LIGHT BLOCKING LAYERS IN MEMS PACKAGES
Disclosed herein is a micromirror array device package having a light absorbing material disposed within the package for reducing undesired light scattering. The light absorbing material can be deposited as a thin film (or strip, frame, segments or a combination thereof), or as a vertical wall insert between the micromirror array device and a cover substrate of the package.
The present invention is generally related to the art of light emitting, modulating, or detecting electronic devices, and more particularly, to microelectromechanical devices (MEMS) and the art of packaging said devices.
BACKGROUND OF THE INVENTIONProjection display systems employing spatial light modulators, as well as many other image-producing systems, require only information carrying light be projected on the viewing screens so as to obtain desired images of acceptable qualities. Undesired light, especially scattered light from the components of the projection system, if mixed with the information carrying light and projected on the viewing screen will degrade the desired image quality. In particular, undesired scattered light may decrease the contrast ratio.
Contrast ratio is the ratio of luminance between the brightest white that can be produced and the darkest black that can be produced. If a display image has a higher contrast ratio, a viewer will judge it to be sharper than a displayed image with a lower contrast ratio, even if the lower contrast image has substantially more measurable resolution. Contrast ratio can be seriously degraded by light scattered, for example, from the cell glass of the micromirror device and the package that contains the micromirror device. This scattered light typically travels through the projection lens of the display device and is directed on to the target, even when the micromirrors are set for displaying a dark pixel.
Spatial light modulators are key components of such display systems, and may produce significant undesired scattered light. For example, a micromirror-based spatial light modulator comprises an array of reflective and deflectable micromirror devices, which is packaged for protection purposes in handling, delivering, and operation. In operation, incident light of the display system is incident onto the micromirror array, and unavoidably also on the package of the array. Undesired scattered light from the array of micromirrors in the spatial light modulator can be depressed in many ways, as set forth in U.S. patent applications Ser. No. 10/305,536, U.S. Ser. No. 10/305,536, and U.S. Ser. No. 10/305,509 both to Huibers et al. and filed Nov. 26, 2002, the subject matter of each being incorporated herein by reference. Because the package is unavoidably illuminated by the incident light, the package may also produce undesired scattered light that is eventually projected onto the viewing screens, thus resulting in a poor contrast ratio.
Therefore, methods and apparatus for reducing light scattering from a package of a spatial light modulator are needed to improve the display quality.
SUMMARY OF THE INVENTIONIn view of the foregoing, the present invention provides a micromirror based spatial light modulator in a package having a light absorbing material for reducing light scattering therein. The objects and advantages of the present invention will be obvious, and in part appear hereafter and are accomplished by the present invention. Such objects of the invention are achieved in the features of the independent claims attached hereto. Preferred embodiments are characterized in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGSThe accompanying drawings are illustrative and are not to scale. In addition, some elements are omitted from the drawings to more clearly illustrate the embodiments. While the appended claims set forth the features of the present invention with particularity, the invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The present invention discloses a MEMS device with in a package having light absorbing or blocking materials for reducing undesired light scattering. The light absorbing material can also be provided for defining the effective area of the incident light for illuminating the reflective surfaces of the micromirrors. Meanwhile, a light reflecting material can be arranged to define the effective area of the reflective light, which can be collected and projected onto viewing screen. Such material can be disposed in an active or inactive area of the device, and in a form of continuous film, strip, segments, frame, or a combination thereof. The material can be disposed in any suitable locations of the package, such as the walls of the package and components within the package. The following description refers to drawings which are based on selected examples for demonstration purposes only and should not be interpreted as a limitation to the present invention. Other variations without departure from the spirit of the present invention may also be applicable. For example, in other MEMS devices operates with light involved, such as LCD systems, LCOS systems, plasmas, the present invention can be implemented to such devices for the purpose of reducing undesired light scattering
Referring to
In operation, incident white light 126 from light source 110 enters into prism 123b and is directed towards TIR surface 120a at an angle larger than the critical TIR angle of TIR surface 120a. TIR surface 120a totally internally reflects the incident white light towards spatial light modulator 124, which is designated for modulating the blue light component of the incident white light. At the dichroic surface 122a, the green light component of the totally internally reflected light from TIR surface 120a is separated therefrom and reflected towards spatial light modulator 121, which is designated for modulating green light. As seen, the separated green light may experience TIR by TIR surface 120b in order to illuminate spatial light modulator 121 at a desired angle. This can be accomplished by arranging the incident angle of the separated green light onto TIR surface 120b larger than the critical TIR angle of TIR surface 120b. The rest of the light components, other than the green light, of the reflected light from the TIR surface 120a pass through dichroic surface 122a and are reflected at dichroic surface 122b. Because dichroic surface 122b is designated for reflecting red light component, the red light component of the incident light onto dichroic surface 122b is thus separated and reflected onto spatial light modulator 127, which is designated for modulating red light. Finally, the blue component of the white incident light (white light 126) reaches spatial light modulator 124 and is modulated thereby. By collaborating operations of the three spatial light modulators, red, green and blue lights can be properly modulated. The modulated red, green and blue lights are recollected and delivered onto display target 116 through optic elements, such as projection lens 115, if necessary.
Processes for fabricating a MEMS device such as a movable micro-mirror and mirror array are disclosed in U.S. Pat. Nos. 5,835,256 and 6,046,840 both to Huibers, the subject matter of each being incorporated herein by reference. MEMS devices such as these can be packaged using a package substrate. One example of a package for a SLM is disclosed in U.S. patent application Ser. No. 10/443,318 to Tarn filed May 22, 2003, the subject matter being incorporated herein by reference. An exemplary micromirror array device package is illustrated in
Packages for MEMS devices, although highly imperative and beneficial, create opportunities for undesired light scattering and diffraction to occur. In operation, incident light from the light source of the projection system illuminates the reflecting surfaces the array of micromirrors in the device package. The micromirrors individually reflect the incident light into different direction by switching between the ON and OFF state according to provided image data. The reflected light carrying image information is collected and projected onto a viewing screen or by direct view. Because the device package is unavoidably exposed to the incident light, undesired light scattering may occur, as demonstrated in
Referring to
For example, light beam 226 may travel through the cover substrate and hit illuminates the side wall of the package at point S, as shown in the figure. The incident light at point S is scattered into scattered light, such as scattered light a, b, and c along different directions. These scattered light beams are re-directed onto the surface of the package substrate (e.g. light beam c), sides of the spatial light modulator (e.g. light beam b), and towards the cover substrate (e.g. light beam a). These scattered light beams, after reflections, may be collected by the projection lens and projected onto the viewing screen, degrading the contrast ratio. A beam of light first incident onto the spatial light modulator may also result light scattering, especially when the spatial light modulator comprises a light transmissive substrate, an exemplary of which is shown in
To reduce the undesired light scattering, a light absorbing material is provided for the device package, as shown in
The light blocking material can be a single layer or a multilayered structure. In a preferred embodiment of the invention, the light-absorbing material absorbs at least 85% of visible light incident thereon, preferably 90% or more, or 95% or more, or 99% or more. The light absorbing material is preferably one that absorbs wavelengths of broad range in the visible spectrum. An opaque material, preferably a black material, is preferred. More specifically, the non-reflective material can be a dark, opaque (e.g. black, grey, or other dark colors) thin film. In particular, the light absorbing material comprises Chromium or chromium oxide Other suitable materials, such as black nickel, CrNx, TiAlx, TaNx, and materials containing carbon, such as amorphous CNx, amorphous CAlxNy, CTixNy, a-DLC, vitreous carbon, SiC, TiAlCN, WC, etc, are also applicable. Multilayer structures, such as TiC/WC, WC/C or TiAln/WC/C, can be used, as well as other multilayer structures with matched indices. Also, polymides and other polymers containing carbon black (or other opacity increasing material) can be used. If the light absorbing layer is exposed to an etchant at the time of release of the micromirrors, the light absorbing material should preferably be resistant to the etchant used. Of course, other opaque films (preferably those with high optical density, thermally stable and with low reflectivity) can be used.
The light absorbing material can be deposited as a thin film using suitable standard thin film deposition techniques, such as electroplating, PVD, CVD, PECVD, sputtering, and CMP (chemical mechanical polarization). The light absorbing thin film may have a thickness in an order of microns or less, such as 100 microns or less, 50 microns or less, 10 microns or less, or several microns or even less.
As an example of the invention, light absorbing films 230 and 246 can be can be deposited on the top surface (the surface facing the incident light) of the cover substrate. These light absorbing films can be patterned according to the distribution of the active (252) and inactive (250 and 254) areas of micromirrors in the spatial light modulator, as set forth in US patent “Asymmetric Spatial Light modulator” to Huibers, filed on the same day as the present invention. Specifically, the micromirrors in the active area in a display application correspond to the image pixels in the viewing screen, while the micromirrors in the inactive areas do not. The light absorbing films 230 and 246 can be configured to define the light beams of the incident light for illuminating the micromirrors in the active area. Moreover, these light absorbing films can be employed to absorb undesired scattered light produced from the components within the device package and traveling through the segments of the cover substrate coated with these light absorbing films.
Alternatively, the lower surface of the cover substrate of the device package can also be coated with light absorbing films, such as 232 and 248. Similar to the films 230 and 246, films 232 and 248 can be configured to confine the effective illumination light beam onto the micromirrors in the active area while blocking illumination light beams onto the micromirrors in the inactive areas. Furthermore, films 232 and 248 can be employed to absorb undesired scattered light traveling through the portion of the cover substrate coated with films 232 and 248.
For reducing light scattering from the side walls of the device package, light absorbing film 240 and 234 can be deposited on the side walls of the device package. In addition, light absorbing films 244 and 236 can be deposited on the supporting surface of the cavity in the package substrate. In another embodiment, light absorbing films 236 and 244 can be a continuous light absorbing film covering appropriate portion or even the entire supporting surface of the cavity in the device package. In fact, it is preferred that any exposed portion to the illumination light, either directly or indirectly, is coated with a light absorbing film. Of course, depending upon the specific configuration of the incident light, the position of the spatial light modulator within the package, and the structure of the spatial light modulator, the light absorbing films can be patterned into a continuous film or films, or segments of films, strips, frames, or a combination thereof as appropriate, especially, other factors, such as cost-efficiency needs to be included into consideration.
In addition to the interior surfaces of the device package, edges of the spatial light modulator, as well as the exterior surfaces, especially the exterior surfaces directly exposed to the illumination light can be coated with light absorbing films. Referring to
As a way of example,
Turning again to
In another embodiment of the present invention, vertical walls are placed along the interior side walls of package substrate. For example, walls 234 and 240 as vertical walls are disposed along the interior side walls of the package substrate. This embodiment is not limited to vertical lines however. Horizontal walls or barricades can also be placed on the bottom of the package, further preventing light from reflecting off of the package walls. Additionally, 234 and 240 can also represent light-absorbing coatings placed directly on the inside of the package.
When the spatial light modulator comprises two substrates, especially one of which is transmissive to the incident light, it is advantageous to provide a vertical light absorbing wall for absorbing the light passing through the light transmissive substrate, as shown in
It is also possible to put an “anti-reflective coating” (an AR film) on the inside of the package and on the cell glass. For example, a normally absorptive surface can have enhanced absorption if an “AR film” stack (for example light transmissive dielectric layers), are placed above it so that light reflection is reduced due to destructive interference. Such dielectric layers can be designed to work particularly well at certain wavelengths and/or angles—and can be used for walls and coatings inside the MEMS package.
Forming the light absorbing areas can be by any suitable forming method—such as standard deposition and patterning techniques. For example, the metals and metal alloys can be deposited by sputtering a target in an inert atmosphere. Other techniques, such as electroplating can be used. For ceramic materials, a target can be reactively sputtered—such as in a nitrogen atmosphere to form nitride ceramic films. Or, some films can be deposited by chemical vapor deposition as known in the art.
It should be noted that materials and methods mentioned above are examples only, as many other materials and methods could be used. Moreover, in the above, the present invention has been discussed with examples wherein the micromirror array device has two bonded substrates. In fact, the method of the invention can be applied to other type of microstructures and semiconductor devices and their packages. In particular, the method of the invention is applicable to a micromirror array device and its package wherein the micromirror is formed on a semiconductor substrate having formed thereon an electrode and circuitry, which will not be discussed in detail.
It will be appreciated by those skilled in the art that a new and useful MEMS device package and methods of applying the same for packaging micromirror array devices have been described herein. In view of the many possible embodiments to which the principles of this invention may be applied, however, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of invention. For example, those of skill in the art will recognize that the illustrated embodiments can be modified in arrangement and detail without departing from the spirit of the invention. In particular, the above described light absorbing walls and coatings can be applied to light emitting, modulating, or detecting electronic device. Examples of such devices are CCDs, LEDs, LCDs, LCOSs, and MEMS devices that are formed on silicon substrates.
Claims
1. A micromirror array device package, comprising:
- a micromirror array device;
- a package substrate having a plurality of interior surfaces together defining a cavity in which the micromirror array device is disposed;
- a cover substrate disposed such that the micromirror array device is capable of being enclosed between the package substrate and cover substrate; and
- a light blocking material deposited on at least one of the plurality of interior surfaces of the package substrate for reducing scattered light therefrom, wherein the light absorbing material is more absorbing to visible light than said at least one interior surface.
2. The package of claim 1, further comprising a light absorbing wall that is not a portion of the packaging substrate.
3. The package of claim 2, wherein the light absorbing wall is disposed between a top surface of the micromirror array device and a bottom surface of the cover substrate.
4. The package of claim 1, wherein light absorbing material is deposited as a continuous film.
5. The package of claim 1, wherein light absorbing material is deposited as a strip.
6. The package of claim 1, wherein light absorbing material is deposited as a frame.
7. The package of claim 1, wherein light absorbing material is deposited as a segment of a film or a strip or a frame.
8. The package of claim 1, wherein light absorbing material is deposited on a surface of the cover substrate.
9. The package of claim 1, wherein the absorbing material is deposited on an interior side wall of the package substrate.
10. The package of claim 1, wherein the light absorbing material is deposited on a supporting surface of the cavity in the packaging substrate.
11. The package of claim 1, wherein the light absorbing material is deposited on an edge of the micromirror array device.
12. The package of claim 11, wherein the micromirror array device comprises two substrates having an array of reflective and deflectable micromirrors and an array of addressing electrodes.
13. The package of claim 12, wherein one of the two substrates has the micromirrors formed thereon, while the other substrate has the electrodes formed thereon; and wherein the edges of the substrate having the micromirrors are deposited with the light absorbing material.
14. The package of claim 13, wherein the edges of the substrate having the addressing electrodes are deposited with the light absorbing material,
15. The package of claim 1, wherein the micromirror array device comprises an array of micromirrors and an array of electrodes formed on a substrate.
16. The package of claim 1, wherein the light absorbing material comprises a Chromium.
17. The package of claim 1, wherein the light absorbing material comprises a Chromium oxide.
18. The package of claim 1, wherein the light absorbing material comprises an element that is selected from the group comprising: nickel, CrN, TiAlN, TaN, CN, CAlN, and TiCN.
19. The package of claim 1, wherein the light absorbing material comprises an element that is selected from the group comprising: vitreous carbon, SiC, TiAlCN, and WC.
20. The package of claim 1, wherein the light absorbing material is a multilayered structure.
21. The package of claim 20, wherein the light absorbing material comprises: TiWC, WC/C or TiAlN/WC/C.
22. The package of claim 1, wherein the cover substrate is transmissive to visible light.
23. The package of claim 22, wherein the cover substrate has an anti-reflection film formed thereon.
24. The package of claim 1, wherein the light absorbing material is deposited as a thin film having a thickness in an order of microns.
25. The package of claim 24, wherein the thickness of the light absorbing material is 50 microns or less.
26. The package of claim 1, wherein the light absorbing material is deposited by CVD, PVD, electroplating, or chemical mechanical polarization.
27. The package of claim 1, wherein the cover substrate is directly bonded to the packaging substrate.
28. The package of claim 1, wherein the micromirror array device comprises an array of deflectable and reflective micromirrors, and an array of addressing electrodes.
29. The package of claim 1, wherein the light absorbing material absorbs 85% or more of the visible light incident thereto.
30. The package of claim 1, wherein the light absorbing material absorbs 95% or more of the visible light incident thereto.
31. The package of claim 1, wherein the light absorbing material is black in color.
32. The package of claim 1, wherein the light absorbing material is dark gray or dark blue.
33. The package of claim 1, wherein the package substrate comprises a flat plate and an annular ring bonded to the circumference of the flat plate.
34. The package of claim 1, wherein the micromirror array device comprises a glass substrate and a silicon substrate bonded to the glass substrate, wherein the silicon substrate is attached to a supporting surface of the packaging substrate.
35. The package of claim 34, wherein the silicon substrate comprises a plurality of wires that are bonded to the packaging substrate.
36. The package of claim 1, wherein the light absorbing material is deposited on the top surface of the cavity in the packaging substrate, wherein said top surface is substantially parallel to the cover substrate.
37. A micromirror array device package, comprising:
- a micromirror array device that is fully encapsulated within a space between a cover substrate and a packaging substrate bonded to the cover substrate, wherein the micromirror array device is attached to one of the two substrates but not the both; and
- a light absorbing material disposed on an interior surface of the packaging substrate for absorbing light scattered within the space, wherein the light absorbing material is more absorbing than the packaging substrate;
38. The package of claim 37, wherein the package substrate comprises a flat plate and an annular ring bonded to the circumference of the flat plate.
39. The package of claim 37, further comprising: a vertical wall insert spaced apart from the interior surfaces for absorbing scattered light.
40. A micromirror array device package, comprising:
- a micromirror array device;
- a packaging substrate having a plurality of interior surfaces together defining a cavity in which the micromirror device is disposed;
- a cover substrate bonded to the packaging substrate such that the micromirror array device is encapsulated within the cavity; and
- a vertical wall within the cavity for absorbing scattered light, wherein the vertical wall is more absorbing than the packaging substrate.
41. The package of claim 40, wherein the vertical wall is an insert that is spaced apart from the interior surfaces.
42. The package of claim 40, wherein the vertical wall is deposited on one of the plurality of interior surfaces.
43. The package of claim 40, wherein the vertical wall is deposited on a side wall of the micromirror array device.
44. The package of claim 43, wherein the vertical wall is deposited on a silicon or glass substrate of the micromirror array device.
45. The package of claim 40, wherein the vertical wall is operable to absorb 85% or more of the visible light incident thereto.
46. The package of claim 40, wherein the vertical wall is operable to absorb 95% or more of the visible light incident thereto.
47. The package of claim 40, wherein the vertical wall is black in color.
48. The package of claim 40, wherein the vertical wall is dark gray or dark blue in color.
49. The package of claim 40, wherein the vertical wall comprises chromium.
50. The package of claim 40, wherein the vertical wall comprises chromium oxide.
51. A display system, comprising:
- a light source;
- a spatial light modulator of claim 1;
- a plurality of optical elements; and
- a viewing screen.
52. A display system, comprising:
- a light source;
- a spatial light modulator of claim 40;
- a plurality of optical elements; and
- a viewing screen.
Type: Application
Filed: Oct 19, 2004
Publication Date: Apr 20, 2006
Inventors: Andrew Huibers (Palo Alto, CA), Satyadev Patel (Sunnyvale, CA), Terry Tarn (San Diego, CA)
Application Number: 10/969,258
International Classification: G02B 26/00 (20060101);