Solders
A substantially lead-free solder, comprising: from around 96.8% to around 99.3% tin; from around 0.2% to around 3.0% copper; and from around 0.02% to around 0.12% silicon.
Latest Quantum Chemical Technologies (Singapore) Pte. Ltd Patents:
This invention relates to solders and, in particular to solders which are substantially lead-free.
BACKGROUNDMany conventional solders contain lead as a major constituent thereof. Such solders often have desirable physical properties, and the use of lead-containing solders is widespread throughout several industries, including those concerned with the production of printed circuit boards.
There are, however, increasing demands for lead-free solders due, for example, to environmental considerations, and it seems likely that, within the next few years, it will be a legal requirement in several countries for solders used in the manufacture of many items to contain little or no lead.
One type of alloy that has been used as a replacement for the conventional tin-lead solders are tin-copper alloys, and an alloy consisting of 99.3% tin and 0.7% copper has become relatively widely used in certain industries. However, the properties of such a tin-copper alloy are less desirable than those of the conventional tin-lead alloy, and in particular the tin-copper alloy exhibits a lower strength, a lower fatigue resistance and a higher eutectic temperature than the conventional tin-lead alloy.
This is particularly undesirable, since many industrial machines and processes are configured to work effectively with the conventional tin-lead alloy, and ideally a lead-free solders replacement should be capable of being used with the same machines and processes without significant modification thereof. Many manufacturers have, however, found that existing soldering processes must now be significantly adapted to accommodate the use of lead-free solders, and this adaptation of processes and materials is widely regarded as a poor use of resources, particularly as the standard of articles manufactured using known lead-free solders is often considerably below that achievable using conventional leaded solders.
SUMMARY OF THE INVENTIONIt is an object of the present invention to seek to provide an improved lead-free solder.
Accordingly, one aspect of the present invention provides a substantially lead-free solder, comprising: from around 96.8% to around 99.3% tin; from around 0.2% to around 3.0% copper; and from around 0.02% to around 0.12% silicon.
Advantageously, the solder further comprises from around 0.005% to around 0.01% phosphorous.
Preferably, the solder comprises around 0.01% phosphorous.
Conveniently, the solder further comprises from around 0.005% to around 0.01% germanium.
Advantageously, the solder comprises around 0.01% germanium.
Preferably, the solder comprises: around 0.7% copper; and around 0.02% silicon.
Another aspect of the present invention provides a method of preparing a substantially lead-free solder, comprising the step of mixing tin, copper and silicon such that: the proportion of tin in the solder is from around 96.8% to around 99.3%; the proportion of copper in the solder is from around 0.2% to around 3.0%; and the proportion of silicon in the solder is from around 0.02% to around 0.12%.
Conveniently, the method further comprises the step of including from around 0.005% to around 0.01% phosphorous in the solder mixture.
Advantageously, the method comprises the step of including around 0.01% phosphorous in the solder mixture.
Preferably, the method further comprises the step of including from around 0.005% to around 0.01% germanium in the solder mixture.
Conveniently, the method comprises the step of including around 0.01% germanium in the solder mixture.
Advantageously, the method comprises the step of including around 0.7% copper and around 0.02% silicon in the solder mixture.
A further aspect of the present invention provides a method of soldering, comprising the step of using a substantially lead-free solder comprising: from around 96.8% to around 99.3% tin; from around 0.2% to around 3.0% copper; and from around 0.02% to around 0.12% silicon.
Preferably, the method comprises using a solder having from around 0.005% to around 0.01% phosphorous.
Conveniently, the method comprises using a solder having around 0.01% phosphorous.
Advantageously, the method comprises using a solder having from around 0.005% to around 0.01% germanium.
Preferably, the method comprises using a solder having around 0.01% germanium.
Conveniently, the method comprises using a solder having around 0.7% copper and around 0.02% silicon.
BRIEF DESCRIPTION OF THE DRAWINGSIn order that the present invention may be more readily understood, embodiments thereof will now be described, by way of example, with reference to the accompany figures, in which:
With regard to tin-copper solder alloys as discussed above, it has been found that the addition of a small percentage of silicon to the alloy significantly improves the properties and performance of the alloy. In particular, it has been found that the addition of around 0.02% to 0.12% by weight of silicon to the alloy will strengthen the alloy, and also confer, among others, improved ductility and strain properties on the alloy.
It is thought that these desirable properties might arise due to the valency of silicon, which allows it to form a tethrahedal silicide structure, resulting in a polymeric chain structure of a solid solution, thus given rise to an improved strain percentage.
It can be seen from
It will be seen from
The properties of the tin/copper/silicon alloys described above can be further strengthened or improved by the addition of a small quantity of germanium or phosphorous thereto. In particular, the addition of around 0.005% to 0.01% of either of these elements leads to desirable results, including increased strength and the provision of an antioxidant effect.
Turning to
It has also been found that the addition of silicon to a tin/copper solder alloy improves the mechanical properties of the alloy when the alloy is subjected to high temperatures.
Turning to
Referring to
It will be appreciated by a skilled reader that the present invention provides substantially lead-free alloys having significantly improved properties when compared to conventional lead-free solders. It is envisaged that alloys embodying the present invention may be used as direct “drop-in” replacements for conventional leaded solders, particularly for use in wave soldering applications.
In the appended claims, the substantially lead-free solders claimed may consist essentially of the listed components, in other words may comprise only these components, aside from unavoidable impurities. This need not, however, necessarily be the case.
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilized for realizing the invention in diverse forms thereof.
Claims
1. A substantially lead-free solder, comprising:
- from around 96.8% to around 99.3% tin;
- from around 0.2% to around 3.0% copper; and
- from around 0.02% to around 0.12% silicon.
2. A solder according to claim 1, further comprising from around 0.005% to around 0.01% phosphorous.
3. A solder according to claim 2, comprising around 0.01% phosphorous.
4. A solder according to claim 1, further comprising from around 0.005% to around 0.01% germanium.
5. A solder according to claim 4, comprising around 0.01% germanium.
6. A solder according claim 1, comprising:
- around 0.7% copper; and
- around 0.02% silicon.
7. A method of preparing a substantially lead-free solder, comprising the step of mixing tin, copper and silicon such that:
- the proportion of tin in the solder is from around 96.8% to around 99.3%;
- the proportion of copper in the solder is from around 0.2% to around 3.0%; and
- the proportion of silicon in the solder is from around 0.02% to around 0.12%.
8. A method according to claim 7, further comprising the step of including from around 0.005% to around 0.01% phosphorous in the solder mixture.
9. A method according to claim 8, comprising the step of including around 0.01% phosphorous in the solder mixture.
10. A method according to claim 7, further comprising the step of including from around 0.005% to around 0.01% germanium in the solder mixture
11. A method according to claim 10, comprising the step of including around 0.01% germanium in the solder mixture.
12. A method according to claim 7, comprising the step of including around 0.7% copper and around 0.02% silicon in the solder mixture.
13. A method of soldering, comprising the step of using a substantially lead-free solder comprising:
- from around 96.8% to around 99.3% tin;
- from around 0.2% to around 3.0% copper; and
- from around 0.02% to around 0.12% silicon.
14. A method according to claim 13, which comprises using a solder having from around 0.005% to around 0.01% phosphorous.
15. A method according to claim 14, which comprises using a solder having around 0.01% phosphorous.
16. A method according to claim 13, which comprises using a solder having from around 0.005% to around 0.01% germanium.
17. A method according to claim 16, which comprises using a solder having around 0.01% germanium.
18. A method according to claim 13, which comprises using a solder having around 0.7% copper and around 0.02% silicon.
Type: Application
Filed: Jan 28, 2005
Publication Date: Apr 27, 2006
Applicant: Quantum Chemical Technologies (Singapore) Pte. Ltd (Singapore)
Inventors: Kai Chew (Singapore), Vincent Kho (Singapore)
Application Number: 11/046,417
International Classification: C22C 13/00 (20060101);