Atomic layer deposition apparatus

An atomic layer deposition method includes positioning a semiconductor substrate within an atomic layer deposition chamber. A fixed volume first precursor gas charge is provided within a gas flow path to the deposition chamber. A fixed volume purge gas charge is provided within the gas flow path serially upstream of the first precursor gas charge. The first precursor gas charge and the purge gas charge are serially flowed along the gas flow path to the substrate within the deposition chamber effective to form a monolayer on the substrate and purge at least some of the first precursor gas from the substrate. Apparatus are also disclosed.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This invention relates to atomic layer deposition apparatus and methods.

BACKGROUND OF THE INVENTION

Atomic layer deposition involves the deposition of successive monolayers over a substrate within a deposition chamber typically maintained at subatmospheric pressure. An exemplary such method includes feeding a single vaporized precursor to a deposition chamber effective to form a first monolayer over a substrate received therein. Thereafter, the flow of the first deposition precursor is ceased and an inert purge gas is flowed through the chamber effective to remove any remaining first precursor which is not adhering to the substrate from the chamber. Subsequently, a second vapor precursor different from the first is flowed to the chamber effective to form a second monolayer on/with the first monolayer. The second monolayer might react with the first monolayer. Additional precursors can form successive monolayers, or the above process can be repeated until a desired thickness and composition layer has been formed over the substrate.

The individual precursor and inert gas flows in a production capable process are expected to be very short, for example perhaps no greater than one second. Accordingly, it is desirable that the start and stop times for the respective gas flows from zero flow to desired stabilized flow to zero flow etc. be very sharp and precisely controlled. Further, it is desirable that the stabilized flow for each successive gas start and be achieved very quickly at the termination of the previous gas flow. For example, FIG. 1 depicts a graph of flow versus time for an atomic layer deposition involving a precursor one (P1) flow, followed by an inert gas (IN) flow, followed by a precursor two (P2) flow, followed another inert gas (IN) flow. However, typical present state-of-the-art, as shown in FIG. 2, results in either one or both of the starting and stopping of the respective gas flows prior to achieving steady state not being as sharp and precise as that in FIG. 1. This is expected to result in significant increase in time for the ultimate deposition of a desired layer to occur. Accordingly, it would be desirable to develop atomic layer deposition methods and apparatus which improve upon the FIG. 2 depicted background art processing, and towards achieving more precise gas pulses in the starting and stopping thereof.

While the invention was motivated in addressing the above issues and improving upon the above-described drawbacks, it is in no way so limited. The invention is only limited by the accompanying claims as literally worded (without interpretative or other limiting reference to the above background art description, remaining portions of the specification or the drawings) and in accordance with the doctrine of equivalents.

SUMMARY

The invention includes atomic layer deposition methods and apparatus. In one implementation, an atomic layer deposition method includes positioning a semiconductor substrate within an atomic layer deposition chamber. A fixed volume first precursor gas charge is provided within a gas flow path to the deposition chamber. A fixed volume purge gas charge is provided within the gas flow path serially upstream of the first precursor gas charge. The first precursor gas charge and the purge gas charge are serially flowed along the gas flow path to the substrate within the deposition chamber effective to form a monolayer on the substrate and purge at least some of the first precursor gas from the substrate.

In one implementation, an atomic layer deposition apparatus includes, a deposition chamber. A gas feed manifold assembly is in fluid communication with the deposition chamber. A plurality of serially arranged gas chambers is in serial fluid communication with the deposition chamber along a gas flow path which includes the gas chambers. At least one respective valve separates adjacent of the gas chambers. At least one respective gas inlet is in fluid communication with the respective gas chambers.

Other aspects and implementations are contemplated.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

FIG. 1 is a diagrammatic depiction of flow versus time of one atomic layer deposition process.

FIG. 2 is a diagrammatic depiction of flow versus time of another atomic layer deposition process.

FIG. 3 is a depiction of an atomic layer deposition apparatus in accordance with one aspect of the invention.

FIG. 4 is a diagrammatic depiction of another atomic layer deposition apparatus in accordance with an aspect of the invention.

FIG. 5 is a diagrammatic depiction of still another atomic layer deposition apparatus in accordance with an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).

A first embodiment atomic layer deposition apparatus in accordance with the invention is indicated generally with reference numeral 10 in FIG. 3. Such comprises a deposition chamber 12 and a gas feed manifold assembly 14 in fluid communication therewith. Assembly 14 might be considered as comprising a body 15 which includes a plurality of serially arranged gas chambers 16 and 18 which are in serial fluid communication with deposition chamber 12 along a gas flow path 20 which includes gas chambers 16 and 18. Accordingly, gas chamber 16 is proximate deposition chamber 12, with gas chamber 18 being adjacent gas chamber 16 within or relative to gas flow path 20. In the depicted preferred embodiment, gas flow path 20 through gas chambers 16 and 18 to deposition chamber 12 is along a straight line. Further in a preferred embodiment as shown, gas chambers 16 and 18 are depicted as being of respective fixed volumes. Alternately but less preferred, at least one of the serially arranged gas chambers could be of variable volume. By way of example only, variable volume chambers are described in our co-pending U.S. patent application Ser. No. 10/121,341 filed on Apr. 11, 2002, entitled “Reactive Gaseous Deposition Precursor Feed Apparatus and Chemical Vapor Deposition Method”, naming Allen P. Mardian and Gurtej S. Sandhu as inventors, and which is incorporated herein by reference. By way of example only, an exemplary variable volume gas chamber might include bellows walls or expandable walls.

In one preferred embodiment, the respective fixed volumes of the serially arranged chambers might be equal in amount or different in amount. The FIG. 3 embodiment depicts the volume of chamber 18 as being greater than the volume of chamber 16.

A first isolation valve 22 is shown as being operably positioned to isolate first gas chamber 16 from deposition chamber 12. A second isolation valve 24 is shown as being operably positioned to isolate first gas chamber 16 from second gas chamber 18. Valve 24 provides but one example of providing at least one respective valve which separates adjacent of a plurality of gas chambers, here gas chambers 16 and 18.

At least one respective gas inlet is provided in fluid communication with the respective gas chambers. In the FIG. 3 depicted embodiment, a first gas inlet 26 is shown in fluid communication with first gas chamber 16, with a third isolation valve being operably positioned to isolate first gas inlet 26 from first gas chamber 16. Further, a second gas inlet 30 is shown in fluid communication with second gas chamber 18, with a fourth isolation valve 32 being operably positioned to isolate second gas inlet 30 from second gas chamber 18. The FIG. 3 depicted embodiment shows only one gas inlet being associated with each gas chamber, although multiple inlets could of course be associated with one or more of the gas chambers. The depicted respective gas inlets, at least proximate where they join with their respective gas chambers, are shown extending along respective gas flow paths A and B which are parallel to one another and perpendicular relative to straight line gas flow path 20.

FIG. 3 diagrammatically depicts but one preferred embodiment apparatus in accordance with an aspect of the invention. By way of example only, FIGS. 4 and 5 depict alternate exemplary preferred embodiments of the apparatus, and as will be described more fully below. However, the invention also includes atomic layer deposition methods totally independent of the FIGS. 3-5 apparatus. In other words, the apparatus claims are to be in no way limited by the methodical aspects of the disclosure or claims, and the methodical claims are to be in no way limited by the apparatus aspects of the disclosure or claims, unless literal limiting language appears in the respective claims, and otherwise without limiting or interpretative reference to the specification or drawings.

By way of example only utilizing the FIG. 3 diagrammatic apparatus, one exemplary preferred method will next be described. In such exemplary method, a semiconductor substrate 35 is positioned within atomic layer deposition chamber 12. In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. Suitable desired temperature and/or pressure conditions within chamber 12 can be utilized and determined, of course, as will be appreciated by the artisan. First valve 22 and second valve 24 are closed at some point. Third valve 28 and fourth valve 32 are opened at some point effective to provide a first precursor charge within first chamber 16 and a first purge gas charge within second chamber 18. With such desired charges provided, third valve 28 and fourth valve 32 are closed at some point. Then, first valve 22 and second valve 23 are opened effective to serially flow the first precursor charge and the first purge gas charge to deposition chamber 12 effective to form a monolayer on the substrate and purge at least some of the first precursor gas from the substrate. Most preferably, the opening of the first and second valves occurs at the same time, meaning simultaneously.

By way of example only, in a broader considered one aspect of the invention, such provides one atomic layer deposition method comprising positioning of a semiconductor substrate within an atomic layer deposition chamber. A fixed volume precursor gas charge is provided within a gas flow path to the deposition chamber. Further, a fixed volume purge gas charge is provided within the gas flow path serially upstream of the first precursor gas charge. The first precursor gas charge and the purge gas charge are serially flowed along the gas flow path to the substrate within the deposition chamber effective to form a monolayer on the substrate and purge at least some of the first precursor gas from the substrate. As just so stated, and in accordance with but one aspect of the invention, any conceivable method is contemplated, whether using the existing or yet-to-be developed apparatus and other methodical aspects. Of course, by way of example only, additional upstream or downstream reactor and precursor gas charges or flows might be provided within the gas flow path, either serially therewith or parallel thereto.

With respect to the operation of an exemplary FIG. 3 apparatus, the above-described method illustrates one method whereby the fixed volume precursor gas charge and the fixed volume purge gas charge are in a non-contacting relationship at least immediately prior to the serial flowing, with the FIG. 3 embodiment depicting such separation from one another by a valve (i.e., isolation valve 24). Further by way of example only with respect to the FIG. 3 embodiment, the fixed volume first precursor gas charge and the fixed volume purge gas charge can be caused to serially flow within the gas flow path at the same time by simultaneously opening valves 24 and 22, or even at least by opening valve 24 slightly after valve 22 but before all of the contents of chamber 16 have been expelled into chamber 12. Less preferred would be the opening of valve 24 prior to the opening of valve 22, which might cause appreciable intermixing of one gas with the other prior to a desired serial flowing thereof.

Further in accordance with one preferred aspect of the above-described method utilizing the exemplary FIG. 3 apparatus, the fixed volume first precursor gas charge and the fixed volume purge gas charge are each statically received within the gas flow path 20 at least immediately prior to the serially flowing. However, the invention also contemplates a fixed or established volume of first precursor gas and first purge gas serially flowing as literally claimed without being statically received within a flow path prior to such serial flowing. Further by way of example only, the first precursor gas charge fixed volume and the purge gas charge fixed volume might be of the same or different pressures.

In another considered aspect of the invention, also contemplated is the provision of a static first precursor gas charge within a gas flow path to the deposition chamber and the providing of a static purge gas charge within the gas flow path serially upstream of the first precursor gas charges independent of a fixed volume being provided. For example and by way of example only, flowing precursor or purge gas to an atomic layer deposition chamber might undergo a respective volume change prior to entering the atomic layer deposition chamber while flowing.

The above-described FIG. 3 apparatus and methodical embodiments are relative to a gas feed manifold assembly wherein the plurality of serially arranged gas chambers are two in number. By way of example only, FIG. 4 depicts an alternate embodiment atomic layer deposition apparatus 10a employing an alternate embodiment atomic layer deposition precursor feeding manifold assembly 14a. Like numerals from the first-described embodiment are utilized where appropriate, with differences being indicated with the suffix “a” or with different numerals. By way of example only, such gas feed manifold assembly 14a is shown as including four equal volume, serially arranged, gas chambers 40, 42, 44 and 46. By way of example only, isolation valves 43, 45, 47 and 49 are shown relative thereto. Each chamber is also shown as including a respective inlet and isolation valve associated therewith. By way of example only, chamber 46 could be provided with a first gaseous precursor, chamber 44 with an inert purge gas, chamber 42 with a second gaseous precursor (the same although preferably different from the first), with chamber 40 being provided with another inert purge gas (the same or different as that received in chamber 44). Upon the opening of all the respective valves 43, 45, 47 and 49, serial flowing of the respective gases occurs to provide rapidly pulsed charges of the respective gases for atomic layer deposition on a substrate received within the chamber. Of course, additional chambers could be provided in the illustrated construction, or more preferably, multiple of such devices could be provided in parallel to deposition chamber 12.

By way of example only, FIG. 5 depicts such an exemplary atomic layer deposition apparatus 10b. Like numerals from the first-described embodiment are utilized where appropriate, with differences being indicated with the suffix “b” or with different numerals. By way of example only, apparatus 10b includes atomic layer deposition precursor feeding manifold assembly 14 of FIG. 3. Another like manifold assembly 54 is associated with deposition chamber 12, also. An alternate embodiment to that of assembly 14 could also of course be utilized. In the depicted embodiment, second assembly 54 comprises two serially arranged gas chambers 56 and 58 in serial fluid communication with deposition chamber 12 along a second gas flow path 60 which includes the gas chambers of second assembly 54. Gas chamber 56 is received proximate deposition chamber 12, while gas chamber 58 is adjacent to gas chamber 56 within or relative to second gas flow path 60. A fifth isolation valve 62 is operably positioned to isolate gas chamber 56 from deposition chamber 12. A sixth isolation valve 64 is operably positioned to isolate gas chambers 56 and 58 from one another. A third gas inlet 66 is provided in fluid communication to gas chamber 56. A seventh isolation valve 68 is operably positioned to isolate third gas inlet 66 from gas chamber 56. A fourth gas inlet 70 is provided in fluid communication with gas chamber 58. An eighth isolation valve 72 is operably positioned to isolate fourth gas inlet 70 from gas chamber 58.

At some point, fifth valve 62 and sixth valve 64 are closed, and seventh valve 68 and eighth valve 72 are opened effective to provide a second precursor charge within chamber 56 and a second purge gas charge within chamber 58. At some point thereafter, seventh valve 68 and eighth valve 72 are closed. After serially flowing the first precursor and the first purge gas charge using first manifold assembly 14, at some point fifth valve 62 and sixth valve 64 are opened effective to serially flow the second precursor charge and the second purge gas charge to the deposition chamber effective to form a monolayer on the substrate and purge at least some of the second precursor gas from the substrate. Accordingly, and by way of example only, one of devices 14 or 54 can be loaded with gas charges while the other is discharging to chamber 12.

In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims

1-26. (Canceled).

27. An atomic layer deposition precursor feeding manifold assembly, comprising:

a body comprising an outlet configured to communicate with an atomic layer deposition chamber;
the body comprising a plurality of serially arranged gas chambers in serial fluid communication with the outlet along a gas flow path which includes the gas chambers;
at least one respective isolation valve separating adjacent of the gas chambers; and
at least one respective gas inlet in fluid communication with said respective gas chambers.

28. The assembly of claim 27 wherein the serially arranged gas chambers are of respective fixed volumes.

29. The assembly of claim 28 wherein the respective fixed volumes are equal in amount.

30. The assembly of claim 28 wherein the respective fixed volumes are different in amount.

31. The assembly of claim 27 wherein at least one of the serially arranged gas chambers is of variable volume.

32. The assembly of claim 27 wherein the serially arranged gas chambers are at least two in number.

33. The assembly of claim 27 wherein the serially arranged gas chambers are at least three in number.

34. The assembly of claim 27 wherein the serially arranged gas chambers are at least four in number.

35. The assembly of claim 27 comprising at least one respective isolation valve to the respective gas chambers associated with the respective gas inlets.

36. The assembly of claim 27 comprising only one gas inlet associated with each gas chamber.

37. The assembly of claim 27 wherein the gas flow path through the gas chambers and the outlet is along a straight line.

38. The assembly of claim 37 wherein the respective gas inlets at least proximate the respective gas chambers extend along respective gas flow paths which are parallel to one another, and perpendicular the gas flow path straight line.

39. An atomic layer deposition apparatus comprising:

a deposition chamber; and
a gas feed manifold assembly in fluid communication with the deposition chamber, the assembly comprising a plurality of serially arranged gas chambers in serial fluid communication with the deposition chamber along a gas flow path which includes the gas chambers, at least one respective valve separating adjacent of the gas chambers, and at least one respective gas inlet in fluid communication with the respective gas chambers.

40. The apparatus of claim 39 wherein the serially arranged gas chambers are of respective fixed volumes.

41. The apparatus of claim 40 wherein the respective fixed volumes are equal in amount.

42. The apparatus of claim 40 wherein the respective fixed volumes are different in amount.

43. The apparatus of claim 39 wherein at least one of the serially arranged gas chambers is of variable volume.

44. The apparatus of claim 39 wherein the serially arranged gas chambers are at least two in number.

45. The apparatus of claim 39 wherein the serially arranged gas chambers are at least three in number.

46. The apparatus of claim 39 wherein the serially arranged gas chambers are at least four in number.

47. The apparatus of claim 39 comprising at least one respective isolation valve to the respective gas chambers associated with the respective gas inlets.

48. The apparatus of claim 39 comprising only one gas inlet associated with each gas chamber.

49. The apparatus of claim 39 wherein the gas flow path through the gas chambers to the deposition chamber is along a straight line.

50. The apparatus of claim 49 wherein the respective gas inlets at least proximate the respective gas chambers extend along respective gas flow paths which are parallel to one another, and perpendicular the gas flow path straight line.

51. An atomic layer deposition apparatus comprising:

a deposition chamber;
a first gas feed manifold assembly in fluid communication with the deposition chamber, the first assembly comprising a plurality of serially arranged first gas chambers in serial fluid communication with the deposition chamber along a first gas flow path which includes the first gas chambers, at least one first gas flow path valve separating adjacent of the first gas chambers, and at least one respective first gas inlet in fluid communication with the respective first gas chambers; and
a second gas feed manifold assembly in fluid communication with the deposition chamber, the second assembly comprising a plurality of serially arranged second gas chambers in serial fluid communication with the deposition chamber along a second gas flow path which includes the second gas chambers, at least one second gas flow path valve separating adjacent of the second gas chambers, and at least one respective second gas inlet in fluid communication with the respective second gas chambers.

52. The apparatus of claim 51 wherein the serially arranged first and second gas chambers are equal to each other in number.

53. The apparatus of claim 51 wherein the serially arranged first and second gas chambers are each at least two in number.

54. The apparatus of claim 51 wherein the serially arranged first and second gas chambers are each at least three in number.

55. The apparatus of claim 51 wherein the serially arranged first and second gas chambers are each at least four in number.

56. The apparatus of claim 51 wherein the first gas flow path through the first gas chambers to the deposition chamber is along a straight line.

57. The apparatus of claim 51 wherein the second gas flow path through the second gas chambers to the deposition chamber is along a straight line.

58. The apparatus of claim 51 wherein,

the first gas flow path through the first gas chambers to the deposition chamber is along a first straight line; and
the second gas flow path through the second gas chambers to the deposition chamber is along a second straight line.
Patent History
Publication number: 20050048792
Type: Application
Filed: Sep 29, 2004
Publication Date: Mar 3, 2005
Inventors: Garo Derderian (Boise, ID), Cem Basceri (Boise, ID), Gurtej Sandhu (Boise, ID), Demetrius Sarigiannis (Boise, ID)
Application Number: 10/954,845
Classifications
Current U.S. Class: 438/758.000