Integrated heat spreader package for heat transfer and for bond line thickness control and process of making
A system includes a thermal interface material (TIM) to transfer heat from a die to a heat spreader. The system includes a heat transfer subsystem disposed on the backside surface of the die. In one embodiment, the heat transfer subsystem comprises a first heat transfer material and a second heat transfer material discretely disposed within the first heat transfer material. A method of bonding a die to a heat spreader uses a die-referenced process as opposed to a substrate-referenced process.
Latest Patents:
This application is a divisional of U.S. patent application Ser. No. 10/266996, filed on Oct. 8, 2002, which is incorporated herein by reference.
BACKGROUND INFORMATION1. Technical Field
Embodiments of the present invention relate to an integrated heat spreader as it is bonded to a die. The bond includes a high-temperature bump or other structure that is discretely intermingled with a lower-temperature material.
2. Description of Related Art
One of the issues encountered when using an integrated heat spreader (IHS) is getting a balance between sufficient adhesion to the die, and a high enough heat flow to meet the cooling load of the die. To deal with this issue, different bonding materials have been tried with varying results. If the adhesion is insufficient, the IHS may spall off from the thermal interface material (TIM) and result in a yield issue or a field failure. Another issue encountered is achieving an acceptable IHS standoff from the die and the board to which the board is mounted. Because of various existing processes, a substrate-referenced process is used that may cause a significant variation in bond-line thickness (BLT) between the top of the die and the bonding surface of the IHS.
TIM BLT is maintained for mechanical reliability of the thermal interface during thermal cycling. Due to the difference in the coefficients of thermal expansion of the IHS and the die, there is a large amount of shear stress imposed on the TIM. Thicker bond lines assist the TIM to withstand these high stresses without failing.
TIM BLT is also an element in the thermal resistance of the thermal interface. A thinner TIM BLT can result in a lower thermal resistance. Due to these limits in TIM BLT, which can be required for acceptable package performance, TIM BLT must be tightly controlled.
BRIEF DESCRIPTION OF THE DRAWINGSIn order to understand the manner in which embodiments of the present invention are obtained, a more particular description of various embodiments of the invention briefly described above will be rendered by reference to the appended drawings. Understanding that these drawings depict only typical embodiments of the invention that are not necessarily drawn to scale and are not therefore to be considered to be limiting of its scope, the embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
One embodiment of the present invention relates to a system that includes a thermal interface material (TIM) intermediary between a heat spreader and a die for heat transfer out of the die. One embodiment includes a method of bonding a die to a heat spreader that uses a die-referenced process as opposed to a substrate-referenced process.
The following description includes terms, such as upper, lower, first, second, etc. that are used for descriptive purposes only and are not to be construed as limiting. The embodiments of a device or article described herein can be manufactured, used, or shipped in a number of positions and orientations. The terms “die” and “processor” generally refer to the physical object that is the basic workpiece that is transformed by various process operations into the desired integrated circuit device. A board is typically a resin-impregnated fiberglass structure that acts as a mounting substrate for the die. A die is usually singulated from a wafer, and wafers may be made of semiconducting, non-semiconducting, or combinations of semiconducting and non-semiconducting materials.
Reference will now be made to the drawings wherein like structures will be provided with like reference designations. In order to show the structures of embodiments most clearly, the drawings included herein are diagrammatic representations of inventive articles. Thus, the actual appearance of the fabricated structures, for example in a photomicrograph, may appear different while still incorporating the essential structures of embodiments. Moreover, the drawings show only the structures necessary to understand the embodiments. Additional structures known in the art have not been included to maintain the clarity of the drawings.
In one embodiment where the two heat transfer materials are metals, the second heat transfer material 24 has a higher melting point than the first heat transfer material 22. In one embodiment where the first heat transfer material is an organic, the second heat transfer material 24 has a melting point that is higher than the curing temperature of the first heat transfer material 22.
In another embodiment, the first heat transfer material 22 in an organic-inorganic composite. The organic-inorganic composite in one embodiment includes a polymer, optionally an inorganic dielectric, and optionally at least one metallic. The inorganic dielectric may be a material as is used as filler in thermal interface structures. One embodiment of an inorganic dielectric is fused silica and the like. Where a metallic material is used as a portion of an organic-inorganic composite, the metallic material in one embodiment is a low melting-point solder or the like.
As depicted in
In one embodiment, a reactive solder system is used. A reactive solder material includes properties that allow for adhesive and/or heat-transfer qualities. For example, the reactive solder material can melt and resolidify without a pre-flux cleaning that was previously required. Further, a reactive solder embodiment can also include bonding without a metal surface. Without the need of a metal surface for bonding, processing can be simplified.
In one embodiment, a reactive solder includes a base solder that is alloyed with an active element material. In one embodiment, a base solder is indium. In one embodiment, a base solder is tin. In one embodiment, a base solder is silver. In one embodiment, a base solder is tin-silver. In one embodiment, a base solder is at least one lower-melting-point metal with any of the above base solders. In one embodiment, a base solder is a combination of at least two of the above base solders. Additionally, conventional lower-melting-point metals/alloys can be used.
The active element material is alloyed with the base solder. In one embodiment, the active element material is provided in a range from about 2% to about 30% of the total solder. In one embodiment, the active element material is provided in a range from about 2% to about 10%. In one embodiment, the active element material is provided in a range from about 0.1% to about 2%.
Various elements can be used as the active element material. In one embodiment, the active element material is selected from hafnium, cerium, lutetium, other rare earth elements, and combinations thereof. In one embodiment, the active element material is a refractory metal selected from titanium, tantalum, niobium, and combinations thereof. In one embodiment, the active element material is a transition metal selected from nickel, cobalt, palladium, and combinations thereof. In one embodiment, the active element material is selected from copper, iron, and combinations thereof. In one embodiment, the active element material is selected from magnesium, strontium, cadmium, and combinations thereof.
The active element material when alloyed with the base solder can cause the alloy to become reactive with a semiconductive material such as the backside surface 16 of the die 12. The alloy can also become reactive with an oxide layer of a semiconductive material such as silicon oxide, gallium arsenide oxide, and the like. The alloy can also become reactive with a nitride layer of a semiconductive material such as silicon nitride, silicon oxynitride, gallium arsenide nitride, gallium arsenide oxynitride, and the like.
Reaction of the alloy with the die 12 can be carried out by thermal processing. Heat can be applied by conventional processes, such that the active element materials reach the melting zone of the base solder. For example, where the base solder includes indium, heating is carried out in a range from about 150° C. to about 200° C.
During reflow of the alloy, the active element(s) dissolve and migrate to the backside surface 16 of the die 12. Simultaneously, the base solder bonds to the integrated heat spreader 18. It is not necessary that the backside surface 16 be metalized prior to soldering. The solder joint (not depicted) that is formed by the reactive solder material can display a bond strength in a range from about 1,000 psi and about 2,000 psi.
As taken along the section line 2-2′,
According to an embodiment, the heat transfer materials include solder. The solder may contain lead (Pb) or be a substantially Pb-free solder. By “substantially Pb-free solder”, it is meant that the solder is not designed with Pb content according to industry trends. A substantially Pb-free solder in one embodiment includes an SnAgCu solder as is known in the art.
One example of a Pb-containing solder includes a tin-lead solder. In selected embodiments, Pb-containing solder is a tin-lead solder composition such as from 97% tin (Sn)/3% lead (Sn3Pb). A tin-lead solder composition that may be used as the first heat transfer material 22 or as the second heat transfer material 24 is a Sn63Pb composition of 37% tin/63% lead. In any event, the Pb-containing solder may be a tin-lead solder comprising SnxPby, wherein x+y total 1, and wherein x is in a range from about 0.3 to about 0.99. In one embodiment, the Pb-containing solder is a tin-lead solder composition of Sn3Pb for the first heat transfer material 22, and for the second heat transfer material 24, it is a tin-lead solder composition of Sn63Pb.
The following discussion refers specifically to structures depicted in
In one embodiment, the solder islands are arranged in an elongate, rectangular configuration that may follow the outline of a rectangular die, as will now be discussed with reference to
Another embodiment relates to a die system. An embodiment of the die system is depicted in some of the structures illustrated in
The die system in another embodiment includes the mounting substrate 26 disposed below the die 12. In other words, the die 12, the electrical bumps 32, and their bond pads 34 as mounted upon the mounting substrate 26, represent a package precursor according to this embodiment. In another embodiment, the die system includes the mounting substrate 26 and other structures as set forth herein and the integrated heat spreader 18 disposed above the die 12. As depicted in
Another embodiment relates to a thermal interface alone as depicted in
In another embodiment, the high melting-point solder second heat transfer material 24 (
Another embodiment relates to packaging process embodiments 800 that includes bringing an integrated heat spreader and a die into TIM intermediary contact through an interface subsystem to achieve a BLT according to embodiments set forth herein.
At 810, representing a first process flow embodiment, an integrated heat spreader (IHS) is contacted with a first heat transfer material, and the first heat transfer material is contacted with a die. The double-headed arrows in
At 820, representing a second process flow embodiment, an integrated heat spreader is contacted with a first heat transfer material. The first heat transfer material is contacted with a second heat transfer material that is disposed on a die. The double-headed arrows indicate alternative process flows as set forth above.
At 830, representing a third process flow embodiment, an integrated heat spreader is contacted with a second heat transfer material. The second heat transfer material is contacted with a first heat transfer material that is disposed on a die. The double-headed arrows indicate alternative process flows as set forth above.
At 840, representing a fourth process flow embodiment, an integrated heat spreader is contacted with combined first and second heat transfer materials. The combined first and second heat transfer materials are contacted with a die. The double-headed arrows indicate alternative process flows as set forth above. In another embodiment, the order of placing the first and second heat transfer materials onto the IHS is reversed.
At 850, representing a fifth process flow embodiment, a die is contacted with combined first and second heat transfer materials. The combined first and second heat transfer materials are contacted with a die. The double-headed arrows indicate alternative process flows as set forth above. In another embodiment, the order of placing the first and second heat transfer materials onto the die is reversed.
As depicted in the various process flow embodiments depicted in
According to an embodiment, the bonding process of bringing an integrated heat spreader and a die into intermediary contact through an interface subsystem 20, 120, 220, 320, or 420 is referred to as a die-referenced process. The die-referenced process relates to the situation that the die 12 is already affixed upon the mounting substrate 26. And as in some embodiments, a second heat transfer material 24 is disposed between the integrated heat spreader 18 and the backside surface 16 of the die 12 while tensing the system with the spring 40. Accordingly, the variability in bonding thickness may often largely be in the bonding material 28 as it bridges the space between the lip 30 of the integrated heat spreader 18 and the mounting substrate 26.
In a general embodiment, after bringing the integrated heat spreader into intermediary contact with the die through the interface subsystem according to various embodiments, bonding the interface subsystem includes reflowing the low melting-point solder first heat transfer material, and/or curing an organic first heat transfer material. Additionally, where a second heat transfer material is disposed in a first heat transfer material, the solder reflowing process is carried out after bringing the structures together. Where the first heat transfer material is an organic material, a curing and/or hardening process is carried out after bringing the structures together. Where the first heat transfer material is an organic/inorganic composite, curing, hardening, and/or reflowing is carried out after bringing the structures together.
It is emphasized that the Abstract is provided to comply with 37 C.F.R. § 1.72(b) requiring an Abstract that will allow the reader to quickly ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description of Embodiments of the Invention, with each claim standing on its own as a separate preferred embodiment.
It will be readily understood to those skilled in the art that various other changes in the details, material, and arrangements of the parts and method stages which have been described and illustrated in order to explain the nature of this invention may be made without departing from the principles and scope of the invention as expressed in the subjoined claims.
Claims
1-9. (canceled)
10. An integrated heat spreader system comprising:
- a heat spreader body having a recess;
- an interface subsystem in the recess, wherein the interface subsystem is selected from (1) a first heat transfer material, (2) the first heat transfer material and a second heat transfer material discretely disposed within the first heat transfer material, and (3) the second heat transfer material alone having a discrete patterning within the recess.
11-13. (canceled)
14. The integrated heat spreader system according to claim 10, wherein the first heat transfer material includes an organic-inorganic composite.
15. The integrated heat spreader system according to claim 10, wherein the first heat transfer material further includes:
- an organic-inorganic composite including a polymer or a resin;
- optionally an inorganic dielectric; and
- optionally at least one metallic.
16-18. (canceled)
19. A thermal interface comprising:
- a first heat transfer material, selected from a low melting point solder, a polymer, a polymer and a low melting point solder, a polymer and an inorganic dielectric, and a polymer and a low melting-point solder and an inorganic dielectric; and a high melting-point solder second heat transfer material, discretely disposed within the first heat transfer material, wherein the high melting-point solder second heat transfer material has a higher thermal conductivity than the first heat transfer material.
20. The thermal interface according to claim 19, wherein the high melting point solder second heat transfer material includes at least one solder island that has a characteristic thickness in a range from about 0.1 micron to about 25 micron.
21. (canceled)
22. The thermal interface according to claim 19, further including:
- an integrated heat spreader, wherein the thermal interface is on the integrated heat spreader.
23. (canceled)
24. The thermal interface according to claim 19, wherein the first heat transfer material is a low melting point solder, and the high melting-point solder second heat transfer material is present in a volume range from about 0% to about 5%.
25. A packaging process comprising:
- coupling a thermal management device to a die through an interface subsystem, wherein the thermal management device is selected from an integrated heat spreader, a heat pipe, and a planar heat sink, and wherein the interface subsystem is selected from a first heat transfer material, and the first heat transfer material and a second heat transfer material discretely disposed within the first heat transfer material, wherein the first heat transfer material has either a first melting temperature or a first curing temperature, and the second heat transfer material has a second melting temperature higher than the first temperature; and
- bonding the interface subsystem to the thermal management device and the die.
26. The process according to claim 25, wherein the first heat transfer material is selected from a low melting-point solder, an organic composition, and a combination thereof, and wherein bonding the interface subsystem includes reflowing the low melting-point solder or curing and hardening the organic composition.
27. The process according to claim 25, wherein the first heat transfer material includes a low melting-point solder, wherein the second heat transfer material includes a high melting-point solder, and wherein bonding the interface subsystem includes reflowing the low melting-point solder.
28. The process according to claim 25, wherein coupling the thermal management device to the die through an interface subsystem further includes:
- disposing the first heat transfer material against the thermal management device;
- disposing the second heat transfer material against the die; and
- coupling the first heat transfer material and the second heat transfer material.
29. The process according to claim 25, wherein coupling the thermal management device to the die through an interface subsystem further includes:
- disposing the first heat transfer material and the second heat transfer material against the thermal management device; and
- coupling the first heat transfer material and the second heat transfer material with the die.
30. The process according to claim 25, wherein coupling the thermal management device to the die through an interface subsystem further includes:
- disposing the first heat transfer material and the second heat transfer material against the die; and
- coupling the first heat transfer material and the second heat transfer material with the thermal management device.
Type: Application
Filed: Mar 15, 2005
Publication Date: Jul 21, 2005
Applicant:
Inventors: Kris Whittenburg (Tempe, AZ), Fay Hua (San Jose, CA), Carl Deppisch (Phoenix, AZ), Sabina Houle (Phoenix, AZ), Peter Brandenburger (Chandler, AZ), Kim Phillippe (Phoenix, AZ)
Application Number: 11/080,028