037,998, 11 pages.
  • Office Action dated Aug. 21, 2012 issued in U.S. Appl. No. 13/043,430, 11 pages.
  • U.S. Office Action dated Aug. 28, 2012 issued in U.S. Appl. No. 12/762,948, 12 pages.
  • U.S. Notice of Allowance dated Sep. 4, 2012 issued in U.S. Appl. No. 11/169,326, 6 pages.
  • Notice of Allowability dated Oct. 9, 2012, issued in U.S. Appl. No. 12/713,135, 5 pages.
  • Notice of Al lowability dated Oct. 11, 2012, issuedin U.S. Appl. No. 11/169,326 2 pages.
  • U.S. Office Action dated Oct. 23, 2012, issued in U.S. Appl. No. 13/042,382, 17 pages.
  • U.S. Office Action dated Oct. 24, 2012, issued in U.S. Appl. No. 12/942,923, 9 pages.
  • U.S. Office Action dated Oct. 31, 2012, issued in U.S. Appl. No. 13/075,006, 9 pages.
  • Notice of Allowance dated Nov. 13, 2012 issued in U.S. Appl. No. 12/725,181, 5 pages.
  • Preliminary Report on Patentability dated Sep. 20, 2012 issued in PCT Patent Application No. PCT/US2011/027451, 3 pages.
  • Extended European Search report dated Dec. 10, 2012 issued in European Patent Application No. 07844549.1, 5 pages.
  • Supplementary European Search Report dated Jan. 3, 2013 issued in European Patent Application No. 05763817.3, 3 pages.
  • Great Britain Examination Report dated Feb. 6, 2013 issued in Great Britain Patent Application No. 1114417.7, 2 pages.
  • Supplementary European Search Report dated Feb. 18, 2013 issued in European Patent Application No. 08729178.7, 10 pages.
  • U.S. Office Action dated Feb. 25, 2013 issued in U.S. Appl. No. 12/762,920, 8 pages.
  • Canadian Office Action dated Dec. 13, 2012 issued in Canadian Patent Application No. 2,407,440, 6 pages.
  • International Search Report and Written Opinion dated Mar. 8, 2013 issued in PCT Patent Application No. PCT/US12/71199, 13 pages.
  • U.S. Office Action dated Apr. 15, 2013 issued in U.S. Appl. No. 13/470,678, 10 pages.
  • U.S. Office Action dated Apr. 22, 2013 issued in U.S. Appl. No. 12/001,473, 16 pages.
  • U.S. Office Action dated Apr. 23, 2013 issued in U.S. Appl. No. 13/037,998, 8 pages.
  • European Intent to Grant dated Apr. 29, 2013 issued in European Patent Application No. 07 862 736.1, 7 pages.
  • U.S. Notice of Allowance dated May 9, 2013 issued in U.S. Appl. No. 12/725,181, 6 pages.
  • U.S. Office Action dated May 15, 2013 issued in U.S. Appl. No. 12/762,948, 10 pages.
  • Canadian Office Action dated Jul. 28, 2021, received in Canadian Patent Application No. 3,064,646, 3 pages.
  • Canadian Office Action dated Dec. 29, 2021, received in Canadian Patent Application No. 3,064,646, 3 pages.
  • European Office Action dated Jan. 14, 2022, received in European Patent Application No. 16 769 660.8, 6 pages.
  • Examination Report under Section 18(3) dated May 13, 2022 , received in European Patent Application No. GB2112996.0, 2 pages.
Patent History
Patent number: 11478358
Type: Grant
Filed: Mar 12, 2020
Date of Patent: Oct 25, 2022
Patent Publication Number: 20200289275
Assignee: ARTHROSURFACE INCORPORATED (Franklin, MA)
Inventors: Anthony Miniaci (Bentleyville, OH), Steven W. Ek (Bolton, MA), Wiliam B. Murphy (Brockton, MA), Timothy H. Brightman (Franklin, MA)
Primary Examiner: Megan Y Wolf
Application Number: 16/817,440
Classifications
International Classification: A61F 2/40 (20060101); A61F 2/30 (20060101);