Substituted anilinic piperidines as MCH selective antagonists
This invention is directed to compounds which are selective antagonists for melanin concentrating hormone-1 (MCH1) receptors. The invention provides a pharmaceutical composition comprising a therapeutically effective amount of the compound of the invention and a pharmaceutically acceptable carrier. This invention provides a pharmaceutical composition made by combining a therapeutically effective amount of the compound of this invention and a pharmaceutically acceptable carrier. This invention further provides a process for making a pharmaceutical composition comprising combining a therapeutically effective amount of the compound of the invention and a pharmaceutically acceptable carrier.
This application claims the benefit of U.S. Provisional Appplication No. 60/346,997, filed Jan. 9, 2002 and of U.S. Provisional Application No. 60/303,091, filed Jul. 5, 2001, the contents both of which are hereby incorporated by reference into the subject application.
BACKGROUND OF THE INVENTIONThroughout this application, various publications are referenced in parentheses by author and year. Full citations for these references may be found at the end of the specification immediately preceding the sequence listings and the claims. The disclosure of these publications in their entireties are hereby incorporated by reference into this application to describe more fully the state of the art to which this invention pertains. Melanin-concentrating hormone (MCH) is a cyclic peptide originally isolated from salmonid (teleost fish) pituitaries (Kawauchi et al., 1983). In fish the 17 amino acid peptide causes aggregation of melanin within the melanophores and inhibits the release of ACTH, acting as a functional antagonist of α-MSH. Mammalian MCH (19 amino acids) is highly conserved between rat, mouse, and human, exhibiting 100% amino acid identity, but its physiological roles are less clear. MCH has been reported to participate in a variety of processes including feeding, water balance, energy metabolism, general arousal/attention state, memory and cognitive functions, and psychiatric disorders (for reviews, see Baker, 1991; Baker, 1994; Nahon, 1994; Knigge et al., 1996). Its role in feeding or body weight regulation is supported by a recent Nature publication (Qu et al., 1996) demonstrating that MCH is overexpressed in the hypothalamus of ob/ob mice compared with ob/+mice, and that fasting further increased MCH mRNA in both obese and normal mice during fasting. MCH also stimulated feeding in normal rats when injected into the lateral ventricles (Rossi et al., 1997). MCH also has been reported to functionally antagonize the behavioral effects of α-MSH (Miller et al., 1993; Gonzalez et al, 1996; Sanchez et al., 1997); in addition, stress has been shown to increase POMC mRNA levels while decreasing the MCH precursor preproMCH (ppMCH) mRNA levels (Presse et al., 1992). Thus MCH may serve as an integrative neuropeptide involved in the reaction to stress, as well as in the regulation of feeding and sexual activity (Baker, 1991; Knigge et al., 1996).
Although the biological effects of MCH are believed to be mediated by specific receptors, binding sites for MCH have not been well described. A tritiated ligand ([3H]-MCH) was reported to exhibit specific binding to brain membranes but was unusable for saturation analyses, so neither affinity nor Bmax were determined (Drozdz and Eberle, 1995). Radioiodination of the tyrosine at position thirteen resulted in a ligand with dramatically reduced biological activity (see Drozdz and Eberle, 1995). In contrast, the radioiodination of the MCH analogue [Phe13,Tyr19]-MCH was successful (Drozdz et al., 1995); the ligand retained biological activity and exhibited specific binding to a variety of cell lines including mouse melanoma (B16-F1, G4F, and G4F-7), PC12, and COS cells. In G4F-7 cells, the KD=0.118 nM and the Bmax ˜1100 sites/cell. Importantly, the binding was not inhibited by α-MSH but was weakly inhibited by rat ANF (Ki=116 nM vs. 12 nM for native MCH) (Drozdz et al., 1995). More recently specific MCH binding was reported in transformed keratinocytes (Burgaud et al., 1997) and melanoma cells (Drozdz et al., 1998), where photo-crosslinking studies suggest that the receptor is a membrane protein with an apparent molecular weight of 45-50 kDaltons, compatible with the molecular weight range of the GPCR superfamily of receptors. No radioautoradiographic studies of MCH receptor localization using this ligand have been reported as yet.
The localization and biological activities of MCH peptide suggest that the modulation of MCH receptor activity may be useful in a number of therapeutic applications. The role of MCH in feeding is the best characterized of its potential clinical uses. MCH is expressed in the lateral hypothalamus, a brain area implicated in the regulation of thirst and hunger (Grillon et al., 1997); recently orexins A and B, which are potent orexigenic agents, have been shown to have very similar localization to MCH in the lateral hypothalamus (Sakurai et al., 1998). MCH mRNA levels in this brain region are increased in rats after 24 hours of food-deprivation (Hervé and Fellman, 1997); after insulin injection, a significant increase in the abundance and staining intensity of MCH immunoreactive perikarya and fibres was observed concurrent with a significant increase in the level of MCH mRNA (Bahjaoui-Bouhaddi et al., 1994). Consistent with the ability of MCH to stimulate feeding in rats (Rossi et al., 1997) is the observation that MCH mRNA levels are upregulated in the hypothalami of obese ob/ob mice (Qu et al., 1996), and decreased in the hypothalami of rats treated with leptin, whose food intake and body weight-gains are also decreased (Sahu, 1998). MCH appears to act as a functional antagonist of the melanocortin system in its effects on food intake and on hormone secretion within the HPA (hypothalamopituitary/adrenal axis) (Ludwig et al., 1998). Together these data suggest a role for endogenous MCH in the regulation of energy balance and response to stress, and provide a rationale for the development of specific compounds acting at MCH receptors for use in the treatment of obesity and stress-related disorders.
In all species studied to date, a major portion of the neurons of the MCH cell group occupies a rather constant location in those areas of the lateral hypothalamus and subthalamus where they lie and may be a part of some of the so-called “extrapyramidal” motor circuits. These involve substantial striato- and pallidofugal pathways involving the thalamus and cerebral cortex, hypothalamic areas, and reciprocal connections to subthalamic nucleus, substantia nigra, and mid-brain centers (Bittencourt et al., 1992). In their location, the MCH cell group may offer a bridge or mechanism for expressing hypothalamic visceral activity with appropriate and coordinated motor activity. Clinically it may be of some value to consider the involvement of this MCH system in movement disorders, such as Parkinson's disease and Huntingdon's Chorea in which extrapyramidal circuits are known to be involved.
Human genetic linkage studies have located authentic hMCH loci on chromosome 12 (12q23-24) and the variant hMCH loci on chromosome 5 (5q12-13) (Pedeutour et al., 1994). Locus 12q23-24 coincides with a locus to which autosomal dominant cerebellar ataxia type II (SCA2) has been mapped (Auburger et al., 1992; Twells et al., 1992). This disease comprises neurodegenerative disorders, including an olivopontocerebellar atrophy. Furthermore, the gene for Darier's disease, has been mapped to locus 12q23-24 (Craddock et al., 1993). Dariers' disease is characterized by abnormalities I keratinocyte adhesion and mental illnesses in some families. In view of the functional and neuroanatomical patterns of the MCH neural system in the rat and human brains, the MCH gene may represent a good candidate for SCA2 or Darier's disease. Interestingly, diseases with high social impact have been mapped to this locus. Indeed, the gene responsible for chronic or acute forms of spinal muscular atrophies has been assigned to chromosome 5q12-13 using genetic linkage analysis (Melki et al., 1990; Westbrook et al., 1992). Furthermore, independent lines of evidence support the assignment of a major schizophrenia locus to chromosome 5q11.2-13.3 (Sherrington et al., 1988; Bassett et al., 1988; Gilliam et al., 1989). The above studies suggest that MCH may play a role in neurodegenerative diseases and disorders of emotion.
Additional therapeutic applications for MCH-related compounds are suggested by the observed effects of MCH in other biological systems. For example, MCH may regulate reproductive functions in male and female rats. MCH transcripts and MCH peptide were found within germ cells in testes of adult rats, suggesting that MCH may participate in stem cell renewal and/or differentiation of early spermatocytes (Hervieu et al., 1996). MCH injected directly into the medial preoptic area (MPOA) or ventromedial nucleus (VMN) stimulated sexual activity in female rats (Gonzalez et al., 1996). In ovariectomized rats primed with estradiol, MCH stimulated luteinizing hormone (LH) release while anti-MCH antiserum inhibited LH release (Gonzalez et al., 1997). The zona incerta, which contains a large population of MCH cell bodies, has previously been identified as a regulatory site for the pre-ovulatory LH surge (MacKenzie et al., 1984). MCH has been reported to influence release of pituitary hormones including ACTH and oxytocin. MCH analogues may also be useful in treating epilepsy. In the PTZ seizure model, injection of MCH prior to seizure induction prevented seizure activity in both rats and guinea pigs, suggesting that MCH-containing neurons may participate in the neural circuitry underlying PTZ-induced seizure (Knigge and Wagner, 1997). MCH has also been observed to affect behavioral correlates of cognitive functions. MCH treatment hastened extinction of the passive avoidance response in rats (McBride et al., 1994), raising the possibility that MCH receptor antagonists may be beneficial for memory storage and/or retention. A possible role for MCH in the modulation or perception of pain is supported by the dense innervation of the periaqueductal grey (PAG) by MCH-positive fibers. Finally, MCH may participate in the regulation of fluid intake. ICV infusion of MCH in conscious sheep produced diuretic, natriuretic, and kaliuretic changes in response to increased plasma volume (Parkes, 1996). Together with anatomical data reporting the presence of MCH in fluid regulatory areas of the brain, the results indicate that MCH may be an important peptide involved in the central control of fluid homeostasis in mammals.
The identification of a G-protein coupled receptor for MCH has recently been published (Chambers et al., 1999; Saito et al., 1999). These groups identified MCH as the endogenous ligand for the human orphan G-protein coupled receptor SLC-1 (Lakaye et al., 1998). The rat homologue of this receptor (now called MCH-1) was reported to be localized in regions of the rat brain associated with feeding behavior (e.g. dorsomedial and ventromedial hypothalamus). The link between MCH-1 and the effects of MCH on feeding has been strengthened by recent reports on the phenotype of MCH-1 knockout mice. Two groups have shown independently (Marsh et al, 2002; Chen et al, 2002) that the targeted disruption of the MCH-1-receptor gene (MCH-1 knockout) in mice results in animals that are hyperphagic but are lean and have decreased body mass relative to wild-type littermates. The decrease in body mass is attributed to an increase in metabolism. Each group demonstrated that the MCH-1 knockout mice are resistant to diet-induced obesity, and generally exhibit weights similar to littermates maintained on regular chow.
Finally, synthetic antagonist molecules for the MCH-1 receptor have now been described in the literature. Bednarek et al. (2002) have reported on the synthesis of high affinity peptide antagonists of MCH-1. In addition, a small molecule antagonist of MCH-1 has been described by Takekawa et al. (Takekawa et al., 2002). This compound, T-226296, exhibits high affinity for the MCH-1 receptor (˜5-9 nM for rat and human MCH-1), and was shown to inhibit food intake induced by the intracerebroventricular application of MCH. These data validate the strategy of using an MCH-1 receptor antagonist to treat obesity.
Furthermore, in our own studies, we have tested MCH1 antagonists in several animal models that are well known as predictive for the efficacy of compounds in humans (Borowsky, et al., in press; unpublished data). These experiments indicate that MCH1 antagonists are useful to treat obesity, depression, anxiety, as well as urinary disorders.
As used in this invention, the term “antagonist” refers to a compound which binds to, and decreases the activity of, a receptor in the presence of an agonist. In the case of a G-protein coupled receptor, activation may be measured using any appropriate second messenger system which is coupled to the receptor in a cell or tissue in which the receptor is expressed. Some specific, but by no means limiting, examples of well-known second messenger systems are adenylate cyclase, intracellular calcium mobilization, ion channel activation, guanylate cyclase and inositol phospholipid hydrolysis. Conversely, the term “agonist” refers to a compound which binds to, and increases activity of, a receptor as compared with the activity of the receptor in the absence of any agonist.
In one embodiment of this invention, the synthesis of novel compounds which bind selectively to the cloned human melanin-concentrating hormone-1 (MCH1) receptor, compared to other cloned G-protein coupled receptors, and inhibit the activation of the cloned receptors as measured in in vitro assays is disclosed. The in vitro receptor binding assays described hereinafter were performed using various cultured cell lines, each transfected with and expressing only a single cloned receptor.
Furthermore, the compounds of the present invention may also be used to treat abnormal conditions such as feeding disorders (obesity, bulimia and bulimia nervosa), sexual/reproductive disorders, depression, anxiety, depression and anxiety, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure, sleep disturbances, or any condition in which antagonism of an MCH1 receptor may be beneficial. In addition, the compounds of the present invention may be used to reduce the body mass of a subject. Furthermore, the compounds of the present invention may be used to treat urinary disorders.
SUMMARY OF THE INVENTION This invention provides a compound having the structure:
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —CH3, —CF3, —COR2, —CO2R2, phenyl, phenoxy or straight chained or branched C1-C7 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, —COR3, —CO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is O or NH; and
wherein n is an integer from 0 to 5 inclusive.
In one embodiment, R1 is aryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —COR2, —CO2R2, straight chained or branched C1-C7 alkyl;
wherein R3 is phenyl;
wherein A is H; and
wherein X is O.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, compound has the structure:
In one embodiment, R1 is hydrogen, straight chained or branched C1-C7 alkyl; and wherein R3 is aryl.
In one embodiment, R2 is isopropyl; and A is hydrogen.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
The present invention also provides a compound having the structure:
wherein R1 is aryl or heteroaryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —OCH3, phenoxy, fused cyclopentanyl, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
wherein n is an integer from 1 to 5 inclusive.
In one embodiment, R1 is aryl optionally substituted with one or more —F, —Cl, —Br, —I or straight chained or branched C1-C4 alkyl; and
wherein A is H.
In one embodiment, R2 is isopropyl; and
wherein n is 2.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, R1 is thienyl; and wherein A is H.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
The invention provides a compound having the structure:
wherein W is
wherein each R1 is independently hydrogen, methyl or ethyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is hydrogen, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —H, —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl.
wherein each A is independently —H, —F, —Cl, —Br, —CN, —NO2, —COR3, —CO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is O, NR3, CO or may be absent; and
wherein Y is hydrogen, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl.
In one embodiment, W is
and wherein X is O or may be absent.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, W is
In one embodiment, A is —H, —F, —Cl, —Br.
In one embodiment, R2 is isopropyl; and A is hydrogen.
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein W is
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —OCH3, —CO2CH3, —CF3, phenyl, straight chained or branched C1-C7 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, —COR1, —CO2R1, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl or phenyl.
wherein each B is independently —H, —F, —Cl, —Br, —I, —CN, —NO2, —COR1, —CO2R1, —OCH3, —OCF3, —CF3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl or aryl, phenoxy or benzyloxy, wherein the aryl, phenoxy or benzyloxy is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —COR1, —CO2R1, —OCH3, —OCF3, —CF3 or straight chained or branched C1-C3 alkyl.
In one embodiment, W is
In one embodiment, R1 is hydrogen or phenyl optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3, straight chained or branched C1-C3 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —CF3, —OCH3, or straight chained or branched C1-C3 alkyl, monofluoroalkyl or polyfluoroalkyl, or a phenyl ring fused to C6 and C7 of the indole moiety;
wherein R4 is hydrogen or aryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —CF3, straight chained or branched C1-C3 alkyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
wherein n is an integer from 2 to 4 inclusive.
In one embodiment, R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —OCF3 or —OCH3; and
wherein R4 is hydrogen or phenyl optionally substituted with one or more —F, —Cl or —CF3.
In one embodiment, R1 is hydrogen or phenyl optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3 or straight chained or branched C1-C3 alkyl; In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein each R1 is independently hydrogen or CH3;
wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
wherein R3 is benzyl or phenyl, wherein the benzyl or phenyl is optionally substituted with a methylenenedioxy group or one or more —F or —Cl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is (CH2)2, COCH2 or CONH;
In one embodiment, R3 is phenyl optionally substituted with one or more —F; and
wherein A is hydrogen.
In one embodiment, X is CONH.
In one embodiment, R2 is methyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
wherein each Y is independently hydrogen or —F.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, R3 is benzyl optionally substituted with a methylenedioxy group or one or more —F or —Cl.
In one embodiment, the compound has the structure:
wherein each Y is independently hydrogen or —F.
In one embodiment, the compound has the structure:
In one embodiment, the compound is enantiomerically pure.
In one embodiment, the compound is diastereomerically pure.
In one embodiment, the compound is enantiomerically and diastereomerically pure.
This invention also provides a pharmaceutical composition comprising a therapeutically amount of a compound of the invention and a pharmaceutically acceptable carrier.
In one embodiment, the amount of the compound is from about 0.01 mg to about 500 mg.
In one embodiment, the amount of the compound is from about 0.1 mg to about 60 mg.
In one embodiment, the amount of the compound is from about 1 mg to about 20 mg.
In one embodiment, the pharmaceutical composition consists of a carrier which is a liquid and the composition is a solution.
In one embodiment, the pharmaceutical composition consists of a carrier which is a solid and the composition is a tablet.
In one embodiment, the pharmaceutical composition consists of a carrier which is a gel and the composition is a suppository.
The invention also provides a process for making a pharmaceutical composition comprising admixing a therapeutically effective amount of the compound of any of the invention and a pharmaceutically acceptable carrier.
This invention also provides the method of treating a subject suffering from a disorder selected from the group consisting of depression, anxiety, urge incontinence, or obesity comprising administering to the subject a therapeutically effective amount of the compound of the invention.
In one embodiment, the therapeutically effective amount is between about 0.03 and about 1000 mg per day.
In one embodiment, the therapeutically effective amount is between about 0.30 and about 300 mg per day.
In one embodiment, the therapeutically effective amount is between about 1.0 and about 100 mg per day.
In one embodiment, the disorder is depression.
In one embodiment, the disorder is anxiety.
In one embodiment, the disorder is obesity.
In one embodiment, the disorder is urge incontinence.
The invention provides the method of reducing the body mass of a subject, which comprises administering to the subject an amount of a compound of the invention effective to reduce the body mass of the subject.
The invention provides the method of treating a subject suffering from depression, which comprises administering to the subject an amount of a compound of any of claims of the invention effective to treat the subject's depression.
The invention provides the method of treating a subject suffering from anxiety, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's anxiety.
The invention provides the method of alleviating urge urinary incontinence in a subject suffering from an overactive bladder, which comprises administering to the subject an amount of the compound of the invention effective to alleviate the subject's urge urinary incontinence.
The invention provides the method of managing obesity in a subject in need of weight loss, which comprises administering to the subject an amount of a compound of the invention effective to induce weight loss in the subject.
The invention provides the method of managing obesity in a subject who has experienced weight loss, which comprises administering to the subject an amount of a compound of the invention effective to maintain such weight loss in the subject.
The invention provides the method of treating overactive bladder in a subject, which comprises administering to the subject an amount of a compound of any of the invention effective to treat the subject's overactive bladder.
The invention provides the method of treating a disorder in a subject, wherein the symptoms of the subject can be alleviated by treatment with an MCH1 antagonist, wherein the MCH1 antagonist is the compound of the invention.
The invention provides the method of alleviating the symptoms of a disor4der in a subject, which comprises administering to the subject an amount of an MCH1 antagonist effective to alleviate the symptoms, wherein the MCH1 antagonist is the compound of the invention.
DETAILED DESCRIPTION OF THE INVENTION This invention provides a compound having the structure:
wherein each V is independently phthalimide, aryl, phenoxy or heteroaryl, wherein the aryl, phenoxy or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR5; CO2R5; —OCOR5; —CON(R5)2; —N(R5)COR5; CN; —NO2; —N(R5)2; —OR5; —SR5; (CH2)qOR5; (CH2)qR5; (CH2)qSR5; straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; aryl; phenoxy; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein each W is independently aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR3; —OCOR3; CO2R3; —CON(R3)2; —N(R3) COR3; CN; —NO2; —N(R3)2; —OR3; —SR3; (CH2)qOR3; (CH2)qSR3; straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; aryl; phenoxy; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein X is hydrogen or —OR3, provided that when X is —OR3 the V geminal to X cannot be phthalimide;
wherein Y is hydrogen, ═O (carbonyl oxygen), OR3, OV, COV, ═NNHV, ═NNR5, NZR5, NZV, NCONV (ureas), NCONR5, NR3, carbazole, indole or phthalimide;
wherein each R is independently —H; —F; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; —N(R3)2; —NO2; —CN; —CO2R3; —OCOR3; —OR3; or —N(R3)COR3; —CON(R3)2;
wherein each R3 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein each R5 is —H; —NO2; —N3; —CN; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; —N(R3)2; —OR3; —(CH2)pOR3; —COR3; —CO2R3; —OCOR3; —CON(R3)2; —N(R3)COR3; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR6; CO2R3; —OCOR3; —CON(R3)2; —N(R3) COR3; CN; —NO2; —N(R3)2; —OR6; —SR6; (CH2)qOR6; (CH2)qSR6; straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein R6 is —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; —N(R3)2; —OR3; —(CH2)pOR3; —COR3; —CO2R3; —OCOR3; —CON(R3)2; —N(R3)COR3; aryl, benzyl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR3; CO2R3; —OCOR3; —CON(R3)2) —N(R3)COR3, CN; —NO2; —N(R3)2; —OR3; —SR3; (CH2)qOR3; (CH2)qSR3; straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; aryl; benzyl; straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein Z is CO, SO2 or SO2NR6;
wherein each m is independently an integer from 0 to 3 inclusive;
wherein each n is independently an integer from 0 to 5 inclusive;
wherein each p is independently an integer from 1 to 7 inclusive; and
wherein q is an integer from 1 to 3 inclusive;
or a pharmaceutically acceptable salt thereof.
As used in the present invention, the term “cycloalkyl” includes C3-C7 cycloalky moities which may be substituted with one or more of the following: F; CN; —NO2; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl; C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R3)2; —OR3) —NCOR3; —COR3; —CO2R3; —CON(R3)2 or (CH2)p—O—(CH3)n—CH3
In the present invention, the term “cycloalkenyl” includes C5-C7 cycloalkenyl moities which may be substituted with one or more of the following: —F; —Cl; —Br, —I; CN; —NO2; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl; C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R3)2; —OR3; —NCOR3; —COR3; —CO2R3; —CON(R3)2 or (CH2)p—O— (CH3)m—CH3.
As used in the present invention, the term “heteroaryl” is used to include five and six membered unsaturated rings that may contain one or more oxygen, sulfur, or nitrogen atoms. Examples of heteroaryl groups include, but are not limited to, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazzolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl.
In addition, the term “heteroaryl” is used to include fused bicyclic ring systems that may contain one or more heteroatoms such as oxygen, sulfur and nitrogen. Examples of such heteroaryl groups include, but are not limited to, indolizinyl, indolyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzimidazolyl, purinyl, benzoxazolyl, benzisoxazolyl, benzo[b]thiazolyl, imidazo[2,1-b]thiazolyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, phthalimidyl and 2,1,3-benzothiazolyl.
The term “heteroaryl” also includes those chemical moieties recited above which may be substituted with one or more of the following: —F; —Cl; —Br, —I; CN; —NO2; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl; C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R3)2; —OR3; —NCOR3; —COR3; —CO2R3; —CON(R3)2 or (CH2)p—O— (CH3)mCH3.
In still another embodiment of the above described invention, the compound has the structure:
In a further embodiment of the instant invention, R6 is straight chained or branched C1-C7 alkyl; C3-C7 cycloalkyl; —N(R3)2; —OR3; —(CH2)pOR3; aryl, benzyl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; —OR3; —(CH2)qOR3; or straight chained or branched C1-C7 alkyl.
In an embodiment of the present invention, the compound has the structure:
In a further embodiment of the present invention, at least one V is phenyl optionally substituted with one or more F; Cl; Br; —OR3; (CH2)qOR3; straight chained or branched C1-C7 alkyl; C1-C7 polyfluoroalkyl; or phenoxy.
In one embodiment of the present invention, the compound is:
In one embodiment, the compound is:
In one embodiment, the compound is:
In another embodiment of the present invention, the compound has the structure:
In a further embodiment of the present invention, at least one V is phenyl optionally substituted with one or more F; Cl; Br; —OR3; (CH2)qOR3; straight chained or branched C1-C7 alkyl; C1-C7 polyfluoroalkyl; or phenoxy.
In another embodiment of the present invention, the compound is
In one embodiment, the compound is
In a further embodiment of the present invention, the compound has the structure:
In another embodiment of the present invention, at least one V is phenyl optionally substituted with one or more F; Cl; Br; —OR3; —COR3; (CH2)qOR3; straight chained or branched C1-C7 alkyl; C1-C7 polyfluoroalkyl; aryl or phenoxy.
In yet another embodiment of the present invention, the compound is
In one embodiment, the compound is
In one embodiment, the compound is
In one embodiment, the compound is
In one embodiment, the compound is
In one embodiment, the compound is
In an embodiment of the present invention, the compound has the structure:
In a further embodiment of the present invention, at least one V is phenyl optionally substituted with one or more F; Cl; Br; —OR3; (CH2)qOR3; straight chained or branched C1-C7 alkyl; C1-C7 polyfluoroalkyl; or phenoxy.
In yet another embodiment of the present invention, the compound is
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In an additional embodiment of the present invention, Y is hydrogen and V is phthalimide.
In an additional embodiment of the present invention, R6 is straight chained or branched C1-C7 alkyl; C3-C7 cycloalkyl; —N(R3)2; —OR3; —(CH2)pOR3; aryl, benzyl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; —OR3; —(CH2)qOR3; or straight chained or branched C1-C7 alkyl.
In a further embodiment of the present invention, the compound is
In one embodiment, the compound has the structure:
In one embodiment of the compound, at least one V is phenyl or heteroaryl optionally substituted with one or more F; Cl; Br; I; R5; —OR5; (CH2)qOR5; —(CH2)qR5; straight chained or branched C1-C7 alkyl; C1-C7 monoflouroalkyl or polyflouroalkyl; or phenoxy.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment of the compound, V is phenyl which is optionally substituted with one or more F; Cl; Br; —OR5; —(CH2)qOR5; —(CH2)qR5; straight chained or branched C1-C7 alkyl; C1-C7 monoflouroalkyl or polyflouroalkyl; or phenoxy.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment of the compound, R5 is straight chained or branched C1-C7 alkyl; C3-C7 cycloalkyl; —N(R6)2; —OR6; —(CH2)qOR6; —CH(R6)2; —(CH2)qR6; or aryl, benzyl or heteroaryl, wherein the aryl, benzyl or heteroaryl is optionally substituted with one or more F; Cl; I; R6; —N(R6)2; —OR6; —(CH2)qOR6; —(CH2)qR6—; or straight chained or branched C1-C7 alkyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment of the compound, X is hydrogen and Y is carbazole optionally substituted with one or more F; Cl; Br; R5; —OR5; —(CH2)qOR5; —(CH2)qR5; straight chained or branched C1-C7 alkyl; or C1-C7 monoflouroalkyl or polyflouroalkyl; or phenoxy.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment of the compound, Y is hydrogen and V is an indole, which can be optionally substituted with one or more F; Cl; Br; R5; —CO2R5; —OR5; —(CH2)qOR5; —(CH2)qR5; straight chained or branched C1-C7 alkyl; C1-C7 monoflouroalkyl or polyflouroalkyl; or phenoxy on the 1, 2, 3, 4, 5, 6 or 7 positions.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
The present invention provides a compond having the srucuture:
wherein each X is independently O or S;
wherein q is 1 or 2;
wherein each R2 is independently H; —(CH2)tXR3; —(CH2)tC(X)N(R3)2; —(CH2)tCO2R3; —CO2R3; straight chained or branched C1-C7 alkyl optionally substituted with —N(R3)2; —CON(R3)2 or —N(R3)C(O)R; straight chained or branched C2-C7 alkenyl, or alkynyl; or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
wherein each t is independently an integer from 1 to 4 inclusive;
wherein each R3 is independently H; straight chained or branched C1-C7 alkyl, straight chained or branched C2-C7 alkenyl, or alkynyl; or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
wherein R4 is aryl, heteroaryl, C1-C7 alkyl substituted with one or two aryl, or C1-C7 alkyl substituted with one or two heteroaryl; wherein the aryl or heteroaryl may be substituted with one or more of F, Cl, Br, I, —CN, —NO2, —N(R3)2, —COR3, —(CH2)nXR3, —(CH2)nC(X)NR3, —(CH2)nN(R3)C(X) R3, —(CH2)nCO2R3, —(CH2)nOCOR3, straight chained or branched C1-C7 alkyl, monofluoroalkyl OR polyfluoroalkyl or straight chained or branched C2-C7 aminoalkyl, alkenyl or alkynyl, or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
wherein each n independently is an integer from 0 to 7 inclusive;
wherein R5 is H; aryl, C1-C7 alkyl substituted with aryl, heteroaryl, or C1-C7 alkyl substituted with heteroaryl;
wherein the aryl or heteroaryl may be substituted with one or more of F, Cl, Br, I, —CN, —NO2, —N(R3)2, —COR3, —(CH2)nXR3, —(CH2)nC(X)NR3, —(CH2)nCO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl or carboxamidoalkyl, or straight chained or branched C2-C7 aminoalkyl, alkenyl or alkynyl, or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
where R5 and one R2 on adjacent carbon atoms together may form aryl, heteroaryl, indane or tetrahydronaphthyl, C3-C7 cycloalkyl, or heterocycloalkyl wherein one or two heteroatoms may be O, N or S;
wherein R1 is
wherein each V is independently aryl, phenoxy or heteroaryl, wherein the aryl, phenoxy or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR5; CO2R5; —OCOR5; —CON(R5)2; —N(R5)COR5; CN; —NO2; —N(R5)2; —OR5; —SR5; (CH2)qOR5; (CH2)qSR5; straight chained or branched C1-C7 alkyl optionally substituted with —CON(R5)2, —N(R5)C(O)R3 or N(R3)2, straight chained or branched monofluoroalkyl or polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; phenoxy; or C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein each R6 is independently H; (CH2)tXR3; (CH2)tC(X) NR3; (CH2)tN(R3)C(X) R3; (CH2)tCO2R3; (CH2)tOCOR3; straight chained or branched C1-C7 alkyl optionally substituted with —CON(R3)2 or —NC(O)R3; straight chained or branched C2-C7 alkyl substituted with —N(R3)2; straight chained or branched C2-C7 alkenyl or alkynyl; or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
where each R7 is independently H; F; Cl; Br; I; —COR3; —CO2R3; —(CH2)nXR3; —(CH2)nN(R3)C(O)R3; (CH2)nC(X)N(R3)2; —(CH2)nCO2R3; —CN; —NO2; —N(R3)2; straight chained or branched C1-C7 alkyl, hydroxyalkyl, aminoalkyl, carboxamidoalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or C5-C7 cycloalkenyl, wherein the alkyl, aminoalkyl, carboxamidoalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl may be substituted with one or more aryl or heteroaryl, wherein the aryl or heteroaryl may be substituted with one or more of F, Cl, Br, I, —(CH2)nXR3, —COR3, —(CH2)nC(X)N(R3)2, —(CH2) CO2R3, —CN, —NO2, —(CH2)nN(R3)C(O)R3; —N(R3)2, —SO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl, straight chained or branched C2-C7 alkenyl or alkynyl, or C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or C5-C7 cycloalkenyl; aryl or heteroaryl, wherein the aryl or heteroaryl may be substituted with one or more of F, Cl, Br, I, —(CH2)nXR3, —COR3, —(CH2)nC(X)N(R3)2—(CH2)nCO2R3, —(CH2)nN(R3)C(O)R3; —CN, —NO2, —N(R3)2, —SO2R3, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl or polyfluoroalkyl, straight chained or branched C2-C7 alkenyl or alkynyl, or C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or C5-C7 cycloalkenyl;
wherein B is CO, SO2 or SO2NR6;
wherein R8 is —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; —N(R3)2; —NR3C(O)R3; —OR3; —(CH2)pOR3; —COR3; —CO2R3; —OCOR3; —CON(R3)2; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR3; CO2R3; —OCOR3; —NR3C(O)R3; —CON(R3)2; CN; —NO2; —N(R3)2; —OR3; —SR3; (CH2)qOR3; (CH2)qSR3; straight chained or branched C1-C7 alkyl optionally substituted with —CON(R3)2, —NR3C(O)R3 or —N(R3)2; straight chained or branched monofluoroalkyl, polyfluoroalkyl; straight chained or branched C2-C7 alkenyl, C2-C7 alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;
wherein each m independently is an integer from 0 to 3 inclusive;
wherein Z is
or C2-C7 alkenyl, wherein the C2-C7 alkenyl may be unsubstituted or substituted with one or more R9 groups;
wherein each R9 is independently H; F; Cl; Br; I; —(CH2)mXR3; (CH2)mC(X)NR3; (CH2)mCO2R3; straight chained or branched C1-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C2-C7 alkenyl, or alkynyl; or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
wherein R10 is H; (CH2)tXR3; (CH2)tC(X)NR3; (CH2)tCO2R3; straight chained or branched C1-C7 alkyl, carboxamidoalkyl; straight chained or branched C2-C7 aminoalkyl, alkenyl, or alkynyl; or C3-C7 cycloalkyl or C5-C7 cycloalkenyl;
wherein Y is S, O, or NR10;
wherein each p is independently an integer from 1 to 7 inclusive;
or a pharmaceutically acceptable salt thereof.
In a further embodiment of the present invention, the compound has the following structure:
In an additional embodiment of the present invention, the compound has the structure:
In an additional embodiment of the present invention, the compound has the structure:
In one embodiment of the present invention, Z is:
In one embodiment of the present invention, Z is:
In an additional embodiment of the present invention, the compound has the structure:
In one embodiment of the present invention, the compound has the strucuture:
This invention provides a compound having the structure:
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —CH3, —CF3, —COCH3, —CO2R2, phenyl, phenoxy or straight chained or branched C1-C7 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, —COR3, —CO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is O or NH;
wherein n is an integer from 0 to 5 inclusive;
In one embodiment, R1 is aryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —COCH3, —CO2R2, straight chained or branched C1-C7 alkyl;
wherein R3 is phenyl;
wherein A is H; and
wherein X is O.
In one embodiment, R2 is isopropyl.
In a preferred embodiment, X is NH, R1 is alkyl and n is 1 or 2.
In the most preferred embodiment, X is O, R1 is 3-acetyl phenyl, R2 is isopropyl, R3 is phenyl and n is 1.
In one embodiment, the compound has the structure:
In one embodiment, compound has the structure:
In one embodiment, R1 is hydrogen, straight chained or branched C1-C7 alkyl; and wherein R3 is aryl.
In one embodiment, R2 is isopropyl; and A is hydrogen.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
The present invention also provides a compound having the structure:
wherein R1 is aryl or heteroaryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —OCH3, phenoxy, fused cyclopentanyl, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
wherein n is an integer from 1 to 5 inclusive.
In one embodiment, R1 is aryl optionally substituted with one or more —F, —Cl, —Br, —I or straight chained or branched C1-C4 alkyl; and
wherein A is H.
In one embodiment, R2 is isopropyl; and
wherein n is 2.
In a preferred embodiment, n is 2 and R2 is isopropyl.
In one embodiment, the compound has the structure
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, R1 is thienyl; and wherein A is H.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
The invention provides a compound having the structure:
wherein W is
wherein each R1 is independently hydrogen, methyl or ethyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is hydrogen, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —H, —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl.
wherein each A is independently —H, —F, —Cl, —Br, —CN, —NO2, —COR3, —CO2R3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is O, NR3, CO or may be absent; and
wherein Y is hydrogen, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, straight chained or branched C1-C7 alkyl.
In one embodiment, W is
and wherein X is O or may be absent.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, W is
In one embodiment, A is —H, —F, —Cl, —Br.
In one embodiment, R2 is isopropyl; and A is hydrogen.
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein W is
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —OCH3, —CO2CH3, —CF3, phenyl, straight chained or branched C1-C7 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, —COR1, —CO2R1, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl or phenyl.
wherein each B is independently —H, —F, —Cl, —Br, —I, —CN, —NO2, —COR1, —CO2R1, —OCH3, —OCF3, —CF3, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl or aryl, phenoxy or benzyloxy, wherein the aryl, phenoxy or benzyloxy is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —COR1, —CO2R1, —OCH3, —OCF3, —CF3 or straight chained or branched C1-C3 alkyl.
In one embodiment, W is
In one embodiment, R1 is hydrogen or phenyl optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl.
In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3, straight chained or branched C1-C3 alkyl;
wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
wherein R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —CF3, —OCH3, or straight chained or branched C1-C3 alkyl, monofluoroalkyl or polyfluoroalkyl, or a phenyl ring fused to C6 and C7 of the indole moiety;
wherein R4 is hydrogen or aryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —CF3, straight chained or branched C1-C3 alkyl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
wherein n is an integer from 2 to 4 inclusive.
In one embodiment, R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —OCF3 or —OCH3; and
wherein R4 is hydrogen or phenyl optionally substituted with one or more —F, —Cl or —CF3.
In one embodiment, R1 is hydrogen or phenyl optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3 or straight chained or branched C1-C3 alkyl; In one embodiment, R2 is isopropyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
This invention provides a compound having the structure:
wherein each R1 is independently hydrogen or CH3;
wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
wherein R3 is benzyl or phenyl, wherein the benzyl or phenyl is optionally substituted with a methylenenedioxy group or one or more —F or —Cl;
wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
wherein X is (CH2)2, COCH2 or CONH;
In one embodiment, R3 is phenyl optionally substituted with one or more —F; and
wherein A is hydrogen.
In one embodiment, X is CONH.
In one embodiment, R2 is methyl.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
wherein each Y is independently hydrogen or —F.
In one embodiment, the compound has the structure:
In one embodiment, the compound has the structure:
In one embodiment, R3 is benzyl optionally substituted with a methylenedioxy group or one or more —F or —Cl.
In one embodiment, the compound has the structure:
wherein each Y is independently hydrogen or —F.
In one embodiment, the compound has the structure:
In one embodiment, the compound is enantiomerically pure.
In one embodiment, the compound is diastereomerically pure.
In one embodiment, the compound is enantiomerically and diastereomerically pure.
This invention also provides a pharmaceutical composition comprising a therapeutically amount of a compound of the invention and a pharmaceutically acceptable carrier.
In one embodiment, the amount of the compound is from about 0.01 mg to about 500 mg.
In one embodiment, the amount of the compound is from about 0.1 mg to about 60 mg.
In one embodiment, the amount of the compound is from about 1 mg to about 20 mg.
In one embodiment, the pharmaceutical composition consists of a carrier which is a liquid and the composition is a solution.
In one embodiment, the pharmaceutical composition consists of a carrier which is a solid and the composition is a tablet.
In one embodiment, the pharmaceutical composition consists of a carrier which is a gel and the composition is a suppository.
The invention also provides a process for making a pharmaceutical composition comprising admixing a therapeutically effective amount of the compound of any of the invention and a pharmaceutically acceptable carrier.
This invention also provides the method of treating a subject suffering from a disorder selected from the group consisting of depression, anxiety, urge incontinence, or obesity comprising administering to the subject a therapeutically effective amount of the compound of the invention.
In one embodiment, the therapeutically effective amount is between about 0.03 and about 1000 mg per day.
In one embodiment, the therapeutically effective amount is between about 0.30 and about 300 mg per day.
In one embodiment, the therapeutically effective amount is between about 1.0 and about 100 mg per day.
In one embodiment, the disorder is depression.
In one embodiment, the disorder is anxiety.
In one embodiment, the disorder is obesity.
In one embodiment, the disorder is urge incontinence.
The invention provides the method of reducing the body mass of a subject, which comprises administering to the subject an amount of a compound of the invention effective to reduce the body mass of the subject.
The invention provides the method of treating a subject suffering from depression, which comprises administering to the subject an amount of a compound of any of claims of the invention effective to treat the subject's depression.
The invention provides the method of treating a subject suffering from anxiety, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's anxiety.
The invention provides the method of alleviating urge urinary incontinence in a subject suffering from an overactive bladder, which comprises administering to the subject an amount of the compound of the invention effective to alleviate the subject's urge urinary incontinence.
The invention provides the method of managing obesity in a subject in need of weight loss, which comprises administering to the subject an amount of a compound of the invention effective to induce weight loss in the subject.
The invention provides the method of managing obesity in a subject who has experienced weight loss, which comprises administering to the subject an amount of a compound of the invention effective to maintain such weight loss in the subject.
The invention provides the method of treating overactive bladder in a subject, which comprises administering to the subject an amount of a compound of any of the invention effective to treat the subject's overactive bladder.
The invention provides the method of treating a disorder in a subject, wherein the symptoms of the subject can be alleviated by treatment with an MCH1 antagonist, wherein the MCH1 antagonist is the compound of the invention.
The invention provides the method of alleviating the symptoms of a disor4der in a subject, which comprises administering to the subject an amount of an MCH1 antagonist effective to alleviate the symptoms, wherein the MCH1 antagonist is the compound of the invention
As used in the present invention, the term “heteroaryl” is used to include five and six membered unsaturated rings that may contain one or more oxygen, sulfur, or nitrogen atoms. Examples of heteroaryl groups include, but are not limited to, carbazole, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl.
In addition, the term “heteroaryl” is used to include fused bicyclic ring systems that may contain one or more heteroatoms such as oxygen, sulfur and nitrogen. Examples of such heteroaryl groups include, but are not limited to, indolizinyl, indolyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzimidazolyl, purinyl, benzoxazolyl, benzisoxazolyl, benzo[b]thiazolyl, imidazo[2,1-b]thiazolyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, phthalimidyl and 2,1,3-benzothiazolyl.
The term “heteroaryl” also includes those chemical moieties recited above which may be substituted with one or more of the following: —F, —Cl, —Br, —I, CN, —NO2, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl; C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl,
The term “heteroaryl” further includes the N-oxides of those chemical moieties recited above which include at least one nitrogen atom.
In the present invention, the term “aryl” is phenyl or naphthyl.
The invention provides for each pure stereoisomer of any of the compounds described herein. Such stereoisomers may include enantiomers, diastereomers, or E or Z alkene or imine isomers. The invention also provides for stereoisomeric mixtures, including racemic mixtures, diastereomeric mixtures, or E/Z isomeric mixtures. Stereoisomers can be synthesized in pure form (Nógrádi, M.; Stereoselective Synthesis, (1987) VCH Editor Ebel, H. and Asymmetric Synthesis, Volumes 3 B 5, (1983) Academic Press, Editor Morrison, J.) or they can be resolved by a variety of methods such as crystallization and chromatographic techniques (Jaques, J.; Collet, A.; Wilen, S.; Enantiomer, Racemates, and Resolutions, 1981, John Wiley and Sons and Asymmetric Synthesis, Vol. 2, 1983, Academic Press, Editor Morrison, J).
In addition the compounds of the present invention may be present as enantiomers, diasteriomers, isomers or two or more of the compounds may be present to form a racemic or diastereomeric mixture.
The compounds of the present invention are preferably 80% pure, more preferably 90% pure, and most preferably 95% pure. Included in this invention are pharmaceutically acceptable salts and complexes of all of the compounds described herein. The acids and bases from which these salts are prepared include but are not limited to the acids and bases listed herein. The acids include, but are not limited to, the following inorganic acids: hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and boric acid. The acids include, but are not limited to, the following organic acids: acetic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, maleic acid, citric acid, methanesulfonic acid, benzoic acid, glycolic acid, lactic acid and mandelic acid. The bases include, but are not limited to ammonia, methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, ethylenediamine, hydroxyethylamine, morpholine, piperazine and guanidine. This invention further provides for the hydrates and polymorphs of all of the compounds described herein.
The present invention includes within its scope prodrugs of the compounds of the invention. In general, such prodrugs will be functional derivatives of the compounds of the invention which are readily convertible in vivo into the required compound. Thus, in the present invention, the term “administering” shall encompass the treatment of the various conditions described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in Design of Prodrugs, ed. H. Bundgaard, Elsevier, 1985.
The present invention further includes metabolites of the compounds of the present invention. Metabolites include active species produced upon introduction of compounds of this invention into the biological milieu.
This invention further provides a pharmaceutical composition comprising a therapeutically effective amount of the compound of the invention and a pharmaceutically acceptable carrier. In one embodiment, the amount of the compound is from about 0.01 mg to about 800 mg. In another embodiment, the amount of the compound is from about 0.01 mg to about 500 mg. In yet another embodiment, the amount of the compound is from about 0.1 mg to about 250 mg. In another embodiment, the amount of the compound is from about 0.1 mg to about 60 mg. In yet another embodiment, the amount of the compound is from about 1 mg to about 20 mg. In a further embodiment, the carrier is a liquid and the composition is a solution. In another embodiment, the carrier is a solid and the composition is a tablet. In another embodiment, the carrier is a gel and the composition is a capsule, suppository or a cream. In a further embodiment the compound may be formulated as a part of a pharmaceutically acceptable transdermal patch. In yet a further embodiment, the compound may be delivered to the subject by means of a spray or inhalant.
This invention also provides a pharmaceutical composition made by combining a therapeutically effective amount of the compound of this invention and a pharmaceutically acceptable carrier.
This invention provides a process for making a pharmaceutical composition comprising combining a therapeutically effective amount of the compound of this invention and a pharmaceutically acceptable carrier.
A solid carrier can include one or more substances which may also act as endogenous carriers (e.g. nutrient or micronutrient carriers), flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, coloring agents, viscosity regulators, stabilizers or osmoregulators. Suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate or isopropyl myristate. Sterile liquid carriers are useful in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be a halogenated hydrocarbon or other pharmaceutically acceptable propellent.
Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by for example, intramuscular, intrathecal, epidural, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. The compounds may be prepared as a sterile solid composition which may be dissolved or suspended at the time of administration using sterile water, saline, or other appropriate sterile injectable medium. Carriers are intended to include necessary and inert binders, suspending agents, lubricants, flavorants, sweeteners, preservatives, dyes, and coatings. The compound can be administered orally in the form of a sterile solution or suspension containing other solutes or suspending agents (for example, enough saline or glucose to make the solution isotonic), bile salts, acacia, gelatin, sorbitan monoleate, polysorbate 80 (oleate esters of sorbitol and its anhydrides copolymerized with ethylene oxide) and the like.
The compound can also be administered orally either in liquid or solid composition form. Compositions suitable for oral administration include solid forms, such as pills, capsules, granules, tablets, and powders, and liquid forms, such as solutions, syrups, elixirs, and suspensions. Forms useful for parenteral administration include sterile solutions, emulsions, and suspenions.
Optimal dosages to be administered may be determined by those skilled in the art, and will vary with the particular compound in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular subject being treated will result in a need to adjust dosages, including subject age, weight, gender, diet, and time of administration.
In the subject application a “therapeutically effective amount” is any amount of a compound which, when administered to a subject suffering from a disease against which the compounds are effective, causes reduction, remission, or regression of the disease. In a subject application, a “subject” is a vertebrate, a mammal or a human.
This invention provides a method of treating a subject suffering from an abnormality wherein the abnormality is alleviated by decreasing the activity of an MCH1 receptor which comprises administering to the subject an amount of a compound of the invention which is an MCH1 receptor antagonist effective to treat the subject=s abnormality.
In separate embodiments, the abnormality is a regulation of a steroid or pituitary hormone disorder, an epinephrine release disorder, a gastrointestinal disorder, a cardiovascular disorder, an electrolyte balance disorder, hypertension, diabetes, a respiratory disorder, asthma, a reproductive function disorder, an immune disorder, an endocrine disorder, a musculoskeletal disorder, a neuroendocrine disorder, a cognitive disorder, a memory disorder such as Alzheimer=s disease, a sensory modulation and transmission disorder, a motor coordination disorder, a sensory integration disorder, a motor integration disorder, a dopaminergic function disorder such as Parkinson=s disease, a sensory transmission disorder, an olfaction disorder, a sympathetic innervation disorder, an affective disorder such as depression and anxiety, a stress-related disorder, a fluid-balance disorder, a seizure disorder, pain, psychotic behavior such as schizophrenia, morphine tolerance, opiate addiction, migraine or a urinary disorder such as urinary incontinence.
The following description of depressive and anxiety disorders is for the purpose of illustrating the utility of the compounds of this invention. The definitions of depressive and anxiety disorders given below are those listed in Diagnostic and Statistical Manual of Mental Disorders. 4th ed. (DSM-IV; American Psychiatric Association, 1994a) or Diagnostic and Statistical Manual of Mental Disorders. 3rd ed. Revised (DSM-III-R; American Psychiatric Association, 1987). Additional information regarding these disorders can be found in this reference, as well as the others cited below, all of which are incorporated herein by reference.
Depressive disorders include major depressive disorder and dysthymic disorder (American Psychiatric Association, 1994a; American Psychiatric Association, 1994b). Major depressive disorder is characterized by the occurrence of one or more major depressive episodes without manic or hypomanic episodes. A major depressive episode is defined as a prominent and relatively persistent depressed or dysphoric mood that usually interferes with daily functioning (nearly every day for at least 2 weeks); it should include at least 4 of the following 8 symptoms: change in appetite, change in sleep, psychomotor agitation or retardation, loss of interest in usual activities or decrease in sexual drive, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, and a suicide attempt or suicidal ideation (Medical Economics Company, 2002). Dysthymic disorder involves a type of depression that is not severe enough to be called a major depressive episode, but that lasts much longer than major depressive disorder, without high phases.
It is contemplated that the compounds of this invention will be effective in treating depression in patients who have been diagnosed with depression by administration of any of the following tests: Hamilton Depression Rating Scale (HDRS), Hamilton depressed mood item, Clinical Global Impressions (CGI)-Severity of Illness. It is further contemplated that the compounds of the invention will be effective in inducing improvements in certain of the factors measured in these tests, such as the HDRS subfactor scores, including the depressed mood item, sleep disturbance factor and anxiety factor, and the CGI-Severity of Illness rating. It is also contemplated that the compounds of this invention will be effective in preventing relapse of major depressive episodes.
Anxiety disorders include panic disorder, agoraphobia with or without history of panic disorder, specific phobia, social phobia, obsessive-compulsive disorder, post-traumatic stress disorder, acute stress disorder and generalized anxiety disorder. It is contemplated that the compounds of this invention will be effective in treating any of all of these disorders in patients who have been diagnosed with these disorders.
Obsessive compulsive disorder is characterized by recurrent and persistent ideas, thoughts, impulses or images (obsessions) that are ego-dystonic and/or repetitive, purposeful and intentional behaviors (compulsions) that are recognized by the person as excessive or unreasonable (American Psychiatric Association, 1994a). The obsessions or compulsions cause marked distress, are time-consuming, or significantly interfere with social or occupational functioning.
It is contemplated that the compounds of this invention will be effective in treating obsessions and compulsions in patients who have been diagnosed with obsessive compulsive disorder by administration of appropriate tests, which may include, but are not limited to any of the following: Yale Brown Obsessive Compulsive Scale (YBOCS) (Goodman, 1989) (for adults), National Institute of Mental Health Global OCD Scale (NIMH GOCS), CGI-Severity of Illness scale. It is further contemplated that the compounds of the invention will be effective in inducing improvements in certain of the factors measured in these tests, such as a reduction of several points in the YBOCS total score. It is also contemplated that the compounds of this invention will be effective in preventing relapse of obsessive compulsive disorder.
Panic disorder is characterized by recurrent unexpected panic attacks and associated concern about having additional attacks, worry about the implications or consequences of the attacks, and/or a significant change in behavior related to the attacks (American Psychiatric Association, 1994a). A panic attack is defined as a discrete period of intense fear or discomfort in which four (or more) of the following symptoms develop abruptly and reach a peak within 10 minutes: (1) palpitations, pounding heart, or accelerated heart rate; (2) sweating; (3) trembling or shaking; (4) sensations of shortness of breath or smothering; (5) feeling of choking; (6) chest pain or discomfort; (7) nausea or abdominal distress; (8) feeling dizzy, unsteady, lightheaded, or faint; (9) derealization (feelings of unreality) or depersonalization (being detached from oneself); fear of losing control; (11) fear of dying; (12) paresthesias (numbness or tingling sensations); (13) chills or hot flushes. Panic disorder may or may not be associated with agoraphobia, or an irrational and often disabling fear of being out in public.
It is contemplated that the compounds of this invention will be effective in treating panic disorder in patients who have been diagnosed with panic disorder on the basis of frequency of occurrence of panic attacks, or by means of the CGI-Severity of Illness scale. It is further contemplated that the compounds of the invention will be effective in inducing improvements in certain of the factors measured in these evaluations, such as a reduction in frequency or elimination of panic attacks, an improvement in the CGI-Severity of Illness scale or a CGI-Global Improvement score of 1 (very much improved), 2 (much improved) or 3 (minimally improved). It is also contemplated that the compounds of this invention will be effective in preventing relapse of panic disorder.
Social anxiety disorder, also known as social phobia, is characterized by a marked and persistent fear of one or more social or performance situations in which the person is exposed to unfamiliar people or to possible scrutiny by others (American Psychiatric Association, 1994a). Exposure to the feared situation almost invariably provokes anxiety, which may approach the intensity of a panic attack. The feared situations are avoided or endured with intense anxiety or distress. The avoidance, anxious anticipation, or distress in the feared situation(s) interferes significantly with the person's normal routine, occupational or academic functioning, or social activities or relationships, or there is marked distress about having the phobias. Lesser degrees of performance anxiety or shyness generally do not require psychopharmacological treatment.
It is contemplated that the compounds of this invention will be effective in treating social anxiety disorder in patients who have been diagnosed with social anxiety disorder by administration of any of the following tests: the Liebowitz Social Anxiety Scale (LSAS), the CGI-Severity of Illness scale, the Hamilton Rating Scale for Anxiety (HAM-A), the Hamilton Rating Scale for Depression (HAM-D), the axis V Social and Occupational Functioning Assessment Scale of DSM-IV, the axis II (ICD-10) World Health Organization Disability Assessment, Schedule 2 (DAS-2), the Sheehan Disability Scales, the Schneier Disability Profile, the World Health Organization Quality of Life-100 (WHOQOL-100), or other tests as described in Bobes, 1998, which is incorporated herein by reference. It is further contemplated that the compounds of the invention will be effective in inducing improvements as measured by these tests, such as the a change from baseline in the Liebowitz Social Anxiety Scale (LSAS), or a CGI-Global Improvement score of 1 (very much improved), 2 (much improved) or 3 (minimally improved). It is also contemplated that the compounds of this invention will be effective in preventing relapse of social anxiety disorder.
Generalized anxiety disorder is characterized by excessive anxiety and worry (apprehensive expectation) that is persistent for at least 6 months and which the person finds difficult to control (American Psychiatric Association, 1994a). It must be associated with at least 3 of the following 6 symptoms: restlessness or feeling keyed up or on edge, being easily fatigued, difficulty concentrating or mind going blank, irritability, muscle tension, sleep disturbance. The diagnostic criteria for this disorder are described in further detail in DSM-IV, which is incorporated herein by reference (American Psychiatric Association, 1994a).
It is contemplated that the compounds of this invention will be effective in treating generalized anxiety disorder in patients who have been diagnosed with this disorder according to the diagnostic criteria described in DSM-IV. It is further contemplated that the compounds of the invention will be effective in reducing symptoms of this disorder, such as the following: excessive worry and anxiety, difficulty controlling worry, restlessness or feeling keyed up or on edge, being easily fatigued, difficulty concentrating or mind going blank, irritability, muscle tension, or sleep disturbance. It is also contemplated that the compounds of this invention will be effective in preventing relapse of general anxiety disorder.
Post-traumatic stress disorder (PTSD), as defined by DSM-III-R/IV (American Psychiatric Association, 1987, American Psychiatric Association, 1994a), requires exposure to a traumatic event that involved actual or threatened death or serious injury, or threat to the physical integrity of self or others, and a response which involves intense fear, helplessness, or horror. Symptoms that occur as a result of exposure to the traumatic event include re-experiencing of the event in the form of intrusive thoughts, flashbacks or dreams, and intense psychological distress and physiological reactivity on exposure to cues to the event; avoidance of situations reminiscent of the traumatic event, inability to recall details of the event, and/or numbing of general responsiveness manifested as diminished interest in significant activities, estrangement from others, restricted range of affect, or sense of foreshortened future; and symptoms of autonomic arousal including hypervigilance, exaggerated startle response, sleep disturbance, impaired concentration, and irritability or outbursts of anger. A PTSD diagnosis requires that the symptoms are present for at least a month and that they cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.
It is contemplated that the compounds of this invention will be effective in treating PTSD in patients who have been diagnosed with PTSD by administration of any of the following tests: Clinician-Administered PTSD Scale Part 2 (CAPS), the patient-rated Impact of Event Scale (IES) (Medical Economics Company, 2002, p. 2752). It is further contemplated that the compounds of the invention will be effective in inducing improvements in the scores of the CAPS, IES, CGI-Severity of Illness or CGI-Global Improvement tests. It is also contemplated that the compounds of this invention will be effective in preventing relapse of PTSD.
In a preferred embodiment, the subject invention provides a method of treatment or management of the following indications: depressive disorders, anxiety disorders, eating/body weight disorders, and urinary disorders. Examples of depressive disorders are major depressive disorder or dysthymic disorder. Examples of anxiety disorders are panic disorder, agoraphobia without history of panic disorder, specific phobia, social phobia, obsessive-compulsive disorder, post-traumatic stress disorder, acute stress disorder or generalized anxiety disorder. Examples of eating/body weight disorders are obesity, weight gain, bulimia, bulimia nervosa or anorexia nervosa. Examples of urinary disorders include, but are not limited to urinary incontinence overactive bladder, urge incontinence, urinary frequency, urinary urgency, nocturia or enuresis. Overactive bladder and urinary urgency may or may not be associated with benign prostatic hyperplasia.
This invention provides a method of modifying the feeding behavior of a subject, which comprises administering to the subject an amount of a compound of the invention effective to decrease the consumption of food by the subject. This invention also provides a method of treating an eating disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the eating disorder. In an embodiment of the present invention, the eating disorder is obesity, bulimia, bulimia nervosa or anorexia nervosa.
The present invention further provides a method of reducing the body mass of a subject, which comprises administering to the subject an amount of a compound of the invention effective to reduce the body mass of the subject. This invention also provides a method of managing obesity in a subject in need of weight loss, which comprises administering to the subject an amount of a compound of the invention effective to induce weight loss in the subject. This invention also provides a method of managing obesity in a subject who has experienced weight loss, which comprises administering to the subject an amount of a compound of the invention effective to maintain such weight loss in the subject.
The present invention also provides a method of treating depression in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's depression. This invention also provides a method of treating anxiety in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's anxiety. This invention also provides a method of treating depression and anxiety in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's depression and anxiety. This invention also provides a method of treating major depressive disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's major depressive disorder. This invention also provides a method of treating dysthymic disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's dysthymic disorder. This invention also provides a method of treating obsessions and compulsions in a subject with obsessive compulsive disorder, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's obsessions and compulsions. This invention also provides a method of treating panic disorder, with or without agoraphobia, in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's panic disorder. This invention also provides a method of treating social anxiety disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's social anxiety disorder. This invention also provides a method of treating generalized anxiety disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's generalized anxiety disorder. This invention also provides a method of treating post-traumatic stress disorder in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's post-traumatic stress disorder.
It is contemplated that the compounds of this invention will be effective in treating obesity, including weight loss and maintenance of weight loss in patients, who have been diagnosed with obesity by the one or more of the following measurements: an increased body mass index, increased waist circumference (an indicator of intra-adominal fat), Dual Energy X-Ray Absorptiometry (DEXA) and trucal (android) fat mass. It is further contemplated that the compounds of the invention will be effective in inducing improvements in certain factors measured in these tests.
It is contemplated that the compounds of this invention will be effective in treating urinary disorders in patients who have urge or mixed (with a predominance of urge) incontinence as evidenced by the number of unnecessary episodes per week, the number of unnecessary micturitions per day and a low volume voided per micturition. It is further contemplated that the compounds of the invention will be effective in inducing improvements in certain factors measured in these tests.
The present invention also provides a method of treating a subject suffering from bipolar I or II disorder, schizoaffective disorder, a cognitive disorder with depressed mood, a personality disorder, insomnia, hypersomnia, narcolepsy, circadian rhythm sleep disorder, nightmare disorder, sleep terror disorder or sleepwalking disorder.
The present invention provides a method of treating overactive bladder with symptoms of urge urinary incontinence, urgency and/or frequency in a subject, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's overactive bladder. This invention also provides a method of alleviating urge urinary incontinence in a subject suffering from overactive bladder, which comprises administering to the subject an amount of a compound of the invention effective to alleviate the subject's urge urinary incontinence. This invention further provides a method of alleviating urinary urgency in a subject suffering from overactive bladder, which comprises administering to the subject an amount of a compound of the invention effective to alleviate the subject's urinary urgency. Additionally, this invention provides a method of alleviating urinary frequency in a subject suffering from overactive bladder, which comprises administering to the subject an amount of a compound of the invention effective to alleviate the subject's urinary frequency.
The present invention also provides a method of treating a subject suffering from a urinary disorder, which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's urinary disorder. In some embodiments the urinary disorder is urinary incontinence, overactive bladder, urge incontinence, urinary frequency, urinary urgency, nocturia or enuresis.
The present invention provides a method of alleviating the symptoms of a disorder in a subject, which comprises administering to the subject an amount of an MCH1 antagonist effective to alleviate the symptoms, wherein the MCH1 antagonist is any of the compounds of the invention.
In an embodiment of the invention, the subject is a vertebrate, a mammal, a human or a canine. In another embodiment, the compound is administered orally. In yet another embodiment, the compound is administered in combination with food.
This invention will be better understood from the Experimental Details In a preferred embodiment, the subject invention provides a method of treatment for the following indications: depression, anxiety, eating/body weight disorders, and urinary disorders. Examples of eating/body weight disorders are obesity, bulimia, or bulimia nervosa. Examples of urinary disorders include, but are not limited to, urinary incontinence, overactive bladder, urge incontinence, urinary frequency, urinary urgency, nocturia, or enuresis. Overactive bladder and urinary urgency may or may not be associated with benign prostatic hyperplasia.
This invention provides a method of modifying the feeding behavior of a subject which comprises administering to the subject an amount of a compound of the invention effective to decrease the consumption of food by the subject.
This invention also provides a method of treating an eating disorder in a subject which comprises administering to the subject an amount of a compound of this invention effective to decrease the consumption of food by the subject. In an embodiment of the present invention, the eating disorder is bulimia, obesity or bulimia nervosa. In an embodiment of the present invention, the subject is a vertebrate, a mammal, a human or a canine. In a further embodiment, the compound is administered in combination with food.
The present invention further provides a method of reducing the body mass of a subject which comprises administering to the subject an amount of a compound of the invention effective to reduce the body mass of the subject.
The present invention also provides a method of treating a subject suffering from depression which comprises administering to the subject an amount of a compound of this invention effective to treat the subject's depression. The present invention further provides a method of treating a subject suffering from anxiety which comprises administering to the subject an amount of a compound of this invention effective to treat the subject's anxiety. The present invention also provides a method of treating a subject suffering from depression and anxiety which comprises administering to the subject an amount of a compound of this invention effective to treat the subject's depression and anxiety.
The present invention also provides a method of treating a subject suffering from major depressive disorder, dysthymic disorder, bipolar I and II disorders, schizoaffective disorder, cognitive disorders with depressed mood, personality disorders, insomnia, hypersomnia, narcolepsy, circadian rhythm sleep disorder, nightmare disorder, sleep terror disorder, sleepwalking disorder, obsessive-compulsive disorder, panic disorder, with or without agoraphobia, posttraumatic stress disorder, social anxiety disorder, social phobia and generalized anxiety disorder.
The present invention also provides a method of treating a subject suffering from a urinary disorder which comprises administering to the subject an amount of a compound of this invention effective to treat the subject's a urinary disorder. In some embodiments, the urinary disorder is urinary incontinence, overactive bladder, urge incontinence, urinary frequency, urinary urgency, nocturia, or enuresis.
This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.
EXPERIMENTAL SECTION I. Synthetic Methods for ExamplesGeneral Methods: All reactions (except for those done by parallel synthesis reaction arrays) were performed under an Argon atmosphere and the reagents, neat or in appropriate solvents, were transferred to the reaction vessel via syringe and cannula techniques. The parallel synthesis reaction arrays were performed in vials (without an inert atmosphere) using J-KEM heating shakers (Saint Louis, Mo.). Anhydrous solvents were purchased from Aldrich Chemical Company and used as received. The examples described in the patent were named using ACD/Name program (version 2.51, Advanced Chemistry Development Inc., Toronto, Ontario, M5H2L3, Canada). Unless otherwise noted, the 1H spectra were recorded at 300 and 400 MHz (QE Plus and Brüker respectively) with tetramethylsilane as internal standard. s=singlet; d=doublet; t=triplet; q=quartet; p=pentet; sext; sept; br=broad; m=multiplet. Elemental analyses were performed by Robertson Microlit Laboratories, Inc. Unless otherwise noted, mass spectra were obtained using low-resolution electrospray (ESMS) and MH+ is reported. Thin-layer chromatography (TLC) was carried out on glass plates precoated with silica gel 60 F254 (0.25 mm, EM Separations Tech.). Preparative thin-layer chromatography was carried out on glass sheets precoated with silica gel GF (2 mm, Analtech). Flash column chromatography was performed on Merck silica gel 60 (230-400 mesh). Melting points (mp) were determined in open capillary tubes on a Mel-Temp apparatus and are uncorrected.
Piperidine Side Chain Intermediates
TERT-BUTYL 4-{[(TRIFLUOROMETHYL)SULFONYL]OXY}-1,2,3,6-TETRAHYDRO-1-PYRIDINECARBOXYLATE: n-Butyl lithium (17.6 mL, 44.2 mmol, 2.5 M in hexanes) was added to a solution of diisopropyl amine (96.2 mL, 44.2 mmol) in 40 mL of dry THF at 0° C. and stirred for 20 minutes. The reaction mixture was cooled to −78° C. and tert-butyl 4-oxo-1-piperidinecarboxylate (Aldrich Chemical Company, 40.0 mmol) in THF (40 mL) was added dropwise to the reaction mixture and stirred for 30 minutes. Tf2NPh (42.0 mmol, 15.0 g) in THF (40 mL) was added dropwise to the reaction mixture and stirred at ° C. overnight. The reaction mixture was concentrated in vacuo, re-dissolved in hexanes:EtOAc (9:1), passed through a plug of alumina and the alumina plug was washed with hexanes:EtOAc (9:1). The combined extracts were concentrated to yield 16.5 g of the desired product that was contaminated with some starting Tf2NPh.
1H NMR (400 MHz, 400 MHz, CDCl3) δ 5.77 (s, 1H), 4.05 (dm, 2H, J=3.0 Hz), 3.63 (t, 2H, J=5.7 Hz), 2.45 (m, 2 H), 1.47 (s, 9H).
TERT-BUTYL 4-[3-(AMINO)PHENYL]-1,2,3,6-TETRAHYDRO-1-PYRIDINECARBOXYLATE: A mixture of 2 M aqueous Na2CO3 solution (4.2 mL), tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-1,2,3,6-tetrahydro-1-pyridine-carboxylate (0.500 g, 1.51 mmol), 3-aminophenylboronic acid hemisulfate (0.393 g, 2.11 mmol), lithium chloride (0.191 g, 4.50 mmol) and tetrakis-triphenylphosphine palladium (0) (0.080 g, 0.075 mmol) in dimethoxyethane (5 mL) was heated at reflux temperature for 3 hours, under an inert atmosphere (an initial degassing of the mixture is recommended to prevent the formation of triphenylphosphine oxide). The organic layer of the cooled reaction mixture was separated and the aqueous layer was washed with ethyl acetate (3×). The combined organic extracts were dried and concentrated in vacuo. The crude product was chromatographed (silica, hexanes:EtOAc:dichloromethane (6:1:1) with 1% added isopropylamine to protect the BOC group from hydrolysis) to give 0.330 g of the desired product in 81% yield. 1H NMR (400 MHz, CDCl3) δ 7.12 (t, 1H, J=7.60 Hz), 6.78 (d, 1H, J=8.4 Hz), 6.69 (t, 1H, J=2.0 Hz), 6.59 (dd, 1H, J=2.2, 8.0 Hz), 6.01 (m, 1H), 4.10-4.01 (d, 2H, J=2.4 Hz), 3.61 (t, 2H, J=5.6 Hz), 2.52-2.46 (m, 2H), 1.49 (s, 9H); ESMS m/e: 275.2 (M+H)+. Anal. Calc. for C16H24N2O2; C, 70.04; H, 8.08; N, 10.21. Found: C, 69.78; H, 7.80; N, 9.92.
TERT-BUTYL 4-[3-(AMINO)PHENYL]-1-PIPERIDINECARBOXYLATE: A mixture of 3.10 g of tert-butyl 4-(3-aminophenyl)-1,2,3,6-tetrahydropyridine-1-carboxylate (11.3 mmol) and 1.0 g of 10% Pd/C in 200 mL of ethanol was hydrogenated at room temperature using the balloon method for 2 days. The reaction mixture was filtered and washed with ethanol. The combined ethanol extracts were concentrated in vacuo and the residue was chromatographed on silica (dichloromethane: methanol 95:5 with 1% isopropylamine added to protect the BOC group from hydrolysis) to give 2.63 g of the desired product (84%). 1H NMR (400 MHz, CDCl3) δ 7.10 (t, 1H, J=7.60 Hz), 6.62 (d, 1H, J=8.4 Hz), 6.60-6.59 (m, 2H), 4.27-4.18 (m, 2H), 3.62-3.58 (m, 2H), 2.80-2.72 (m, 2H), 2.62-2.59 (m, 1H), 1.89-1.52 (m, 4H), 1.49 (s, 9H); ESMS m/e: 277.2 (M+H)+.
TERT-BUTYL 4-[3-(ACETYLAMINO)PHENYL]-1,2,3,6-TETRAHYDRO-1-PYRIDINECARBOXYLATE: A mixture of saturated aqueous Na2CO3 solution (25 mL), tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-1,2,3,6-tetrahydro-1-pyridine-carboxylate (20 mmol), 3-acetamidophenylboronic acid (30 mmol) and tetrakis-triphenylphosphine palladium (0) (1.15 g) and dimethoxyethane (40 mL) was heated at reflux temperature overnight. The organic layer of the cooled reaction mixture was separated and the aqueous layer was washed with ethyl acetate (3×). The combined organic extracts were dried and concentrated in vacuo. The crude product was chromatograghed, giving the desired product: 1H NMR (CDCl3) δ 8.11 (br s, 1H), 7.57 (br s, 1H), 7.41 (br d, 1H, J=7.8 Hz), 7.25 (apparent t, 1H, J=7.8 Hz), 7.08 (br d, 1H, J=7.8 Hz), 5.99 (br s, 1H), 4.03 (br m, 2 H, J=2.7 Hz), 3.59 (t, 2H, J=5.7 Hz), 2.46 (m, 2H,), 2.16 (s, 3H), 1.49 (s, 9H).
N1-[3-(1,2,3,6-TETRAHYDRO-4-PYRIDINYL)PHENYL]ACETAMIDE: A solution of 4 M HCl in dioxane (10 mL) was added to tert-butyl 4-[3-(acetylamino)phenyl]-1,2,3,6-tetrahydro-1-pyridinecarboxylate (8.25 mmol) in dichloromethane (30 mL). The reaction mixture was stirred at room temperature overnight, concentrated in vacuo, giving the desired product as the hydrochloride salt (2.1 g): 1H NMR (CDCl3) δ 7.41-7.00 (m, 4H), 6.10 (br, 1H), 3.55 (m, 2 H), 3.16 (t, 2H, J=5.7 Hz), 2.44 (m, 2H), 2.19 (s, 3H).
TERT-BUTYL N-(3-BROMOPROPYL)CARBAMATE: Prepared from 3-bromopropylamine hydrobromide and BOC2O in the presence of base in dichloromethane, 9.89 mmol: 1H NMR (CDCl3) δ 5.07 (br, 1H), 3.31 (t, 2H, J=6.6 Hz), 3.12 (apparent br q, 2H, J=6.0 Hz), 1.92 (p, 2H, J=6.6 Hz), 1.30 (s, 9H).
TERT-BUTYL N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1,2,3,6-TETRAHYDRO-1-PYRIDINYL}PROPYL)CARBAMATE: A solution of N1-[3-(1,2,3,6-tetrahydro-4-pyridinyl)phenyl]acetamide.HCl (8.24 mmol), tert-butyl N-(3-bromopropyl)carbamate and potassium carbonate (33 mmol) in dry dioxane (30 mL) was heated at reflux temperature overnight. The solids were removed by filtration, the solution was concentrated in vacuo and the product was chromatograghed, giving the desired product (110 mg). 1H NMR (CDCl3) δ 7.65 (s, 1H), 6.98 (s, 1H), 7.45 (d, 1H, J=7.8 Hz), 7.16 (apparent t, 1 H, J=7.8 Hz), 7.10 (d, 1H, J=7.8 Hz), 6.02 (s, 1H), 5.23 (b, 1H), 3.40 (b, 2H), 3.30-1.80 (m, 10H), 2.18 (s, 3H), 1.45 (s, 9H).
N1-{3-[1-(3-AMINOPROPYL)-1,2,3,6-TETRAHYDRO-4-PYRIDINYL]PHENYL}ACETAMIDE: A 1:1 solution of TFA:CH2Cl2 (5 mL) was added to tert-butyl N-(3-{4-[3-(acetylamino)phenyl]-1,2,3,6-tetrahydro-1-pyridinyl}propyl)carbamate in dichloromethane (5 mL). The resulting solution was stirred at room temperature for 1-3 days, saturated NaHCO3 was added until pH>6, the organic layer was separated, and dried in vacuo, giving the desired product (45 mg): 1H NMR (CDCl3) δ 7.68 (br, 1H), 7.35 (dm, 1H, J=7.8 Hz), 7.25 (apparent t, 1H, J=7.8 Hz), 7.15 (dm, 1H, J=7.8 Hz), 6.12 (m, 1 H), 3.22 (m, 2H), 3.03 (t, 2H, J=7.3 Hz), 2.78 (t, 2 H, J=5.5 Hz), 2.70-2.50 (m, 4H), 2.10 (s, 3H), 1.87 (p, 2H, J=7.3 Hz).
TERT-BUTYL 4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINECARBOXYLATE: A mixture tert-butyl 4-[3-(acetylamino)phenyl]-1,2,3,6-tetrahydro-1-pyridinecarboxylate (710 mg) and 5% Pd/C (100 mg) in EtOH (10 mL) was hydrogenated (balloon technique) at room temperature overnight. The reaction mixture was passed through a pad of Celite 545 and the pad of Celite was washed with ethanol. The combined ethanol extracts were concentrated and chromatograghed, giving the desired product (660 mg): 1H NMR (CDCl3) δ 7.80 (s, 1H), 7.41-7.20 (m, 3H), 6.94 (d, 1H, J=7.5 Hz), 4.21 (m, 2 H), 2.75 (m, 2H), 2.62 (m, 1H), 2.16 (s, 3H), 1.78 (m, 2H), 1.56 (m, 2H), 1.48 (s, 9H).
N1-[3-(4-PIPERIDYL)PHENYL]ACETAMIDE: A solution of HCl in dioxane (4N, 5 mL) was added to tert-butyl 4-[3-(acetylamino)phenyl]-1-piperidinecarboxylate (660 mg) in dry dichloromethane (15 mL). The reaction mixture was stirred at room temperature overnight and concentrated in vacuo, giving the desired product (550 mg): mp 102-104° C.; 1H NMR (CDCl3) δ 2.02 (d, J=13.2 Hz, 2H), 2.11-2.45 (m, 5H), 2.67-2.77 (m, 1H), 3.00-3.10 (m, 2H), 3.51 (d, J=10.5 Hz, 2H), 6.94 (d, J=7.5 Hz, 1H), 7.20-7.46 (m, 3H), 7.60 (s, 1H); Anal. Calcd. For C13H19N2OCl+0.86 CH2Cl2: C, 50.78; H, 6.37; N, 8.55. Found: C, 50.80; H, 7.55; N, 7.01.
TERT-BUTYL N-(3-{4-[3-(ACETYLAMINO)PHENYL]PIPERIDINO}PROPYL)CARBAMATE: A solution of N1-[3-(4-piperidyl)phenyl]acetamide (550 mg, 0.210 mmol), tert-butyl N-(3-bromopropyl)carbamate (550 mg, 0.230 mmol), K2CO3 (1.10 g, 0.890 mmol), diisopropylethyl amine (1.50 mL) and a few crystals of KI in dioxane (20 mL) was heated at reflux temperature for 2 days. The precipitated salts were removed by filtration, concentrated in vacuo and the crude product was chromatographed, giving the desired product (340 mg): 1H NMR (CDCl3) δ 8.15 (s, 1H), 7.47-7.44 (m, 2H), 7.22 (t, 1H, J=7.8 Hz), 6.94 (d, 1H, J=7.8 Hz), 5.53 (b, 1H), 3.23 (b, 6H), 2.80-1.60 (m, 9H), 2.20 (s, 3 H), 1.45 (s, 9H).
N1-{3-[1-(3-AMINOPROPYL)-4-PIPERIDYL]PHENYL}ACETAMIDE: TFA (1.0 mL) was added to a solution of tert-butyl N-(3-{4-[3-(acetylamino)phenyl]piperidino}propyl)carbamate (340 mg) in dry dichloromethane (10 mL) and stirred at room temperature for 5 h. A 10% aqueous solution of KOH was added to the reaction mixture until pH>6 and then the dichloromethane was removed in vacuo. The aqueous layer was frozen and lyophilized to give a solid, which was extracted with methanol. Removal of the solvent gave the desired product (120 mg) as an oil: 1H NMR (CDCl3) δ 7.23-7.16 (apparent t, 1H, J=7.5 Hz), 6.95-6.92 (m, 1H), 3.03-2.99 (m, 2H), 2.77-2.73 (t, 2H, J=6.6 Hz), 2.50-1.60 (m, 10H), 2.13 (s, 3H).
TERT-BUTYL 4-(3-NITROPHENYL)-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: According to the procedure used for the synthesis of tert-butyl 4-[3-(amino)phenyl]-1,2,3,6-tetrahydro-1-pyridinecarboxylate, a mixture of 2 M aqueous Na2CO3 solution (2.2 mL), tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-1,2,3,6-tetrahydro-1-pyridine-carboxylate (0.500 g, 1.51 mmol), 3-nitrophenylboronic acid (0.353 g, 2.11 mmol), lithium chloride (0.191 g, 4.50 mmol) and tetrakis-triphenylphosphine palladium (0) (0.080 g, 0.075 mmol) in dimethoxyethane (5 mL) afforded 0.380 g of the desired product.
1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 8.11 (d, 1H, J=8.0 Hz), 7.69 (d, 1H, J=8.0 Hz), 7.51 (t, 1H, J=8.0 Hz), 6.20 (m, 1H), 4.17-4.08 (m, 2H), 3.67 (t, 2H, J=5.6 Hz), 2.61-2.52 (m, 2H), 1.50 (s, 9H); ESMS m/e: 249.1 (M+H—C4H8)+.
1,2,3,6-TETRAHYDRO-4-(3-NITROPHENYL)PYRIDINE: Into a stirred solution of 5.00 g (16.0 mmol) of tert-butyl 1,2,3,6-tetrahydro-4-(3-nitrophenyl)pyridine-1-carboxylate in 100 ml of 1,4-dioxane at 0° C. was bubbled HCl gas for 10 minutes. The reaction mixture was allowed to warm to room temperature and the bubbling of the HCl gas was continued for an additional 1 hour. The solvent was removed in vacuo, the residue was dissolved in 50 mL of water and was neutralized by the addition of KOH pellets. The aqueous solution was extracted with 3×80 mL of dichloromethane and the combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by column chromatography (silica, 9:1, dichloromethane:methanol+1% isopropyl amine) to afford 2.85 g (87.5% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 8.09 (d, 1H, J=8.4 Hz), 7.71 (d, 1H, J=8.0 Hz), 7.49 (t, 1H, J=8.0 Hz), 6.35-6.25 (m, 1H), 3.58 (apparent q, 2H, J=3.0 Hz), 3.14 (t, 2H, J=5.6 Hz), 2.54-2.46 (m, 2H).
TERT-BUTYL 3-(4-(3-NITROPHENYL)-3,6-DIHYDRO-1(2H)—PYRIDINYL)PROPYLCARBAMATE: A mixture of 2.80 g (14.0 mmol) of 1,2,3,6-tetrahydro-4-(3-nitrophenyl)pyridine, 3.60 g (15.0 mmol) of tert-butyl N-(3-bromopropyl)carbamate, 11.6 g (84.0 mmol) of K2CO3, 14.6 mL (84.0 mmol) of diisopropylethylamine and 0.78 g (2.00 mmol) of tetrabutylammonium iodide in 250 mL of 1,4-dioxane was heated at reflux temperature for 14 hours. The reaction mixture was filtered and the filtrate was dried (MgSO4), concentrated in vacuo and the residue was purified by column chromatography (silica, 9:1, dichloromethane: methanol+1% isopropyl amine) to afford 4.35 g (85.7% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 8.24 (t, 1H, J=1.9 Hz), 8.09 (dd, 1H, J=1.9, 8.0 Hz), 7.70 (apparent d, 1H, J=8.0 Hz), 7.49 (t, 1H, J=8.0 Hz), 6.23 (m, 1H), 3.29-3.18 (m, 4H), 2.75 (t, 2H, J=5.6 Hz), 2.64-2.54 (m, 4H), 1.82-1.70 (m, 2H), 1.44 (s, 9H); ESMS m/e: 362.2 (M+H)+.
3-(4-(3-NITROPHENYL)-3,6-DIHYDRO-1(2H)-PYRIDINYL)-1-PROPANAMINE: Into a stirred solution of 4.35 (12.0 mmol) of tert-butyl 3-(4-(3-nitrophenyl)-3,6-dihydro-1(2H)-pyridinyl)propylcarbamate in 100 ml of 1,4-dioxane at 0° C. was bubbled HCl gas for 10 minutes. The reaction mixture was allowed to warm to room temperature and the bubbling was continued for an additional 1 hour. The solvent was removed in vacuo, the residue was dissolved in 50 mL of water and was neutralized by the addition of KOH pellets. The aqueous solution was extracted with 3×80 mL of dichloromethane, the combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by column chromatography (silica, 9:1, dichloromethane methanol+1% isopropyl amine) to afford 3.05 g (97.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 8.24 (t, 1H, J=1.8 Hz), 8.09 (dd, 1H, J=1.8, 8.2 Hz), 7.69 (dd, 1H, J=1.8, 8.2 Hz), 7.48 (t, 1H, J=8.2 Hz), 6.24 (m, 1H), 3.21 (d, 2H, J=3.6 Hz), 2.84 (t, 2H, J=6.6 Hz), 2.75 (t, 2H, J=5.8 Hz), 2.64-2.54 (m, 4H), 1.76 (m, 2H); ESMS m/e: 262.2 (M+H)+; Anal. Calc. for C14H19N3O2 (0.06 CHCl3): C, 62.90; H, 7.16; N, 15.65. Found: C, 63.20; H, 7.16; N, 15.65.
METHYL (4S)-3-[({3-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]PROPYL}AMINO)CARBONYL]-4-(3,4-DIFLUOROPHENYL)-6-(METHOXYMETHYL)-2-OXO-1,2,3,4-TETRAHYDRO-5-PYRIMIDINECARBOXYLATE: A mixture of 3.02 g (6.33 mmol) 5-methyl 1-(4-nitrophenyl) (6S)-6-(3,4-difluorophenyl)-4-(methoxymethyl)-2-oxo-3,6-dihydro-1,5(2H)-pyrimidinedicarboxylate, 1.50 g (5.80 mmol) of 3-(4-(3-nitrophenyl)-3,6-dihydro-1(2H)-pyridinyl)-1-propanamine, 7.94 g (75.5 mmol) of K2CO3 and 1.00 mL of methanol in 200 mL dichloromethane (under argon) was stirred at room temperature for 1 hour. The reaction mixture was filtered and concentrated in vacuo. The residue was dissolved in 100 mL of ethyl acetate and washed 3×50 mL of 5% aqueous NaOH solution, the organic layer was dried (MgSO4) and concentrated in vacuo. The residue was dissolved in 100 mL of anhydrous ethanol containing 0.50 g 10% Pd/C and the reaction mixture was stirred under a hydrogen balloon for 24 hours. The reaction mixture was passed through a column of Celite 545 filtering agent, washed with ethanol, the filtrate was dried (MgSO4) and concentrated in vacuo. The residue was purified by column chromatography (silica, 9.5:0.5, dichloromethane:methanol+1% isopropyl amine) to afford 1.65 g (52.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.22-7.02 (m, 2H), 6.95 (t, J=8.70 Hz, 1H), 6.63-6.44 (m, 4H), 4.56 (Abq, 2H), 3.62 (s, 3H), 3.33 (s, 3H), 3.32-3.20 (m, 4H), 2.96 (br s, 2H), 2.33 (t, J=7.50 Hz, 2H), 2.11-1.94 (m, 3H), 1.81-1.64 (m, 4H); ESMS m/e: 572.3 (M+H)+;
TERT-BUTYL 4-[3-(ISOBUTYRYLAMINO)PHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: Into a solution of 4.00 g (16.0 mmol) of tert-butyl 4-(3-aminophenyl)-3,6-dihydro-1(2H)-pyridinecarboxylate and 5.60 mL (32.0 mmol) of diisopropylethylamine in 100 mL dichloromethane was slowly added 1.90 mL (19.0 mmol) of isobutyryl chloride. The reaction mixture was stirred at room temperature for 2 hours, washed with water, dried (MgSO4), and concentrated in vacuo. The residue was purified by column chromatography (silica, 50:46:3:1, hexanes:dichloromethane:methanol:isopropyl amine) to afford 2.90 g (52.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 7.69 (s, 1H), 7.34 (d, 1H, J=7.8 Hz), 7.27 (t, 1H, J=7.8 Hz), 7.11 (d, 1H, J=7.8 Hz), 6.04 (s, 1H), 4.05 (s, 2H), 3.62 (apparent t, 2H, J=4.9 Hz), 2.51 (m, 3H), 1.49 (s, 9H), 1.25 (d, 6H, J=7.4 Hz); ESMS m/e: 345.5 (M+H)+. Anal. Calc. for C20H28N2O3+0.175 CHCl3: C, 66.33; H, 7.77; N, 7.67. Found: C, 66.20; H, 7.41; N, 7.88
TERT-BUTYL 4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINECARBOXYLATE: A mixture of 2.90 g (8.40 mmol) of tert-butyl 4-[3-(isobutyrylamino)phenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate and 0.80 g of 10% yield Pd/C in 100 mL of ethanol was stirred under a hydrogen balloon for 24 hours. The reaction mixture was passed through a column of Celite 545 filtering agent, the filtrate was dried (MgSO4) and concentrated in vacuo. The residue was purified by column chromatography (silica, 9.5:0.5, dichloromethane:methanol+1% isopropyl amine) to afford 2.40 g (84.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 7.49-7.44 (m, 2H), 7.24 (t, 1H, J=7.6 Hz), 6.93 (d, 1H, J=7.6 Hz), 4.20-4.10 (m, 2H), 2.86-2.45 (m, 4H), 1.86-1.75 (m, 4H), 1.48 (s, 9H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 345.2 (M+H)+; Anal. Calc. for C20H30N2O3+0.3H2O: C, 68.27; H, 8.77; N, 7.96. Found: C, 68.25; H, 8.54; N, 7.84.
2-METHYL-N-[3-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Into a stirred solution of 2.20 (6.50 mmol) of tert-butyl 4-[3-(isobutyrylamino)phenyl]-1-piperidinecarboxylate in 100 ml of 1,4-dioxane at 0° C. was bubbled HCl gas for 10 minutes. The reaction mixture was allowed to warm to room temperature and the bubbling of the HCl gas was continued for 1 hour. The solvent was removed in vacuo, the residue was dissolved in 50 mL of water and was neutralized by the addition of KOH pellets. The aqueous solution was extracted with 3×80 mL of dichloromethane, the combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by column chromatography (silica, 9:1, dichloromethane:methanol+1% isopropyl amine) to afford 0.700 g (46.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 1H), 7.40 (d, 1H, J=7.8 Hz), 7.24 (t, 1H, J=7.8 Hz), 7.00 (d, 1H, J=7.8 Hz), 3.23-3.14 (m, 5H), 2.82-2.57 (m, 4H), 1.20 (d, 6H, J=6.8 Hz); ESMS m/e: 247.2 (M+H)+; The hydrochloride salt was used for the combustion analysis: Anal. Calc. for C15H22N2O+HCl+0.15 CHCl3: C, 60.51; H, 7.76; N, 9.32. Found: C, 60.57; H, 7.83; N, 8.88.
3-(4-PIPERIDINYL)ANILINE: A solution of 4 M HCl in dioxane (25 mL) was added to tert-butyl 4-[3-(amino)phenyl]-1-piperidinecarboxylate (2.60 g, 9.00 mmol) in dichloromethane (250 mL). The reaction mixture was stirred at room temperature overnight, concentrated in vacuo, and the residue was dissolved in water (50 mL). The mixture was nuetralized using KOH pellets and extracted with methylene chloride (3×50 mL). The combined organic extracts were dried (MgSO4), concentrated and chromatographed to give the desired product (1.03 g). 1H NMR (400 MHz, CDCl3) δ 7.01 (t, 1H, J=7.6 Hz), 6.62-6.54 (m, 3H), 3.16 (br d, 2H, J=10.3 Hz), 2.75 (dt, 2H, J=2.7, 12.3 Hz), 2.56 (tt, 1H, J=3.6, 12.3 Hz), 1.81 (br d, 2H, J=12.3 Hz), 1.65 (dq, 2H, J=4.0, 12.3 Hz); ESMS m/e: 177.2 (M+H)+.
TERT-BUTYL 4-(4-NITROPHENYL)-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: To a 25-mL RB flask, equipped with a condensor, was added tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-3,6-dihydro-1(2H)-pyridinecarboxylate (1.0 g), 4-nitrophenylboronic acid (0.71 g), sodium carbonate (0.430 mL of 2M solution), lithium chloride (0.382 g), tetrakis(triphenylphosphine)-palladium (0) (0.173 g) and ethylene glycol dimethyl ether (10 mL). The reaction mixture was flushed with Argon three times, then the reaction mixture was heated to 100° C. for 3 hrs. After cooling to room temperature, the reaction mixture was diluted with methylene chloride (30 mL) and water (30 mL) and the organic layer was separated. The aqueous layer was extracted with methylene chloride (3×20 mL) and the combined organic extracts were washed with sat NH4Cl (20 mL) and brine (20 mL), dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography (6:1=hexane:ethyl acetate with 1% NH3) to afford the product (0.55 g, 59.9%) as a yellow oil. The compound is not stable at room temperature and should be used as promptly as practical: 1H NMR (400 MHz, CDCl3) δ 8.20 (d, 2H, J=8.6 Hz), 7.51 (d, 2H, J=8.6 Hz), 6.24 (m, 1H), 4.13 (m, 2H), 3.67 (apparent t, 2H, J=5.5 Hz), 2.55 (m, 2H), 1.49 (s, 9H).
4-(4-NITROPHENYL)-1,2,3,6-TETRAHYDROPYRIDINE: 4-(4-Nitrophenyl)-1,2,3,6-tetrahydropyridine was prepared by a similar procedure to that used for the preparation of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide using HCl gas and tert-Butyl 4-(4-Nitrophenyl)-3,6-dihydro-1(2H)-pyridinecarboxylate (130 mg) in dioxane (5.0 mL) at room temperature. The reaction mixture was concentrated in vacuo to give the crude product (69.8 mg) which used in the next reaction without further purification.
Oxazolidinone Intermediates:
AMINO-(3,4-DIFLUOROPHENYL)-ACETONITRILE: Through a solution of 3,4-difluorobenzaldehyde (25.0 g, 0.176 mol) in MeOH (500 mL) in a round bottom flask, was bubbled ammonia gas for two hours at room temperature. The flask was then cooled to 0° C. and trimethylsilyl cyanide was then added slowly. The reaction mixture was stirred for 2 h, at which time TLC analysis indicated that the reaction was complete (Rf=0.35, 3:2 hexane/EtOAc). The solvent was removed in vacuo and the residue was subjected to flash column chromatography on silica gel to obtain the desired product, which was used in the next step without purification.
AMINO-(3,4-DIFLUOROPHENYL)-ACETIC ACID METHYL ESTER: Into a well-stirred solution of amino-(3,4-difluorophenyl)-acetonitrile (22.0 g, 0.130 mol), a solution of HCl in MeOH (200 mL) was added at room temperature. The resulting yellow solution was stirred at room temperature for 10 h and was heated at reflux temperature for 1.5 h. After cooling, the solvent was removed in vacuo and the resulting yellow solid was dissolved in water (200 mL). The aqueous solution was then carefully basified with 20% NaOH solution to pH 9. The aqueous layer was extracted with CH2Cl2 (3×100 mL). The organic layer was separated and dried over Na2SO4, filtered and the solvent was removed in vacuo to obtain the desired product which was used in the next step without purification.
2-AMINO-2-(3,4-DIFLUOROPHENYL)-ETHANOL: Into a well-stirred suspension of LiAlH4 (4.7 g, 0.125 mol) in THF (120 mL) in a 3-necked round bottom flask fitted with a condenser and a dropping funnel, was added a solution of amino-(3,4-difluorophenyl)-acetic acid methyl ester (10.0 g, 0.05 mol) in THF (100 mL) dropwise at 0° C. The resulting greenish brown suspension was heated at reflux temperature for 2 h. The reaction mixture was cooled to 0° C. and then carefully quenched sequentially with 5 mL of water, 5 mL of 3N NaOH followed by 15 mL of water. The resulting suspension was filtered through a fritted glass funnel. To the filter cake was added 100 mL Et2O and the suspension was heated at reflux temperature for 20 min. The suspension was filtered and the combined filtrates were dried over MgSO4, filtered and the solvent was removed in vacuo. 2-Amino-2-(3,4-difluorophenyl)-ethanol was obtained as a yellow glassy syrup which was used in the next step without further purification.
[1-(3,4-DIFLUOROPHENYL)-2-HYDROXY-ETHYL]-CARBAMIC ACID-TERT-BUTYL ESTER: Into a solution of 2-amino-2-(3,4-difluorophenyl)-ethanol (8.6 g, 49.7 mmol) in CHCl3 (150 mL) at 0° C. was added a solution of di-tert-butyl dicarbonate (11.4 g, 52.0 mmol) in CHCl3 (50 mL) in one portion and the resulting solution was stirred overnight at room temperature. The solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel (2:1 hexane-EtOAc followed by EtOAc) to obtain [1-(3,4-difluorophenyl)-2-hydroxy-ethyl]-carbamic acid-tert-butyl ester as a white solid (10.0 g, 74% yield).
(+)-4-(3,4-DIFLUOROPHENYL)-OXAZOLIDIN-2-ONE: Into a well-stirred suspension of NaH (1.1 g, 45.8 mmol) in THF (40 mL) at R.T. was added a solution of [1-(3,5-difluorophenyl)-2-hydroxy-ethyl]-carbamic acid-tert-butyl ester (5.0 g, 18.3 mmol) in THF (20 mL) via a dropping funnel at room temperature. The resulting suspension was stirred for 3 h and then quenched carefully with 10 mL of water. The biphasic mixture was extracted with 100 mL of Et2O, washed with brine, filtered and the solvent was removed in vacuo. The gummy residue thus obtained was purified by column chromatography over silica gel (Rf=0.15, 3:2 hexane-EtOAc) to obtain 4-(3,5-difluorophenyl)-oxazolidin-2-one as a white flaky solid (2.8 g, 77% yield). M.P. 81-83° C.; 1H NMR (300 MHz, CDCl3) δ 7.23-7.03 (m, 3H), 6.08 (br s, 1H), 4.94 (dd, J=6.6 Hz, J=8.7 Hz, 1H), 4.73 (t, J=8.7 Hz, 1H), 4.13 (dd, J=6.6 Hz, J=8.7 Hz, 1H). The enantiomers were separated by HPLC on a Chiralcel OD (20×250 mm) column using 80% hexane/20% isopropyl alcohol as the eluting system at 12.0 mL/min (U.V. 254 nm). The retention times for the two isomers were 16.19 min and 20.08 min respectively.
4-NITROPHENYL (4S)-4-(3,4-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXYLATE: Into a suspension of NaH (0.14 g, 5.30 mmol) in 20 mL of anhydrous THF under argon, a solution of (+)-4-(3,4-difluorophenyl)-oxazolidin-2-one (0.88 g, 4.42 mmol) in THF was added dropwise (dropping funnel). The resulting suspension was stirred at room temperature for 30 min. This suspension was then added dropwise via cannula into another round bottom flask containing a solution of 4-nitrophenylchloroformate (1.11 g, 5.30 mmol) in 25 mL of THF and cooled at −78° C. over a period of 15 min. The stirring was continued for 2 h after which the solvent was removed and the residue was purified by column chromatography on silica gel with 1:1 hexane/CH2Cl2 followed by CH2Cl2 (Rf=0.4, CH2Cl2) to obtain the desired product as a white solid (1.55 g, 86% yield).
Similarly, following the above procedure, 4-(3,5-difluorophenyl)-2-oxo-oxazolidine-3-carboxylic acid-4-nitro-phenyl ester and 4-(3,4,5-trifluorophenyl)-2-oxo-oxazolidine-3-carboxylic acid-4-nitro-phenyl ester were obtained by substituting 3,4-diflourobenzaldehyde in the first step with 3,5-diflourobenzaldehyde or 3,4,5-triflourobenzaldehyde, respectively. The oxazolidinone enantiomers were resolved by HPLC on a Chiralcel OD column (as in the previous example) and the 4-nitro-phenyl carbamates were prepared using 4-nitro-phenyl chloroformate.
4-NITROPHENYL (4S)-4-(3,5-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXYLATE: Following the procedure for the synthesis of 4-(3,4-difluorophenyl)-2-oxo-oxazolidine-3-carboxylic acid-4-nitro-phenyl ester, 3,5-diflourobenzaldehyde yielded the desired product.
1H NMR (400 MHz, CDCl3) δ 8.26 (d, 2H, J=9.3 Hz), 7.33-6.81 (m, 5H), 5.41 (dd, 1H, J=4.1, 8.7 Hz), 4.81 (t, 1H, J=9.3 Hz), 4.33 (dd, 1H, J=4.1, 9.3 Hz); Anal. Calc. for C16H10F2N2O6+0.2EtOAc: C, 52.84; H, 3.06; N, 7.34. Found: C, 53.26; H, 2.83; N, 7.73.
4-NITROPHENYL (4S)-2-OXO-4-(3,4,5-TRIFLUOROPHENYL)-1,3-OXAZOLIDINE-3-CARBOXYLATE: Following the procedure for the synthesis of 4-(3,4-difluorophenyl)-2-oxo-oxazolidine-3-carboxylic acid-4-nitro-phenyl ester, 3,4,5-triflourobenzaldehyde yielded the desired product. 1H NMR (400 MHz, CDCl3) δ 8.27 (d, 2H, J=9.0 Hz), 7.31 (d, 2H, J=9.0 Hz), 7.11-7.02 (m, 2H), 5.37 (dd, 1H, J=4.1, 9.0 Hz), 4.81 (apparent t, 1H, J=9.0 Hz), 4.33 (dd, 1H, J=4.1, 9.0 Hz); Anal. Calc. for C16H9F3N2O6: C, 50.27; H, 2.37; N, 7.33. Found: C, 50.56; H, 2.50; N, 7.49.
1-(3,4-DIFLUOROPHENYL)-2-METHYL-2-HYDROXYPROPYLAMINE: Into a well-stirred solution of methyl 2-amino-2-(3,4-difluorophenyl)acetate (10.5 g, 52.19 mmol) in anhydrous ether (200 mL) at 0° C. a solution of methylmagnesium bromide (3 M, 87 mL, 261 mmol) in ether was added over 10 minutes. The reaction mixture was stirred at 0° C. for 2.5 h and allowed to warm to room temperature. After 12 h, the reaction mixture was carefully poured onto a mixture of ice (300 g) and saturated aqueous ammonium chloride (50 g). The ether layer was separated and the aqueous layer was extracted with more ether (4×200 mL). The combined extracts were dried with magnesium sulfate and the solvent evaporated. The crude product was purified by column chromatography on silica gel using chloroform/methanol/2M ammonia in methanol (1000:20:10, 1000:40:20, 1000:80:40) as the eluent to give the product as an oil (6.5 g, 62% yield) which was used in the next step without further purification.
4-(3,4-DIFLUOROPHENYL)-5,5-DIMETHYL-2-OXO-OXAZOLIDINE: A mixture of 1-(3,4-difluorophenyl)-2-methyl-2-hydroxypropylamine (3.00 g, 14.9 mmol) and carbonyldiimidazole (2.418 g, 14.9 mmol) in dichloromethane (150 mL) was heated at reflux temperature for 36 h and the solvent evaporated. The residue was purified by column chromatography on silica gel using chloroform/ethyl acetate (9:1) to give the product as a viscous oil which solidified on standing (1.80 g, 50% yield). The product was used in the next step without further characterization.
4-NITROPHENYL 4-(3,4-DIFLUOROPHENYL)-5,5-DIMETHYL-2-OXO-1,3-OXAZOLIDINE-3-CARBOXYLATE: Into a stirred suspension of sodium hydride (60% suspension in paraffin 203 mg, 1.4 eq.) in THF (20 mL) at 0° C., a solution of 4-(3,4-difluorophenyl)-5,5-dimethyl-2-oxo-oxazolidine (870 mg, 3.622 mmol) in THF (5 mL) was added followed by stirring for 30 minutes. This suspension was added to a solution of 4-nitrophenyl chloroformate (950 mg, 4.71 mmol) in THF (20 mL) at −78° C. under argon and the stirring was continued for 2 h. It was slowly warmed to room temperature and after 4 h the solvent was evaporated. The residue was mixed with dichloromethane (150 mL), washed with 0.05 N sodium hydroxide (3×10 mL), and dried (sodium sulfate). The solvent was evaporated and the residue was purified by column chromatography on silica gel using chloroform/ethyl acetate (9:1) as the eluent to give the product as a white powder (860 mg, 59% yield).
1H NMR (400 MHz, CDCl3) δ 8.24 (d, 2H, J=9 Hz), 7.29-6.97 (m, 5H), 5.04 (s, 1H), 1.09 (s, 6H); Anal. Calc. for C18H14F2N2O6+0.2% H2O: C, 54.61; H, 3.67; N, 7.08. Found: C, 54.89; H, 3.59; N, 7.41.
(3,4-DIFLOUROPHENYL)-N(DIPHENYLMETHYLENE)METHANAMINE: Into a solution of 3,4-difluorobenzylamine (9.8 g, 69 mmol) and benzophenone (13.0 g, 71.0 mmol) in toluene (200 mL) was added a catalytic amount of BF3.OEt2 and the resulting solution was heated at reflux temperature for 12 h. The reaction mixture was concentrated in vacuo, yielding an oil (21 g, >95%), which was characterized by NMR analysis and subjected to the following reaction without any further purification. 1H NMR (CDCl3) δ 4.57 (s, 2H), 7.80-6.80 (m, 13H).
1-(3,4-DIFLOUROPHENYL)-1-[(DIPHENYLMETHYLENE)AMINO]PROPAN-2-OL: Into a solution of the benzhydrylindene-(3,4-difluoro-benzyl)-amine (21 g, 69 mmol) in 250 ml of dry THF was added tert-butyllithium (1.7 M, 60 ml) dropwise and the resulting solution was stirred at −78° C. for 0.5 h. To the solution was added acetaldehyde (10 ml, 180 mmol) in 100 ml of THF and the solution was stirred at −78° C. for 2 h and 25° C. for 1 h. The reaction mixture was quenched by addition of brine. The reaction mixture was diluted with 500 ml of Et2O and washed with brine. The organic layer was dried over Na2SO4 and concentrated in vacuo to give an oil, which was taken to the next step without any further purification. 1H NMR (CDCl3) δ 1.04 (d, 3H), 2.77 (broad s. 1H), 4.08 (m, 1H), 4.15 (d, 1H), 7.80-6.80 (m, 13H).
1-AMINO-1-(3,4-DIFLUORO-PHENYL)-PROPAN-2-OL: A solution of crude product from the previous procedure and MeONH2.HCl (10 g, 120 mmol) was diluted in 200 ml of MeOH and stirred for 12 h. The reaction mixture was concentrated in vacuo, yielding an oily residue, which was re-dissolved in 200 ml of EtOAc and washed with brine. The organic layer was concentrated in vacuo to produce an oily mixture, which was subjected to column chromatography [5% NH3 (2.0 M in MeOH) in CHCl3] to yield the desired product (8.8 g, 68% yield from 3,4-difluorobenzylamine) as a mixture of diastereomers. 1H NMR (CDCl3) (4:1 mixture of the diastereomers) δ 1.02 (d, J=6.0 Hz, 3H), 1.04 (d, J=6.3 Hz, 3H), 2.10 (br, 6H), 3.56-3.69 (m, 2H), 3.88-3.92 (m, 2H), 7.02-7.17 (m, 6H).
[1-(3,4-DIFLUOROPHENYL)-2-HYDROXY-PROPYL]-CARBAMIC ACID-TERT-BUTYL ESTER: Into a solution of 1-amino-1-(3,4-difluorophenyl)-propan-2-ol (13.1 g, 70.1 mmol) in CHCl3 (150 mL) at 0° C. was added a solution of di-tert-butyl dicarbonate (19.3 g, 87.6 mmol) in CHCl3 (50 mL) in one portion and the resulting solution was stirred overnight at room temperature. The solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel (2:1 hexane-EtOAc followed by EtOAc) to obtain [1-(3,4-difluorophenyl)-2-hydroxy-propyl]-carbamic acid-tert-butyl ester as a viscous oil (18.4 g, 91% yield). 1H NMR (CDCl3) (4:1 mixture of the diastereomers) δ 1.05 (d, J=6.6 Hz, 3H), 1.25 (d, J=6.0 Hz, 3H), 1.41 (br, 20H), 3.92-4.19 (br, 2H), 4.45-4.60 (m, 2H), 5.41-5.49 (br, 2H), 7.02-7.17 (m, 6H).
4-(3,4-DIFLUOROPHENYL)-5-METHYL-OXAZOLIDIN-2-ONE: Into a well-stirred solution of [1-(3,4-difluorophenyl)-2-hydroxy-propyl]-carbamic acid-tert-butyl ester (0.43 g, 1.5 mmol) in THF (20 mL) was added 95% NaH (0.09 g, 3.8 mmol) at room temperature. When the reaction was carried out on a larger (>5 g) scale, 1.0 equivalent of KH and 1.5 eq. of NaH was used as the base. The resulting suspension was stirred for 3 h at about 35° C. (warm water bath) and then quenched carefully with ice. The biphasic mixture was extracted with 100 mL of EtOAc, washed with brine, dried over Na2SO4, filtered and the solvent was removed in vacuo. The two diastereomers were separated by column chromatography over silica gel (First isomer: 0.16 g, Rf=0.6, 3:1 hexane-EtOAc; second isomer: 0.18 g, Rf=0.5, 3:1 hexane-EtOAc). NOE experiments suggested that the first diastereomer had the methyl and the aryl group in trans configuration while the second diastereomer had cis relationship between the two groups. The 1H NMR spectrum for the trans diastereomer is as follows. 1H NMR (CDCl3) δ 1.49 (d, J=6.0 Hz, 3H), 4.37 (dq, J=6.0 Hz, J=7.2 Hz, 1H), 4.45 (d, J=7.2 Hz, 1H), 6.63 (br s, 1H), 7.08-7.28 (m, 3H).
The 1H NMR spectrum for the cis diastereomer is as follows. 1H NMR (CDCl3) δ 0.96 (d, J=6.6 Hz, 3H), 4.91 (d, J=8.1 Hz, 1H), 4.99 (dq, J=6.6 Hz, J=8.1 Hz, 1H), 6.63 (br s, 1H), 7.08-7.28 (m, 3H).
4-(3,4-DIFLUOROPHENYL)-5-METHYL-2-OXO-OXAZOLIDINE-3-CARBOXYLIC ACID-4-NITRO-PHENYL ESTER: Into a solution of one of the two diastereomers of 4-(3,4-difluorophenyl)-5-methyl-oxazolidin-2-one (0.97 g, 4.55 mmol) in 60 mL THF was added a solution of n-butyllithium in hexane (3.06 mmol, 4.9 mmol) dropwise via a syringe under argon atmosphere at −78° C. The resulting yellow solution was stirred at −78° C. for 40 min. This solution was then added dropwise via a cannula into another round bottom flask containing a solution of 4-nitrophenylchloroformate (1.03 g, 5.1 mmol) in 60 mL of THF, cooled at −78° C., over a period of 15 min. After five minutes, the flask was removed from the cooling bath and stirring was continued for 1 h. The reaction mixture was quenched by adding ice and it was extracted with EtOAc. The organic extracts were washed with brine and the organic layer was dried over Na2SO4. The solvent was removed after filtration and the residue was purified by column chromatography on silica gel with 1:1 hexane/CH2Cl2 followed by CH2Cl2 to give the desired product.
The relative configurations of the cis and trans isomers were assigned on the basis of 1H NMR analysis of the respective p-nitrophenyloxycarbonyl derivatives. For the trans isomer, an NOE was observed between the protons of the C-5 methyl group and the proton at C-4. No NOE was observed between the protons at the C-4 and C-5 positions of this isomer, which was thus assigned trans stereochemistry. For the cis isomer, no NOE was observed between the protons of the C-5 methyl group and the proton at C-4. However, a NOE was observed between the protons at the C-4 and C-5 positions, leading us to assign this isomer cis stereochemistry. The vicinal coupling constants of the C-4 protons of cis (J=7.8 Hz) and trans (J=5.1 Hz) are also consistent with the values reported for similar oxazolidinones, and were thus helpful in making the stereochemical assignments (Dondoni, A.; Perrone, D.; Semola, T. Synthesis 1995, 181).
Enantiomers of the diastereomers were separated by HPLC by using a Chiralcel OD column (20×250 mm) with 80% hexane/20% isopropyl alcohol/0.1% diethylamine as the eluting system (12 mL/min) under isocratic conditions (U.V. 254 nm).
In order to assign the absolute configurations at the stereogenic centers of the oxazolidinone rings, a new synthetic route was designed which employed an enantiomerically pure substrate derived from the chiral pool. Commercially available (S)-(+)-methyl lactate was converted into its pyrrolidine amide according to the method of Martin et al (Martin, R.; Pascual, O.; Romea, P.; Rovira, R.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1997, 38, 1633). Following the protection of the hydroxy group of (2S)-1-oxo-1-(1-pyrrolidinyl)-2-propanol to a TBDMS group, treatment of tert-butyl(dimethyl)silyl (1S)-1-methyl-2-oxo-2-(1-pyrrolidinyl)ethyl ether with 3,4-difluorophenyllithium yielded (2S)-2-{[tert-butyl(dimethyl)silyl]oxy}-1-(3,4-difluorophenyl)-1-propanone as the sole product, which was then converted to (2S)-2-{[tert-butyl(dimethyl)silyl]oxy}-1-(3,4-difluorophenyl)-1-propanone oxime. Reduction of the (2S)-2-{[tert-butyl(dimethyl)silyl]oxy}-1-(3,4-difluorophenyl)-1-propanone oxime with LiAlH4, N-acylation, and base induced cyclization provided oxazolidinone diastereomers, which were separated by flash column chromatography. The enantiomeric purity of these isomers was confirmed by chiral HPLC analysis and their relative configurations were assigned by comparison of their 1H NMR spectra with those of the racemic isomers. As the absolute configuration at C-5 of the lactic acid derived oxazolidinone described above is (S), the C-4 center in trans compounds also has the (S) configuration. Accordingly, the absolute configurations for the stereogenic centers in the cis compounds are assigned accordingly (4R,5S).
4-NITROPHENYL(4S,5R)-4-(3,4-DIFLUOROPHENYL)-5-METHYL-2-oxo-1,3-OXAZOLIDINE-3-CARBOXYLATE: 1H NMR (400 MHz, CDCl3) δ 8.25 (d, 2H, J=8.8 Hz), 7.30-6.99 (m, 5H), 5.35 (d, 1H, J=7.7 Hz), 5.07 (apparent quintet, 1H), 1.17 (d, 3H, J=6.5 Hz); Anal. Calc. for C17H12F2N2O6+0.5H2O: C, 52.72; H, 3.38; N, 7.23. Found: C, 53.09; H, 3.19; N, 7.50.
(+)-2-AMINO-3-(3,4-DIFLUORO)-PHENYL-PROPAN-1-OL: (+)-3,4-difluorophenyl alanine (1.0 g, 5.0 mmol) was added in small portions to a stirring suspension of LiAlH4 (0.480 g, 12.5 mmol) in THF (30 mL) at 0° C. The resulting gray suspension was then heated at reflux for 2 h. The reaction mixture was cooled to 0° C. and then carefully quenched sequentially with water (0.5 mL), 3 N NaOH (0.5 mL), and water (1.50 mL). The resulting suspension was filtered through a fritted glass funnel. Ether (50 mL) was added to the filter cake and the suspension was heated at reflux temperature for 20 min. The suspension was filtered and was combined with the previous filtrate. The combined organics were dried over MgSO4, filtered and the solvent was removed in vacuo. 2-Amino-3-(3,4-difluoro)-phenyl-propan-1-ol was obtained as a white solid (0.500 g, 100%) which was used in the next step without further purification.
(+)-[1-(3,4-DIFLUOROBENZYL)-2-HYDROXY-ETHYL]-CARBAMIC ACID-TERT-BUTYL ESTER: A solution of di-tert-butyl dicarbonate (0.640 g, 2.90 mmol) in CHCl3 (10 mL) was added in one portion to a solution of (+)-2-amino-3-(3,4-difluoro)-phenyl-propan-1-ol (0.500 g, 2.62 mmol) in CHCl3 (20 mL) at 0° C. and the resulting solution was stirred overnight at room temperature. The solvent was removed in vacuo and the residue was chromatographed (2:1 hexane-EtOAc, followed by EtOAc), giving (+)-[1-(3,4-difluorobenzyl)-2-hydroxy-ethyl]-carbamic acid-tert-butyl ester as a white solid (0.640 g, 99%).
(+)-4-(3,4-DIFLUORO-BENZYL)-OXAZOLIDIN-2-ONE: A solution of (+)-[1-(3,4-difluorobenzyl)-2-hydroxy-ethyl]-carbamic acid-tert-butyl ester (1.00 g, 4.00 mmol) in THF (10 mL) was added via a dropping funnel to a stirring suspension of 95% NaH (0.12 g, 5.0 mmol) in THF (20 mL) at room temperature. The resulting suspension was stirred for 3 h and then quenched carefully with water (10 mL). The biphasic mixture was extracted with Et2O (50 mL), washed with brine, filtered and the solvent was removed in vacuo. The resulting gummy residue was purified by column chromatography (Rf=0.25, 3:2 hexane-EtOAc), to give the desired product as a white solid (0.320 g, 76%).
(+)-4-(3,4-DIFLUORO-BENZYL)-OXAZOLIDIN-2-ONE-3-CARBOXYLIC ACID-4-NITRO-PHENYL ESTER: A solution of (+)-4-(3,4-difluoro-benzyl)-oxazolidin-2-one (0.210 g, 1.0 mmol) in THF (10 mL) was added dropwise via a dropping funnel to a stirring suspension of NaH (30.0 mg, 1.30 mmol) in anhydrous THF (10 mL) under argon. The resulting suspension was stirred at room temperature for 30 min. This suspension was then added dropwise via cannula to a solution of 4-nitrophenylchloroformate (0.300 g, 1.50 mmol) in THF (20 mL) at −78° C. over 15 min. Stirring was continued for 2 h after which the solvent was removed and the residue was purified by column chromatography (1:1 hexane/CH2Cl2, followed by CH2Cl2; Rf=0.4, CH2Cl2), to give the desired product as a yellow solid (0.350 g, 82%).
Similarly, following the above procedure, 4-nitro-phenyl 4-(4-fluorobenzyl)-2-oxo-1,3-oxazolidine-3-carboxylate was obtained by substituting (+)-3,4-diflourophenyl alanine with p-fluorophenyl alanine:
4-NITROPHENYL 4-(4-FLUOROBENZYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXYLATE: 1H NMR (400 MHz, CDCl3) δ 8.32 (d, 2H, J=9.3 Hz), 7.42 (d, 2H, J=8.9 Hz), 7.24-6.99 (m, 4H), 4.69-4.59 (m, 1H), 4.35 (t, 1H, J=8.6 Hz), 4.23 (dd, 1H, J=2.7, 9.3 Hz), 3.37 (dd, 1H, J=3.8, 13.6 Hz), 2.94 (dd, 1H, J=9.3, 13.6 Hz); Anal. Calc. for C17H13FN2O6: C, 56.67; H, 3.64; N, 7.77. Found: C, 56.94; H, 3.76; N, 7.71.
2-[6-(4-PHENYL-1-PIPERIDINYL)HEXYL]-1H-ISOINDOLE-1,3(2H)-DIONE: To the 500 ml RB-flask was added 4-phenylpiperidine hydrochloride (5 g, 25 mmol), N-(6-bromohexyl)phthalimide (15.5 g, 50 mmol), N,N-diisopropylethylamine (21.8 ml, 125 mmol), tetrabutylammonium iodide (0.2 g), and dioxane (250 ml) at room temperature. The reaction mixture was stirred at 100° C. for 72 h. The solvent was removed in vacuo and the crude product was purified by flash chromatography (98:2=Chloroform:2N ammonia in methanol) to afford 7.67 g of the desired product (77% yield): 1H NMR (400 MHz, CDCl3) δ 7.78-7.79 (m, 2H), 7.74-7.65 (m, 2H), 7.32-7.14 (m, 5H), 3.69 (t, 2H, J=7.35 Hz), 3.06 (d, 2H, J=11.0 Hz), 2.49 (quintet, 1H, J=7.6 Hz), 2.36 (t, 2H, J=7.6 Hz), 2.02 (t, 2H, J=12.5 Hz), 1.82 (br s, 4H), 1.69 (t, 2H, J=6.3 Hz), 1.54 (br s, 2H), 1.37 (br s, 4H); ESMS m/e: 391.3 (M+H)+; Anal. Calc. for C25H30N2O2+0.2H2O: C, 76.19; H, 7.77; N, 7.11. Found: C, 76.14; H, 7.38; N, 7.13.
METHOD I. General procedure for the Preparation of the substituted 4-[4-(3-aminophenyl)-1-piperidinyl]-1-(phenyl)-1-butanones: A mixture of 4-(3-aminophenyl)piperidine (2.0 mmol), 2.4 mmol of the appropriate substituted phenyl butyryl chloride (e.g. 4-chloro-4′-phenoxybutyrophenone, 4-chloro-3′,4′-dimethylbutyrophenone, 4-chloro-4′-chlorobutyrophenone, γ-chlorobutyrophenone, 4-chloro-3′,4′-dimethoxybutyrophenone), 3.0 mmol of K2CO3, and 10 mg of 18-crown-6 in 5 mL of toluene were heated at 110° C. for 2.5 days. The reaction mixture was concentrated and chromatographed on silica (5% methanol in dichloromethane) to give the desired compound:
4-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]-1-(4-PHENOXYPHENYL)-1-BUTANONE: Using Method I, the desired product was obtained. 305 mg; ESMS m/e: 415.4 (M+H)+.
4-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]-1-(3,4-DIMETHYLPHENYL)-1-BUTANONE: Using Method I, the desired product was obtained. 320 mg; ESMS m/e: 351.3 (M+H)+.
4-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]-1-(4-CHLOROPHENYL)-1-BUTANONE: Using Method I, the desired product was obtained. 500 mg; Anal. Calc for C21H25ClN2O+0.3H2O: C, 69.62; H, 7.12; N, 7.73. Found: C, 69.63; H, 7.34; N, 7.60; ESMS m/e: 357.3 (M+H)+.
4-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]-1-PHENYL-1-BUTANONE: Using Method I, the desired product was obtained. 250 mg; Anal. Calc for C21H26N2O+0.2H2O: C, 77.36; H, 8.16; N, 8.59. Found: C, 77.55; H, 8.12; N, 8.75; ESMS m/e: 323.3 (M+H)+.
4-[4-(3-AMINOPHENYL)-1-PIPERIDINYL]-1-(2,4-DIMETHOXYPHENYL)-1-BUTANONE: Using Method I, the desired product was obtained. 330 mg; Anal. Calc for C23H30N2O3+0.5H2O: C, 70.56; H, 7.98; N, 7.16. Found: C, 70.69; H, 7.87; N, 6.99; ESMS m/e: 383.3 (M+H)+.
METHOD II. General Procedure for the Acylation or Sulfonylation of the Substituted 4-[4-(3-Aminophenyl)-1-piperidinyl]-1-(4-phenyl)-1-butanones: A mixture of 1 equivalent of a substituted 4-[4-(3-aminophenyl)-1-piperidinyl]-1-(4-phenyl)-1-butanone, 1.5 equivalent of an acid chloride or a sulfonyl chloride, and 5 equivalents of diisopropylethylamine, in dichloromethane was stirred at room temperature for two days. The reaction mixture was applied to a preparative TLC plate and eluted with dichloromethane: methanol (15:1, containing 1% isopropyl amine) to give the desired product.
METHOD III. General procedure for the Preparation of the substituted 4-N-(3-{1-[4-(phenyl)-4-oxobutyl]-4-piperidinyl}phenyl)acetamides: A mixture of N-[3-(4-piperidinyl)phenyl]acetamide (1.0 eq) and an aryl substituted chlorobutyrophenone (2.0 eq), K2CO3 (5.0 eq), diisopropylethylamine (3.0 eq) and tetrabutylammonium iodide (cat. 5-10%) in dioxane (0.5 to 1.0 M) were heated at reflux temperature for 16 h. The reaction mixture was filtered and concentrated in vacuo. The crude product was chromatographed using silica preparative TLC (chloroform:methanol containing 0.5% isopropyl amine) to give the desired product.
Example 1N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (CDCl3) δ 7.75 (s, 1H), 7.71 (d, 1H, J=7.6 Hz), 7.45 (d, 2H, J=7.2 Hz), 7.35 (s, 1H), 7.26-7.22 (m, 2H), 6.93 (d, 1H, J=7.6 Hz), 3.24-3.21 (m, 2H), 3.04 (t, 2H, J=7.0 Hz), 2.67-2.63 (m, 2H), 2.59-2.48 (m, 1H), 2.32 (s, 6H), 2.30-2.27 (m, 2H), 2.18 (s, 3H), 2.14-2.06 (m, 2H), 2.00-1.80 (m, 4H); ESMS m/e: 393.3 (M+H)+.
Example 2N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 0.0500 g (0.200 mmol) of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide, 0.100 g (0.480 mmol) of 4-chloro-3′,4′-dimethylbutyrophenone, 0.080 g (0.600 mmol) of K2CO3 and 0.090 g (0.600 mmol) of NaI in 5 mL of DMF was heated at reflux temperature for 18 hours. The reaction mixture was filtered, the filtrate was poured into 5 mL of water and washed with 3×5 mL of ethyl acetate. The combined organic extracts were dried (MgSO4), concentrated in vacuo and purified by preparative TLC (silica; 9.5:0.5, dichloromethane:methanol+1% isopropyl amine) to afford 0.067 g (80.0% yield) of the desired product: 1H NMR (400 MHz, CDCl3) δ 7.72 (d, 1H, J=8.0 Hz), 7.44 (s, 1H), 7.38 (d, 1H, J=8.0 Hz), 7.23-7.20 (m, 2H), 7.16 (s, 1H), 6.95 (d, 1H, J=6.8 Hz), 3.13-3.11 (m, 2H), 3.02 (t, 2H, J=7.0 Hz), 2.56-2.40 (m, 4H), 2.32 (s, 6H), 2.17-2.15 (m, 2H), 2.04-1.78 (m, 6H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e 421.3 (M+H)+.
Example 3N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOHEXANECARBOXAMIDE: Using Method II, the desired compound was obtained. 1H NMR (400 MHz, CDCl3) δ 7.80-6.81 (m, 7H), 3.41-3.00 (m, 4H), 2.95-2.41 (m, 4H), 2.32 (s, 6H), 2.22-1.05 (m, 18H); ESMS m/e 461.4 (M+H)+.
Example 4N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-PHENYLACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.85-7.65 (m, 2H), 7.45-6.9.2 (m, 10H), 3.76 (s, 2H), 3.10-2.90 (m, 4H), 2.50-2.35 (m, 3H), 2.32 (s, 6H), 2.10-1.85 (m, 4H), 1.80-1.60 (m, 4H); ESMS m/e: 469.4 (M+H)+.
Example 5N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-(3-METHOXYPHENYL)ACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.76-7.65 (m, 2H), 7.38-7.12 (m, 6H), 6.95-6.80 (m, 3H), 3.82 (s, 3H), 3.70 (s, 2H), 3.10-2.90 (m, 4H), 2.50-2.38 (m, 3H), 2.32 (s, 6H), 2.10-1.85 (m, 4H), 1.80-1.60 (m, 4H); ESMS m/e: 499.4 (M+H)+.
Example 6N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHOXYACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.80-7.75 (m, 2H), 7.50-7.38 (m, 2H), 7.34-6.90 (m, 3H), 4.00 (s, 2H), 3.51 (s, 3H), 3.30-2.95 (m, 4H), 2.70-2.50 (m, 3H), 2.32 (s, 6H), 2.15-1.80 (m, 8H); ESMS m/e: 423.3 (M+H)+.
Example 7N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)METHANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.82-7.10 (m, 7H), 3.41 (s, 3H), 3.40-2.85 (m, 4H), 2.82-2.35 (m, 5H), 2.32 (s, 6H), 2.22-1.80 (m, 6H); ESMS m/e: 429.3 (M+H)+.
Example 8N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ETHANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 7.71 (d, 1H, J=7.6 Hz), 7.30-7.09 (m, 4H), 7.02 (d, 1H, J=7.2 Hz), 3.36-3.05 (m, 6H), 2.77-2.52 (m, 3H), 2.32 (s, 6H), 2.15-1.82 (m, 8H), 1.37 (t, 3H, J=7.4 Hz); ESMS m/e: 443.3 (M+H)+.
Example 9N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, 2H, J=8.8 Hz), 7.55-7.40 (m, 3H), 7.35 (s, 1H), 7.22 (t, 1H, J=8.0 Hz), 6.92 (d, 1H, J=8.0 Hz), 3.30-3.27 (m, 2H), 3.09 (t, 2H, J=7.0 Hz), 2.76-2.39 (m, 5H), 2.20 (s, 3H), 2.17-1.85 (m, 6H); ESMS m/e: 399.3 (M+H)+.
Example 10N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.6 Hz), 7.45 (d, 2H, J=8.6 Hz), 7.39 (d, 1H, J=7.2 Hz), 7.32 (s, 1H), 7.24 (t, 1H, J=7.8 Hz), 6.94 (d, 1H, J=8.4 Hz), 3.21-3.18 (m, 2H), 3.05 (t, 2H, J=7.0 Hz), 2.64-2.51 (m, 4H), 2.28-1.86 (m, 8H), 1.26 (d, 6H, J=6.8 Hz); ESMS m/e: 427.3 (M+H)+.
Example 11N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOHEXANECARBOXAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.4 Hz), 7.55-7.19 (m, 5H), 6.93 (d, 1H, J=7.6 Hz), 3.25-3.00 (m, 4H), 2.65-2.45 (m, 4H), 2.30-1.50 (m, 18H); ESMS m/e: 467.3 (M+H)+.
Example 12N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-PHENYLACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, 2H, J=8.4 Hz), 7.46-7.26 (m, 9H), 7.20 (t, 1H, J=7.6 Hz), 6.92 (d, 1H, J=7.6 Hz), 3.75 (s, 2H) 3.15-3.13 (m, 2H), 3.03 (t, 2H, J=7.0 Hz), 2.64-2.46 (m, 3H), 2.22-1.60 (m, 8H); ESMS m/e: 475.3 (M+H)+.
Example 13N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-(3-METHOXYPHENYL)ACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, 2H, J=8.4 Hz), 7.44 (d, 2H, J=8.4 Hz) 7.38 (s, 1H), 7.35-7.25 (m, 3H), 7.19 (t, 1H, J=7.8 Hz), 6.94-6.86 (m, 3H), 3.81 (s, 3H), 3.72 (s, 2H), 3.12-3.09 (m, 2H), 3.02 (t, 2H, J=6.8 Hz), 2.57-2.44 (m, 3H), 2.20-1.60 (m, 8H); ESMS m/e: 505.3 (M+H)+.
Example 14N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHOXYACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.4 Hz), 7.50-7.25 (m, 5H), 6.98 (d, 1H, J=7.8 Hz), 4.01 (s, 2H), 3.57 (s, 3H), 3.30-3.15 (m, 2H), 3.06 (t, 2H, J=6.8 Hz), 2.70-2.50 (m, 3H), 2.35-1.80 (m, 8H); ESMS m/e: 429.3 (M+H)+.
Example 15N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)METHANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.95-6.96 (m, 8H), 3.48 (s, 3H), 3.28-2.90 (m, 6H), 2.80-2.57 (m, 3H), 2.38-1.86 (m, 6H); ESMS m/e 435.2 (M+H)+.
Example 16N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ETHANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.2 Hz), 7.45 (d, 2H, J=8.2 Hz), 7.30-7.08 (m, 3H), 6.99 (d, 1H, J=7.6 Hz), 3.26-3.02 (m, 6H), 2.69-2.45 (m, 3H), 2.32-1.75 (m, 8H), 1.36 (t, 3H, J=7.4 Hz); ESMS m/e: 449.3 (M+H)+.
Example 17N-{3-[1-(4-OXO-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 8.10-6.80 (m, 9H), 3.40-2.95 (m, 4H), 2.85-2.20 (m, 3H), 2.19 (s, 3H), 2.15-1.70 (m, 8H); ESMS m/e 365.3 (M+H)+.
Example 182-METHYL-N-{3-[1-(4-OXO-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.99 (d, 2H, J=7.4 Hz), 7.57 (t, 1H, J=7.4 Hz), 7.48 (t, 2H, J=7.4 Hz), 7.45-7.20 (m, 2H), 7.24 (t, 1H, J=8.0 Hz), 6.94 (d, 1H, 8.0 Hz), 3.24-3.21 (m, 2H), 3.09 (t, 2H, J=7.0 Hz), 2.57-2.25 (m, 4H), 2.31-1.84 (m, 8H), 1.26 (d, 6H, J=7.2 Hz); ESMS m/e: 393.3 (M+H)+.
Example 19N-{3-[1-(4-OXO-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}-2-PHENYLACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, 2H, J=7.6 Hz), 7.65-7.15 (m, 11H), 6.92 (d, 2H, J=7.2 Hz), 3.74 (s, 2H), 3.20-2.95 (m, 4H), 2.65-2.40 (m, 3H), 2.25-1.70 (m, 8H); ESMS m/e: 441.3 (M+H)+.
Example 202-(3-METHOXYPHENYL)-N-{3-[1-(4-OXO-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}ACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, 2H, J=7.6 Hz), 7.56 (t, 1H, J=7.62 Hz), 7.46 (t, 2H, J=7.6 Hz), 7.40 (s, 1H), 7.37-7.26 (m, 2H), 7.19 (t, 1H, J=7.8 Hz), 6.94-6.86 (m, 3H), 3.81 (s, 3H), 3.71 (s, 3H), 3.12-3.03 (m, 4H), 2.57-2.44 (m, 3H), 2.16-1.77 (m, 8H); ESMS m/e: 471.3 (M+H)+.
Example 21N-(3-{1-[4-(2,4-DIMETHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.82 (d, 1H, J=8.8 Hz), 7.54 (d, 1H, J=7.6 Hz), 7.33 (s, 1H), 7.22 (t, 1H, J=7.6 Hz), 6.93 (d, 1H, J=7.6 Hz), 6.53 (d, 1H, J=8.8 Hz), 6.46 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.48-3.27 (m, 2H), 3.05 (t, 2H, J=6.8 Hz), 2.90-2.68 (m, 2H), 2.65-2.38 (m, 3H), 2.25 (s, 3H), 2.18-1.80 (m, 6H); ESMS m/e: 425.3 (M+H)+.
Example 22N-(3-{1-[4-(2,4-DIMETHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, 1H, J=8.6 Hz), 7.41-7.37 (m, 2H), 7.24 (t, 1H, J=7.8 Hz), 6.96 (d, 1H, J=7.8 Hz), 6.54 (d, 1H, J=8.6 Hz), 6.46 (s, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.11-3.08 (m, 2H), 2.98 (t, 2H, J=7.2 Hz), 2.53-2.46 (m, 4H), 2.13-1.79 (m, 8H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 453.3 (M+H)+.
Example 23N-(3-{1-[4-(2,4-DIMETHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-PHENYLACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.85 (m, 12H), 3.89 (s, 3H), 3.86 (s, 3H), 3.74 (s, 2H), 3.22-2.90 (m, 4H), 2.64-2.40 (m, 3H), 2.25-1.70 (m, 8H); ESMS m/e: 501.3 (M+H)+.
Example 24N-(3-{1-[4-(2,4-DIMETHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-(3-METHOXYPHENYL)ACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.82 (d, 1H, J=8.8 Hz), 7.48-7.15 (m, 5H), 6.95-6.80 (m, 3H), 6.58-6.45 (m, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H), 3.72 (s, 2H), 3.25-2.95 (m, 4H), 2.65-2.40 (m, 3H), 2.30-1.95 (m, 4H), 1.93-1.72 (m, 4H); ESMS m/e: 531.3 (M+H)+.
Example 25N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained.
1H NMR (400 MHz, CDCl3) δ 8.15-6.75 (m, 13H), 3.30-2.80 (m, 4H), 2.75-2.10 (m, 5H), 2.03 (s, 3H), 2.00-1.60 (m, 6H); ESMS m/e: 457.3 (M+H)+.
Example 262-METHYL-N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.96 (d, 2H, J=8.8 Hz), 7.43-7.15 (m, 6H), 7.10-6.93 (m, 5H), 3.42-2.95 (m, 4H), 2.80-2.45 (m, 4H), 2.20-1.80 (m, 8H), 1.14 (d, 6H, J=6.8 Hz); ESMS m/e: 485.4 (M+H)+.
Example 272-(3-METHOXYPHENYL)-N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.97 (d, 2H, J=8.8 Hz), 7.41-7.18 (m, 7H), 7.08-6.99 (m, 5H), 6.94-6.87 (m, 3H), 3.82 (s, 3H), 3.70 (s, 2H), 3.10-2.95 (m, 4H), 2.55-2.40 (m, 3H), 2.15-1.95 (m, 4H), 1.81-1.70 (m, 4H); ESMS m/e 563.4 (M+H)+.
Example 28N′-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-N,N-DIMETHYLSULFAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.8 Hz), 7.44 (d, 2H, J=8.8 Hz), 7.27 (s, 1H), 7.25-7.10 (m, 2H), 6.94 (d, 1H, J=7.6 Hz), 3.30-3.10 (m, 2H), 3.04 (t, 2H, J=6.8 Hz), 2.83 (s, 6H), 2.68-2.45 (m, 3H), 2.30-1.75 (m, 8H); ESMS m/e: 464.3 (M+H)+.
Example 29N-(3-{1-[4-OXO-4-(2-THIENYL)BUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.90-6.78 (m, 7H), 3.22-2.88 (m, 4H), 2.69-2.25 (m, 5H), 2.02 (s, 3H), 2.00-1.64 (m, 6H); ESMS m/e: 371.2 (M+H)+.
Example 30N-(3-{1-[4-(4-ISOPROPYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 8.00-6.78 (m, 8H), 3.15-2.98 (m, 4H), 2.77-2.15 (m, 4H), 2.03 (s, 3H), 2.00-1.62 (m, 8H), 0.927 (d, 6H, J=6.0 Hz); ESMS m/e: 407.3 (M+H)+.
Example 31N-(3-{1-[4-(4-METHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.90-6.80 (m, 8H), 3.10-2.45 (m, 7H), 2.32 (S, 3H), 2.02 (s, 3H), 2.01-1.68 (m, 8H); ESMS m/e: 379.3 (M+H)+.
Example 32N-(3-{1-[4-(4-BROMOPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)ACETAMIDE: Using Method III, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.90-6.80 (m, 8H), 3.30-3.05 (m, 4H), 2.70-2.45 (m, 3H), 2.05 (s, 3H), 1.98-1.65 (m, 8H); ESMS m/e: 444.0 (M+H)+.
Example 33N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-PROPANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 7.71 (d, 1H, J=7.6 Hz), 7.27-7.00 (m, 5H), 3.32-3.24 (m, 3H), 3.10-3.02 (m, 2H), 2.78-2.50 (m, 3H), 2.32 (s, 6H), 2.19-1.84 (m, 8H), 1.39 (d, 6H, J=6.8 Hz); ESMS m/e: 457.4 (M+H)+.
Example 34N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-PROPANESULFONAMIDE: Using Method II, the desired product was obtained. 1H NMR (400 MHz, CDCl3) δ 7.97 (d, 2H, J=7.6 Hz), 7.44 (t, 2H, J=7.6 Hz), 7.27-7.00 (m, 9H), 3.35-2.96 (m, 5H), 2.69-2.45 (m, 3H), 2.14-1.79 (m, 8H), 1.39 (d, 6H, J=6.8 Hz); ESMS m/e 521.4 (M+H)+.
Example 35N-(3-{1-[3-(4-CHLOROPHENYL)-3-METHOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 3-methoxy-3-(p-chlorophenyl)-1-chloropropane (27.4 mg, 0.125 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.125 mmol), diisopropylethylamine (0.50 mL) and catalytic amount of tetrabutylammonium iodide in dioxane (2.0 mL) was stirred at 90° C. for 72 hrs. The reaction mixture was concentrated to a small volume and chromatographed using preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave N-(3-{1-[3-(4-chlorophenyl)-3-methoxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (39.5 mg, 73.8% yield) as a thick oil: 1H NMR δ 7.48 (S, 1H), 7.34-7.3 (m, 2H), 7.25 (m, 4H), 6.96 (d, 1H, J=7.4 Hz), 4.20 (apparent dd, 1H, J=5.9, 7.6 Hz), 3.2 (s, 3H), 3.04 (d, 1H, J=10.1 Hz), 2.99 (d, 1H, J=10.1 Hz), 2.49 (h, 4H, J=6.6 Hz), 2.20-2.10 (m, 4H), 1.82 (m, 4H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 429.4 (M+H)+.
Example 36N-(3-{1-[6-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: The synthetic method is the same as described for 2-[6-(4-phenyl-1-piperidinyl)hexyl]-1H-isoindole-1,3(2H)-dione. N-(3-{1-[6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)hexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 506 mg (56% yield); 1H NMR (400 MHz, CDCl3) δ 7.86-7.80 (m, 2H), 7.73-7.68 (m, 2H), 7.44 (s, 1H), 7.37 (d, 1H, J=8.3 Hz), 7.22 (t, 1H, J=7.7 Hz), 6.96 (d, 1H, J=7.7 Hz), 3.69 (t, 2H, J=7.2 Hz), 3.01 (apparent d, 2H, J=11.3 Hz), 2.58-2.40 (m, 2H), 2.33 (m, 2H) 1.98 (dt, 2H, J=3.2, 11.3 Hz), 1.84-1.64 (m, 4H), 1.51 (q, 2H, J=7.1 Hz), 1.43-1.30 (m, 6H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 476.4 (M+H)+.
Example 37N-{3-[1-(3-METHOXY-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: A mixture of 3-methoxy-3-phenyl-1-chloropropane (23.1 mg, 0.126 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.126 mmol), diisopropylethylamine (0.50 mL) and catalytic amount of tetrabutylammonium iodide in dioxane (2.0 mL) was stirred at 90° C. for 72 hrs. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave N-{3-[1-(3-methoxy-3-phenylpropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (45.4 mg, 91.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.45 (S, 1H), 7.34-7.25 (m, 5H), 7.25 (m, 2H), 6.96 (d, 1H, J=7.4 Hz), 4.20 (apparent dd, 1H, J=5.9, 7.6 Hz), 3.2 (s, 3H), 3.04 (d, 1H, J=10.1 Hz), 2.99 (d, 1H, J=10.1 Hz), 2.49 (apparent sept, partially hidden, 4H, J=6.6 Hz), 2.3-2.1 (m, 4H), 1.82 (m, 4H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 395.4 (M+H)+.
Example 38N-(3-{1-[4-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: The synthetic method is the same as described for 2-[6-(4-phenyl-1-piperidinyl)hexyl]-1H-isoindole-1,3(2H)-dione. N-(3-{1-[4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 664 mg (74% yield); 1H NMR (400 MHz, CDCl3) δ 7.87-7.78 (m, 2H), 7.76-7.64 (m, 2H), 7.47 (s, 1H), 7.39 (d, 1H, J=7.6 Hz), 7.21 (t, 1H, J=8.1 Hz), 6.94 (d, 1H, J=7.6 Hz), 3.72 (t, 2H, J=6.8 Hz), 3.37-3.22 (m, 2H), 3.0 (apparent d, 2H, J=10.7 Hz), 2.75 (q, 2H, J=7.0 Hz), 2.64-2.33 (m, 4H), 1.99 (dt, 2H, J=2.6, 11.7 Hz), 1.86-1.65 (m, 2H), 1.63-1.50 (m, 2H), 1.23 and 1.21 (two d, 6H, J=5.5 Hz); ESMS m/e: 448.4 (M+H)+; Anal. Calc. for C27H34N3ClO3+0.4H2O: C, 66.02; H, 7.14; N, 8.55. Found: C, 66.07; H, 6.78; N, 8.65.
Example 39N-(3-{1-[4-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: The synthetic method is the same as described for 2-[6-(4-phenyl-1-piperidinyl)hexyl]-1H-isoindole-1,3(2H)-dione. N-(3-{1-[5-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)pentyl]-4-piperidinyl)phenyl)-2-methylpropanamide: 614 mg (64% yield); 1H NMR (400 MHz, CDCl3) δ 7.87-7.8 (m, 2H), 7.76-7.68 (m, 2H), 7.48 (s, 1H), 7.41 (d, 1H, J=7.6 Hz), 7.21 (t, 1H, J=7.6 Hz), 6.95 (d, 1H, J=7.6 Hz), 3.69 (t, 2H, J=7.2 Hz), 3.39-3.28 (m, 2H), 3.02 (apparent d, 2H, J=11.6 Hz), 2.78 (q, 2H, J=7.2 Hz), 2.64-2.52 (m, 1H), 2.52-2.40 (m, 1H), 2.40-2.31 (m, 2H), 2.01 (dt, 2H, J=3.7, 11.1 Hz), 1.85-1.64 (m, 2H), 1.58 (q, 2H, J=7.6 Hz), 1.45-1.32 (m, 2H), 1.23 (d, 6H, J=6.9 Hz); ESMS m/e: 462.4 (M+H)+; Anal. Calc. for C28H36N3ClO3: C, 67.52; H, 7.29; N, 8.44. Found: C, 67.04; H, 7.06; N, 8.38.
Example 402-METHYL-N-{3-[1-(4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: A mixture of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.100 mmol), 4-phenyl-1-chlorobutane (21.1 mg, 0.125 mmol), diisopropylethylamine (0.50 mL), catalytic amount of tetrabutylammonium iodide and dioxane (2.0 mL) was heated at reflux temperature for 3 days. The reaction mixture was concentrated and chromatographed using preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] afforded the product, 2-methyl-N-{3-[1-(4-phenylbutyl)-4-piperidinyl]phenyl}propanamide (9.50 mg, 25.1% yield) as a thick oil: 1H NMR δ 7.37 (s, 1H), 7.29 (apparent d, 1H, J=7.9 Hz), 7.18 (m, 3H), 7.11 (m, 3H), 6.90 (apparent d, 1H, J=7.9 Hz), 3.02 (d, 2H, J=6.8 Hz), 2.41 (m, 4H, partially hidden), 2.01 (m, 2H), 1.78 (m, 4H), 1.57 (m, 4H), 1.18 (d, 6H, J=7.7 Hz); ESMS m/e: 379.4 (M+H)+.
Example 41N-(3-{1-[3-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: The synthetic method is the same as described for 2-[6-(4-phenyl-1-piperidinyl)hexyl]-1H-isoindole-1,3(2H)-dione. N-(3-{1-[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 810 mg (93% yield); 1H NMR (400 MHz, CDCl3) δ 7.87-7.82 (m, 2H), 7.73-7.68 (m, 2H), 7.57 (s, 1H), 7.36 (d, 1H, J=8.5 Hz), 7.18 (t, 1H, J=7.7 Hz), 6.79 (d, 1H, J=7.1 Hz), 3.78 (t, 2H, J=6.8 Hz), 3.06 (quintet, 2H, J=6 Hz), 2.95 (apparent d, 2H, J=12.2 Hz), 2.58-2.31 (m, 4H), 1.96-1.83 (m, 2H), 1.70 (apparent d, 2H, J=12.1 Hz), 1.52 (dt, 2H, J=3.5, 12.5 Hz), 1.03 (d, 6H, J=6.5 Hz); ESMS m/e: 434.4 (M+H)+.
Example 42N-(3-{1-[(3S)-3-HYDROXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of (S)-(−)-3-chloro-1-phenyl-1-propanol (0.426 g, 2.50 mmol, 99% ee), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.565 g, 2.00 mmol), diisopropylethylamine (1.29 g, 10.0 mmol), dioxane (5.0 mL) and catalytic amount of tetrabutylammonium iodide was stirred at 90° C. for 72 hrs. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (306 mg, 39.3% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.46 (S, 1H), 7.42 (d, 4H, J=8.1 Hz), 7.35 (m, 1H), 7.30 (d, 1H, J=8.0 Hz), 7.23 (t, 1H, J=8.1 Hz), 7.12 (s, 1H), 6.96 (apparent dd, 1H, J=8.0 Hz), 5.0 (apparent dd, 1H, J=4.4, 8.3 Hz), 3.18 (apparent dd, 2H, J=2.5, 12.5 Hz), 2.74 (m, 2H), 2.50 (m, 2H), 2.3-2.1 (m, 6H), 1.8 (m, 2H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 389.2 (M+H)+.
Example 43N-(3-{1-[3-METHOXY-3-(4-METHYLPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 3-methoxy-3-(p-tolyl)-1-chloropropane (24.9 mg, 0.126 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.126 mmol), diisopropylethylamine (0.50 mL) and catalytic amount of tetrabutylammonium iodide in dioxane (2.0 mL) was stirred at 90° C. for 72 hrs. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (10.9 mg, 21.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.44 (s, 1H), 7.38 (m, 1H), 7.3-7.1 (m, 5H), 6.96 (d, 1H, J=7.4 Hz), 4.18 (apparent dd, 1H, J=5.6, 7.9 Hz), 3.24 (d, 1H, J=8.2 Hz), 3.2 (s, 3H), 3.11 (m, 2H, J=10.1 Hz), 2.49 (m, 4H), 2.35 (s, 3H), 2.3-2.1 (m, 3H), 1.92 (d, 4H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 409.4 (M+H)+.
Example 44N-{3-[1-(3-ISOPROPOXY-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: A mixture of 3-isopropyl-3′-phenyl-1-chloropropane (26.6 mg, 0.126 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.126 mmol), diisopropylethylamine (0.50 mL) and catalytic amount of tetrabutylammonium iodide in dioxane (2.0 mL) was stirred at 90° C. for 72 hrs. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (14.1 mg, 26.5% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.43-7.37 (m, 2H), 7.33 (m, 3H), 7.23 (m, 2H), 6.95 (d, 1H, J=8.4 Hz), 4.46 (apparent dd, 1H, J=5.0, 8.3 Hz), 3.49 (apparent sept, 1H, J=7.1 Hz), 3.10 (s, 2H), 2.70 (m, 2H), 2.52 (apparent sept, partially hidden, 4H, J=6.6 Hz), 2.30-2.10 (m, 2H), 1.90-1.80 (d, 4H), 1.25 (d, 6H, J=7.1 Hz), 1.15 (d, 3H, J=6.4 Hz), 1.08 (d, 3H, J=6.4 Hz); ESMS m/e: 423.4 (M+H)+.
Example 45N-(3-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 4,4-bis(4-fluoro-phenyl)-1-chloro-butane (39.0 mg, 0.126 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.126 mmol), diisopropylethylamine (0.50 mL) and catalytic amount of tetrabutylammonium iodide in dioxane (2.0 mL) was stirred at 90° C. for 72 hrs. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (15.9 mg, 25.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H), 7.41 (s, 1H), 7.3-7.15 (m, 4H), 7.10 (m, 3H), 6.89 (apparent t, 5H), 3.81 (t, 1H, J=7.8 Hz), 3.30 (s, 1H), 2.91 (d, 1H, J=12.5 Hz), 2.80 (m, 1H), 2.40 (m, 2H), 2.31 (t, 1H, J=8.0 Hz), 1.93 (apparent q, 3H, J=8.0 Hz), 1.72 (m, 3H), 1.40 (m, 2H), 1.20 (m, 2H), 1.15 (d, 6H, J=8.1 Hz); ESMS m/e: 491.4 (M+H)+
Example 46N-{3-[1-(3-METHOXYBENZYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: A mixture of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.100 mmol), 3-methoxybenzyl chloride (19.6 mg, 0.125 mmol), diisopropylethylamine (0.50 mL), catalytic amount of tetrabutylammonium iodide and dioxane (2.0 mL). Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] afforded the desired product (10.2 mg, 27.9% yield) as a yellow solid: 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.35 (apparent d, 1H, J=8.3 Hz), 7.27-7.21 (m, 2H), 6.95 (apparent t, 3H, J=6.9 Hz), 6.82 (apparent dd, 1H, J=2.4, 8.3 Hz), 3.84 (m, 3H), 3.56 (s, 2H), 3.05 (d, 2H, J=10.5 Hz), 2.51 (apparent sept, partially hidden, 4H, J=7.2 Hz), 2.13 (apparent t, 2H, J=9.7 Hz), 1.88 (m, 2H), 1.25 (d, 6H, J=6.7 Hz); ESMS m/e: 367.3 (M+H)+.
Example 47N-(3-{1-[3,5-BIS(TRIFLUOROMETHYL)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (28.3 mg, 0.100 mmol), 3,5-bis(trifluoromethyl)benzyl bromide (38.4 mg, 0.125 mmol), diisopropylethylamine (0.50 mL), catalytic amount of tetrabutylammonium iodide and dioxane (2.0 mL). Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (12.2 mg, 25.8% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.83 (s, 2H), 7.77 (s, 1H), 7.53 (s, 1H), 7.30-7.21 (m, 2H), 7.16 (s, 1H), 6.98 (apparent d, 1H, J=7.6 Hz), 3.62 (s, 2H), 2.94 (d, 2H, J=9.4 Hz), 2.51 (apparent sept, partially hidden, 2H, J=6.6 Hz), 2.14 (m, 2H), 1.82 (m, 4H), 1.25 (d, 6H, J=6.6 Hz); ESMS m/e: 473.2 (M+H)+.
Example 48N-(3-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE
Method A
4-{[(1R)-3-chloro-1-phenylpropyl]oxy}-1,2-dimethoxybenzene: A mixture of 3,4-dimethoxyphenol (4.07 g, 26.4 mmol), (S)-(−)-3-chloro-phenyl-1-propanol (4.50 g, 26.4 mmol, 99% ee, Aldrich Chemical Co.), triphenylphosphine (6.92 g, 26.4 mmol) and diethyl azodicarboxylate (4.59 g, 26.4 mmol) in THF (110 mL) was stirred at room temperature for 24 h. The reaction mixture was concentrated in vacuo. At this point, the residue can either be washed with pentane (×3) and the combined pentane extracts were concentrated and chromatographed (silica with hexanes-EtOAc 8:1 as the eluent) to give the desired product (as described as a general procedure by: Srebnik, M.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1988, 53, 2916-2920). This procedure was performed on a smaller scale reaction and only a 40% yield of the product was realized.
Alternatively, on a larger scale (26.4 mmol), the crude product was triturated with a small amount of dichloromethane and the precipitated triphenylphosphine oxide was filtered. The filtrate was concentrated and the crude product was chromatographed to give the desired product as a thick yellow oil (7.30 g, 88.9% yield): 1H NMR (400 MHz, CDCl3) δ 7.39-7.32 (m, 4H), 7.20 (m, 1H), 6.64 (d, 1H, J=8.7 Hz), 6.51 (d, 1H, J=2.7 Hz), 6.30 (dd, 1H, J=2.7, 8.7 Hz), 5.27 (apparent dd, 1H, J=4.5, 8.7 Hz), 3.79 (s, 3H), 3.77 (s, 3H), 3.61 (m, 1H), 2.45 (m, 1H), 2.20 (m, 1H), 1.80 (s, 1H); ESMS m/e: 307.11 (M+H)+.
N-(3-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of potassium carbonate (321 mg, 2.32 mmol), sodium iodide (522 mg, 3.48 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (570 mg, 2.32 mmol) and 4-{[(1R)-3-chloro-1-phenylpropyl]oxy)-1,2-dimethoxybenzene (712 mg, 2.32 mmol) in DMF (5.0 mL) was stirred at 100° C. for 3 hrs, at which time TLC indicated that the reaction was complete. The reaction mixture was poured into water (50 mL) and the aqueous layer was extracted with methylene chloride (3×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was purified by Prep-TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to afford the product (970 mg, 90.1%) as a thick oil.
Method B
Into a 25-mL RB-flask was added triphenylphosphine (9.80 mg, 0.0375 mmol), diethyl azodicarboxylate (5.22 mg, 0.0300 mmol), N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 3,4-dimethoxyphenol (7.70 mg, 0.050 mmol) and THF (1.0 mL) at room temperature. The reaction mixture was stirred at room temperature overnight (16 hrs). The solvent was removed under reduced pressure and the residue was purified by preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to afford the desired product (4.4 mg, 34.1% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.40-7.30 (m, 4H), 7.25 (m, 3H), 6.97 (d, 1H, J=7.8 Hz), 6.64 (d, 1H, J=9.1 Hz), 6.51 (d, 1H, J=2.6 Hz), 6.29 (d, 1H, J=2.6, 9.1 Hz), 5.20 (apparent dd, 1H, J=4.4, 8.5 Hz), 3.80 (s, 3H), 3.77 (s, 3H), 3.23 (m, 2H), 2.77 (m, 2H), 2.5 (m, 2H), 2.3-2.1 (m, 6H), 1.80 (m, 2H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 517.4 (M+H)+.
Example 492-METHYL-N-(3-{1-[(3S)-3-PHENOXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-(1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), phenol (4.70 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.7 mg, 23.6% yield) as a thick oil: 1H NMR δ 7.46 (s, 2H), 7.40-7.30 (m, 4H), 7.25 (m, 3H), 7.20 (m, 2H), 6.97 (apparent d, 1H, J=7.4 Hz), 6.89 (apparent tt, 1H, J=0.8, 7.6 Hz), 6.84 (apparent dt, 1H, J=0.8, 8.0 Hz), 5.20 (apparent dd, 1H, J=4.4, 8.5 Hz), 3.35 (m, 2H), 2.91 (m, 2H), 2.60 (m, 2H), 2.30-2.10 (m, 6H), 1.90 (m, 2H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 457.4 (M+H)+;
Example 50N-(3-{1-[(3S)-3-(4-METHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 4-methoxyphenol (6.20 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.2 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.6 mg, 37.9% yield) as a thick oil. 1H NMR (400 MHz, CDCl3) δ 7.38-7.14 (m, 8H), 6.90 (apparent d, 1H, J=7.7 Hz), 6.72-6.46 (m, 4H), 5.09 (apparent dd, 1H, J=4.8, 8.1 Hz), 3.64 (s, 3H), 3.18 (m, 2H), 2.73 (m, 2H), 2.50 (m, 2H), 2.37-1.72 (m, 8H), 1.25 (d, 6H, J=7.4 Hz); ESMS m/e: 487.4 (M+H)+.
Example 51N-(3-{1-[(3S)-3-(3-CHLOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 3-chlorophenol (6.40 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.9 mg, 40.0% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 7.35-7.10 (m, 7H), 7.02 (t, 1H, J=8.0 Hz), 6.90 (d, 1H, J=7.6 Hz), 6.84-6.75 (m, 2H), 6.65 (m, 1H), 5.09 (apparent dd, 1H, J=4.99, 8.1 Hz), 3.10 (m, 2H), 2.60 (m, 2H), 2.50 (m, 2H), 2.30-1.70 (m, 8H), 1.18 (d, 6H, J=6.8 Hz); ESMS m/e: 491.4 (M+H)+.
Example 52N-(3-{1-[(3S)-3-(4-CHLOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 4-chlorophenol (6.40 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.3 mg, 26.9% yield) as a thick oil: 1H NMR δ 7.36 (s, 1H), 7.35-7.22 (m, 7H), 7.12 (m, 2H), 6.97 (apparent d, 1H, J=7.2 Hz), 6.77 (m, 2H), 5.23 (m, 1H), 3.18 (m, 2H), 2.70 (m, 2H), 2.50 (m, 2H), 2.40-1.80 (m, 8H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 491.4 (M+H)+.
Example 532-METHYL-N-[3-(1-{(3S)-3-PHENYL-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 4-trifluoromethylphenol (8.100 mg, 0.050 mmol), triphenylphosphine (9.8 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (5.10 mg, 38.9% yield) as a thick oil: 1H NMR δ 8.06 (s, 1H), 7.49 (s, 1H), 7.44 (apparent d, 2H, J=0.6 Hz), 7.38-7.30 (m, 4H), 7.30-7.20 (m, 3H), 6.96 (apparent d, 1H, J=7.6 Hz), 6.91 (apparent d, 2H, J=8.6 Hz), 5.34 (m, 1H), 3.19 (m, 2H), 2.72 (m, 2H), 2.53 (m, 2H), 2.40-1.80 (m, 8H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 525.4 (M+H)+.
Example 54N-(3-{1-[(3R)-3-(2,5-DIFLUOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 2,5-difluorophenol (6.50 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.60 mg, 29.3% yield) as a thick oil: 1H NMR δ 7.46 (s, 1H), 7.40-7.32 (m, 4H), 7.31-7.20 (m, 2H), 7.17 (s, 1H), 7.01-6.92 (m, 2H), 6.65-6.42 (m, 2H), 5.27 (m, 1H), 3.13 (m, 2H), 2.64 (m, 2H), 2.51 (m, 2H), 2.28-1.80 (m, 8H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 493.4 (M+H)+.
Example 55N-(3-{1-[(3R)-3-(3,4-DICHLOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 3,4-dichlorophenol (8.20 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (5.20 mg, 39.7% yield) as a thick oil: 1H NMR (CDCl3) δ 7.70-7.63 (m, 2H), 7.55 (m, 1H), 7.47-7.43 (m, 3H), 7.40-7.19 (m, 3H), 7.00-6.50 (m, 2H), 6.69 (dd, 1H, J=2.2, 8.8 Hz), 5.25 (m, 1H), 3.20 (m, 2H), 2.70 (m, 2H), 2.53 (m, 2H), 2.40-2.20 (m, 4H), 2.10-1.80 (m, 4H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 525.4 (M+H)+.
Example 562-METHYL-N-(3-{1-[(3R)-3-PHENOXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), phenol (4.70 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.0 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.1 mg, 36.0% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.40-7.15 (m, 10H), 6.97 (d, 1H, J=7.6 Hz), 6.88-6.82 (m, 2H), 5.26 (m, 1H), 3.18 (m, 2H), 2.75 (m, 2H), 2.53 (m, 2H), 2.40-2.10 (m, 4H), 2.10-1.80 (m, 4H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 457.4 (M+H)+.
Example 57N-(3-{1-[(3R)-3-HYDROXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE
Method A
Into a 25-mL RB-flask was added (R)-(+)-3-chloro-1-phenyl-1-propanol (0.545 g, 3.19 mmol, 99% ee, Aldrich Chemical Co.), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.748 g, 3.04 mmol), potassium carbonate (0.420 g, 3.04 mmol) and sodium iodide (0.684 g, 4.56 mmol) and DMF (6.0 mL) at room temperature. After stirring at 100° C. for 3 hrs, the TLC showed the reaction was complete. The reaction mixture was poured into water, (50 mL) and the aqueous layer was extracted with methylene chloride (3×20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by flash chromatography (1:1=hexane:ethyl acetate with 1% isopropylamine) to afford the desired product (1.09 g, 94.3% yield) as light-yellow solid: 1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.46-7.35 (m, 6H), 7.27 (m, 2H), 6.98 (apparent d, 1H, J=7.6 Hz), 5.02 (apparent dd, 1H, J=4.4, 8.1 Hz), 3.18 (apparent dd, 2H, J=2.5, 12.5 Hz), 2.74 (m, 2H), 2.50 (m, 2H), 2.30-2.10 (m, 6H), 1.80 (m, 2H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 381.2 (M+H)+.
The hydrochloric salt was prepared by addition of a slight excess of 1 N HCl in ether (1.2 eq.) to a solution of the free base in dichloromethane. The solvent was removed under reduced pressure, the residue was washed with ether and dried under reduced pressure: Anal. Calc. for C24H32N2O2+HCl+0.8H2O: C, 66.82; H, 8.08; N, 6.49; Cl, 8.22. Found: C, 66.90; H, 7.78; N, 6.63; Cl, 8.52.
Method B
Into a 25-mL RB-flask was added (R)-(+)-3-chloro-1-phenyl-1-propanol (0.426 g, 2.50 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.565 g, 2.00 mmol), diisopropylethylamine (1.29 g, 10.0 mmol), dioxane (5.0 mL) and catalytic amount of tetrabutylammonium iodide at room temperature. After stirring at 90° C. for 72 hrs, the reaction mixture was poured into water (50 mL) and the aqueous layer was extracted with methylene chloride (3×20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by preparative TLC plates (1:5:100=isopropylamine:methanol:ethyl acetate) to afford the desired product (0.260 g, 34.2% yield) as light-yellow solid.
Example 58N-(3-{1-[(3S)-3-(4-CYANO-PHEONXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: N-(3-{1-[(3S)-3-(4-cyanophenoxy)-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 4-cyanophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.70 mg, 71.3% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.54 (m, 2H), 7.48 (d, 2H, J=8.4 Hz), 7.30-7.20 (m, 3H), 7.20 (m, 3H), 6.97 (apparent d, 1H, J=8.4 Hz), 6.92 (apparent d, 2H, J=8.4 Hz), 5.36 (apparent dd, 1H, J=3.9, 7.6 Hz), 3.12 (m, 2H), 2.61 (m, 2H), 2.53 (apparent sept, partially hidden, 2H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 482.2 (M+H)+.
Example 59N-(3-{1-[(3S)-3-(4-FLUOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 4-fluorophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.20 mg, 64.7% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.40 (m, 2H), 7.30-7.20 (m, 5H), 7.20 (m, 3H), 6.97 (apparent d, 1H, J=7.7 Hz), 6.87 (m, 1H), 6.76 (m, 1H), 5.26 (apparent dd, 1H, J=4.0, 8.1 Hz), 3.09 (m, 2H), 2.66 (m, 2H), 2.51 (m, 2H), 2.3-2.1 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, overlapped); ESMS m/e: 475.2 (M+H)+.
Example 60N-(3-{1-[(3S)-3-(4-BROMOPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 4-bromophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] the desired product (0.70 mg, 9.6% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.48 (m, 2H), 7.30-7.20 (m, 5H), 7.20 (m, 3H), 6.97 (apparent d, 1H, J=8.5 Hz), 6.73 (apparent d, 2H, J=8.5 Hz), 5.22 (apparent dd, 1H, J=4.9, 7.8 Hz), 3.15 (m, 2H), 2.65 (m, 2H), 2.51 (apparent sept, partially hidden, 2H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 535.1 (M+H)+.
Example 61N-(3-{1-[(3S)-3-(3-METHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 3-methoxyphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.1 mg, 46.6% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.47 (d, 1H, J=6.7 Hz), 7.42 (s, 1H), 7.3-7.20 (m, 3H), 7.20 (m, 3H), 7.07 (t, 1H, J=8.4 Hz), 6.97 (apparent d, 1H, J=6.7 Hz), 6.40 (m, 3H), 5.27 (apparent dd, 1H, J=5.3, 8.0 Hz), 3.74 (s, 3H), 3.38 (m, 2H), 2.93 (m, 2H), 2.61 (s, 1H), 2.53 (apparent sept, partially hidden, 1H, J=6.5 Hz), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 487.3 (M+H)+.
Example 62N-(3-{1-[(3S)-3-(4-CYANO-2-METHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-methoxy-4-cyanophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (5.50 mg, 76.5% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.38 (s, 1H), 7.37 (d, 2H, J=2.4 Hz), 7.20 (m, 4H), 7.10 (d, 1H, J=2.4 Hz), 7.08 (s, 1H), 6.99 (apparent d, 1H, J=8.3 Hz), 6.76 (apparent d, 1H, J=8.3 Hz), 5.43 (apparent dd, 1H, J=5.1, 8.0 Hz), 3.91 (s, 3H), 3.34 (m, 2H), 2.63 (m, 2H), 2.63 (s, 1H), 2.53 (apparent sept, partially hidden, 1H, J=7.7 Hz), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.28 (d, 6H, J=6.8 Hz); ESMS m/e: 512.2 (M+H)+.
Example 63N-(3-{1-[(3S)-3-(5-ACETYL-2-METHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-methoxy-5-acetylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (1.60 mg, 22.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.52 (d, 2H, J=2.4 Hz), 7.3-7.2 (m, 5H), 7.20 (m, 3H), 6.97 (apparent d, 1H, J=6.7 Hz), 6.69 (apparent d, 1H, J=8.0 Hz), 5.47 (apparent dd, 1H, J=4.3, 7.8 Hz), 3.95 (s, 3H), 3.38 (m, 2H), 2.93 (m, 2H), 2.61 (s, 1H), 2.53 (apparent sept, partially hidden, 1H, J=7.6 Hz), 2.50 (s, 3H), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 529.6 (M+H)+.
Example 64N-(3-{1-[(3R)-3-(2-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METRYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.2 mg, 0.0137 mmol), 2-acetylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (1.70 mg, 24.9% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.65 (m, 1H), 7.55 (s, 1H), 7.30-7.20 (m, 5H), 7.20 (m, 3H), 6.97 (m, 2H), 6.76 (apparent d, 1H), 5.49 (apparent dd, 1H, J=4.3, 8.0 Hz), 3.38 (m, 2H), 2.93 (m, 2H), 2.71 (s, 3H), 2.60 (s, 1H), 2.53 (apparent sept, partially hidden, 1H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 498.8 (M+).
Example 65N-[3-(1-{(3R)-3-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]-3-PHENYLPROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-fluoro-5-trifluoromethylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.50 mg, 33.7% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.67 (m, 1H), 7.54 (m, 1H), 7.45 (m, 2H), 7.30-7.10 (m, 6H), 7.14 (d, 1H, J=7.4 Hz), 6.97 (apparent d, 1H, J=7.7 Hz), 5.37 (apparent dd, 1H, J=5.0, 8.5 Hz), 3.4 (m, 2H), 2.8 (m, 2H), 2.6 (s, 1H), 2.53 (apparent sept, partially hidden, 1H, J=7.4 Hz), 2.30-2.10 (m, 6H), 1.80 (m, 2H), 1.25 (d, 6H, J=7.1 Hz, overlapped); ESMS m/e: 542.6 (M+), 543.54 (M+H)+.
Example 66N-[3-(1-{3S)-3-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]-3-PHENYLPROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-fluoro-5-trifluoromethylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.00 mg, 40.4% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.67 (m, 2H), 7.55 (m, 2H), 7.50-7.40 (m, 3H), 7.30-7.10 (m, 3H), 7.17 (d, 1H, J=8.9 Hz), 7.07 (apparent d, 1H, J=6.7 Hz), 6.97 (apparent d, 1H, J=7.8 Hz), 5.37 (apparent dd, 1H, J=4.2, 8.1 Hz), 3.37 (m, 2H), 2.93 (m, 2H), 2.63 (s, 1H), 2.50 (apparent sept, partially hidden, 1H, J=7.9 Hz), 2.30-2.10 (m, 6H), 1.85 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 542.7 (M+H)+.
Example 67N-(3-{1-[(3S)-3-(2,5-DIFLUOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2,5-difluorophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.70 mg, 40.1% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.40-7.30 (m, 4H), 7.20 (m, 2H), 7.17 (s, 1H), 6.97 (m, 2H), 6.58 (m, 1H), 6.51 (m, 1H), 5.27 (apparent dd, 1H, J=5.1, 8.2 Hz), 3.13 (apparent d, J=9.7 Hz, 2H), 2.64 (m, 2H), 2.51 (m, 2H), 2.34 (apparent sept, partially hidden, J=7.1 Hz, 1H), 2.17 (m, 3H), 1.90-1.80 (m, 4H), 1.25 (d, 6H, J=7.1 Hz); ESMS m/e: 493.1 (M+H)+.
Example 68N-(3-{1- [(3R)-3-(3-CHLOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 3-chlorophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.4 mg, 35.8% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.30 (m, 2H), 7.30-7.20 (m, 3H), 7.20 (m, 3H), 6.90 (apparent d, 1H, J=7.7 Hz), 6.71 (apparent d, 1H, J=2.9 Hz), 6.69 (apparent t, 1H, J=2.9 Hz), 6.67 (apparent t, 1H, J=2.9 Hz), 6.65 (apparent d, 1H, J=2.9 Hz), 5.09 (apparent dd, 1H, J=4.8, 8.1 Hz), 3.18 (m, 2H), 2.73 (m, 2H), 2.50 (apparent sept, partially hidden, 2H, J=7.1 Hz), 2.30-2.10 (m, 6H), 1.89 (m, 2H), 1.25 (d, 6H, overlapped); ESMS m/e: 491.1 (M+H)+.
Example 69(1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL 1-NAPHTHOATE: Into a 25-mL RB-flask was added N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl)phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 1-naphthalenecarbonyl chloride (100 mg), diisopropylethylamine (0.30 mL) in THF (0.50 mL) at room temperature. After stirring for 16 hrs at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified using preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.70 mg, 71.3% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.90 (d, 1H, J=8.9 Hz), 8.28 (apparent dd, 1H, J=1.5, 7.2 Hz), 8.03 (d, 1H, J=8.7 Hz), 7.88 (dm, 2H, J=8.7 Hz), 7.60-7.48 (m, 7H), 7.40-7.32 (m, 3H), 7.25 (m, 1H), 6.90 (apparent d, 1H, J=7.4 Hz), 6.18 (apparent dd, 1H, J=5.7, 7.8 Hz), 3.42 (m, 2H), 2.84 (m, 2H), 2.53 (m, 2H), 2.44 (apparent sept, partially hidden, 4H, J=7.5 Hz), 2.30-2.10 (m, 2H), 1.82 (m, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 535.6 (M+H)+.
Example 70N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METRYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-acetylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (1.50 mg, 22.0% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.65 (m, 1H), 7.55 (s, 1H), 7.30-7.20 (m, 5H), 7.20 (m, 3H), 6.97 (m, 2H), 6.76 (apparent d, 1H), 5.49 (apparent dd, 1H, J=4.3, 8.0 Hz), 3.38 (m, 2H), 2.93 (m, 2H), 2.75 (s, 3H), 2.53 (apparent sept, partially hidden, 2H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.92 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 498.81 (M+), 499.6 (M+H)+.
Example 71N-(3-{1-[(3S)-3-(2-FLUOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-fluorophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.5 mg, 53.9% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.65 (m, 1H), 7.41 (s, 1H), 7.40-7.10 (m, 5H), 7.05 (m, 2H), 6.97 (apparent d, 1H, J=8.7 Hz), 6.86 (m, 2H), 6.79 (apparent dt, 1H, J=2.4, 7.9 Hz), 5.31 (apparent dd, 1H, J=4.5, 8.0 Hz), 3.39 (m, 2H), 2.97 (m, 2H), 2.53 (apparent sept, partially hidden, 2H, J=7.5 Hz), 2.3-2.1 (m, 6H), 1.92 (m, 2H), 1.25 (d, 6H, J=6.7 Hz); ESMS m/e: 475.7 (M+H)+.
Example 72(4S)-N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(3,5-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE
Method: Into a 20 ml vial was added N1-{3-[1-(3-aminopropyl)-4-piperidyl]phenyl}acetamide (15 mg, 0.054 mmol), (4S)-4-(3,5-difluorophenyl)-2-oxo-oxazolidine-3-carboxylic acid-4-nitro-phenyl ester (39.3 mg, 1.08 mmol, 2 eq) and dichloromethane with 0.6% of methanol (3 ml) at room temperature. After stirring at room temperature for 3 hrs, the reaction mixture was filtered, and purified by preparative silica TLC (19:1=chloroform:methanol) to afford the desired product (18.3 mg, 68% yield); 1H NMR (400 MHz, CDCl3) δ 8.09 (br s, 1H), 7.40 (d, 1H, J=8.0 Hz), 7.36-7.28 (m, 2H), 7.24 (t, 1H, J=8.0 Hz), 6.99 (d, 1H, J=8.0 Hz), 6.86-6.82 (m, 2H), 5.41 (dd, 1H, J=4.1, 9.0 Hz), 4.72 (t, 1H, J=9.0 Hz), 4.22 (dd, 1H, J=3.9, 9.1 Hz), 3.42-3.29 (m, 2H), 3.02 (d, 2H J=11.1 Hz), 2.52-2.38 (m, 3H), 2.16 (s, 3H), 2.08-1.98 (m, 2H), 1.86-1.70 (m, 6H); ESMS m/e: 501.2 (M+H)+; Anal. Calc. for C26H30F2N4O4+0.5H2O: C, 60.64; H, 6.18; N, 10.88. Found: C, 60.67; H, 5.79; N, 10.86.
Example 73The synthetic method is the same as described for the synthesis of (4S)-N-(3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propyl)-4-(3,5-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxamide.
(4S)-N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-4-(3,4,5-TRIFLUOROPHENYL)-1,3-OXAZOLIDINE-3-CARBOXAMIDE: 18.8 mg (67% yield); 1H NMR (400 MHz, CDCl3) δ 8.09 (br s, 1H), 7.41-7.20 (m, 3H), 7.02-6.91 (m, 3H), 5.37 (dd, 1H, J=3.8, 8.9 Hz), 4.71 (t, 1H, J=9 Hz), 4.21 (dd, 1H, J=4, 9.3 Hz), 3.43-3.27 (m, 2H), 3.02 (d, 2H, J=11.0 Hz), 2.53-2.37 (m, 3H), 2.16 (s, 3H), 2.08-1.97 (m, 2H), 1.85-1.69 (m, 6H); ESMS m/e: 519.2 (M+H)+; Anal. Calc. for C26H29F3N4O4+0.5H2O: C, 59.20; H, 5.73; N, 10.62. Found: C, 59.40; H, 5.35; N, 10.65.
Example 74The synthetic method is the same as described for the synthesis of (4S)-N-(3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propyl)-4-(3,5-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxamide.
N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(3,4-DIFLUOROPHENYL)-5,5-DIMETHYL-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: 19.6 mg (68% yield); 1H NMR (400 MHz, CDCl3) δ 8.18 (t, 1H, J=5.9 Hz), 7.41 (d, 1H, J=8.8 Hz), 7.33 (s, 1H), 7.27-7.14 (m, 2H), 7.02-6.88 (m, 3H), 5.04 (s, 1H), 3.34 (qm, 2H, J=6.3 Hz), 3.02 (dm, 2H, J=10.9 Hz), 2.53-2.38 (m, 3H), 2.16 (s, 3H), 2.07-1.96 (m, 2H), 1.87-1.69 (m, 6H), 1.62 (s, 3H), 1.02 (s, 3H); ESMS m/e: 529.3 (M+H)+; Anal. Calc. for C28H34F2N4O4: C, 63.62; H, 6.48; N, 10.60. Found: C, 63.15; H, 6.27; N, 10.48.
Example 75The synthetic method is the same as described for the synthesis of (4S)-N-(3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propyl)-4-(3,5-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxamide.
(4S,5R)-N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(3,4-DIFLUOROPHENYL)-5-METHYL-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: 20.5 mg (74% yield); 1H NMR (400 MHz, CDCl3) δ 8.14 (t, 1H, J=5.5 Hz), 7.40 (d, 1H, J=7.8 Hz), 7.37-6.89 (m, 6H), 5.35 (d, 1H, J=7.5 Hz), 5.02-4.93 (m, 1H), 3.41-3.25 (m, 2H), 3.02 (d, 2H, J=10.8 Hz), 2.53-2.37 (m, 3H), 2.16 (s, 3H), 2.07 (m, 2H), 1.89-1.68 (m, 6H), 1.04 (d, 3H, J=6.4 Hz); ESMS m/e: 515.3 (M+H)+; Anal. Calc. for C27H32F2N4O4+0.5H2O: C, 61.94; H, 6.35; N, 10.70. Found: C, 61.90; H, 6.13; N, 10.64.
Example 76The synthetic method is the same as described for the synthesis of (4S)-N-(3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propyl)-4-(3,5-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxamide.
N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(4-FLUOROBENZYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: 17.4 mg (65% yield); 1H NMR (400 MHz, CDCl3) δ 8.08 (t, 1H, J=5.6 Hz), 7.4 (d, 1H, J=7.2 Hz), 7.34 (s, 1H), 7.28-7.14 (m, 3H), 7.05-6.95 (m, 3H), 4.69-4.60 (m, 1H), 4.26 (t, 1H, J=8.8 Hz), 4.15 (dd, 1H, J=3.2, 9 Hz), 3.43 (q, 2H, J=6.2 Hz), 3.3 (dm 1H, J=13.6 Hz), 3.04 (dm, 2H, J=11 Hz), 2.87 (dd, 1H, J=9.3, 14.4 Hz), 2.53-2.42 (m, 3H), 2.16 (s, 3H), 2.09-1.99 (m, 2H), 1.87-1.65 (m, 6H); ESMS m/e: 497.3 (M+H)+; Anal. Calc. for C27H33FN4O4+0.5H2O: C, 64.14; H, 6.78; N, 11.08. Found: C, 64.26; H, 6.39; N, 11.12.
Example 772-METHYL-N-(3-{1-[(3R)-3-(2-NITROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-nitrophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.37 mg, 34.5% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.84 (d, 1H), 7.90 (m, 1H), 7.45 (m 1H), 7.30-7.20 (m, 5H), 7.20 (m, 2H), 6.98 (m, 2H), 6.89 (apparent d, 1H, J=7.7 Hz), 5.62 (apparent dd, 1H, J=4.1, 8.9 Hz), 3.10 (m, 2H), 2.60 (m, 2H), 2.53 (m, 2H), 2.30-2.10 (m, 6H), 1.90 (m, 2H), 1.25 (d, 6H, overlapped); ESMS m/e: 502.3 (M+H)+.
Example 78N-(3-{1-[(3S)-3-([1,1′-BIPHENYL]-4-YLOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 4-phenylphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (3.00 mg, 41.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.48 (m, 2H), 7.40-7.30 (m, 8H), 7.30-7.25 (m, 4H), 6.97 (apparent d, 1H, J=7.6 Hz), 6.91 (apparent d, 2H, J=8.7 Hz), 5.34 (apparent dd, 1H, J=4.4, 8.0 Hz), 3.40 (m, 2H), 2.98 (m, 2H), 2.53 (apparent sept, partially hidden, 1H, J=8.1 Hz), 2.44 (m, 1H), 2.30-2.10 (m, 6H), 1.93 (d, 2H), 1.26 (d, 6H, J=6.9 Hz); ESMS m/e: 533.4 (M+H)+.
Example 792-METHYL-N-(3-{1-[(3R)-3-(3-NITROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 3-nitrophenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.80 mg, 40.8% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.76 (dm, 1H), 7.71 (t, 1H, J=1.8 Hz), 7.50-7.40 (m, 2H), 7.40-7.25 (m, 7H), 7.17 (apparent dd, 1H, J=2.4, 8.2), 6.97 (apparent d, 1H, J=7.7 Hz), 5.45 (apparent dd, 1H, J=5.0, 8.1 Hz), 3.45 (m, 2H), 2.89 (m, 2H), 2.53 (apparent sept, partially hidden, 2H, J=8.3 Hz), 2.30-2.10 (m, 6H), 1.92 (m, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 502.3 (M+H)+.
Example 80N-(3-{1-[(3S)-3-(2-ETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-(1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 2-ethoxyphenol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (1.16 mg, 15.5% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.52 (s, 1H), 7.40-7.33 (m, 4H), 7.30-7.20 (m, 3H), 6.97 (apparent d, 1H, J=7.7 Hz), 6.88 (m, 2H), 6.68 (m, 2H), 5.21 (m, 1H), 4.11 (q, 2H, J=7.3 Hz), 3.37 (m, 2H), 2.71 (m, 2H), 2.53 (apparent sept, partially hidden, 2H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.89 (m, 2H), 1.49 (t, 3H, J=7.3 Hz), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 501.4 (M+H)+.
Example 812-METHYL-N-(3-{1-[(3S)-3-(1-NAPHTHYLOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl)phenyl)-2-methylpropanamide (5.20 mg, 0.0137 mmol), 1-naphthol (100 mg), triphenylphosphine (30.0 mg, 0.115 mmol) and diethyl azodicarboxylate (7.42 mg, 0.0426 mmol) in THF (0.50 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (4.30 mg, 66.2% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.72 (d, 1H, J=8.5 Hz), 7.59 (d, 1H, J=8.5 Hz), 7.5 (m, 2H), 7.45-7.30 (m, 6H), 7.25 (m, 3H), 7.17 (apparent dd, 1H, J=2.6, 9.0 Hz), 7.01 (apparent d, 1H, J=2.6 Hz), 6.97 (apparent d, 1H, J=7.9 Hz), 5.46 (apparent dd, 1H, J=4.5, 8.1 Hz), 3.12 (m, 2H), 2.61 (m, 2H), 2.53 (apparent sept, partially hidden, 2H, J=7.9 Hz), 2.30-2.10 (m, 6H), 1.90 (m, 2H), 1.25 (d, 6H, J=7.3 Hz, overlapped); ESMS m/e: 507.2 (M+H)+.
Example 82N-(3-{1-[(3S)-3-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)-3-PHENYLPROPYL]-4-PIPERIDINYL)PHENYL)-2-METHYLPROPANAMIDE
Step 1:
2-[(1S)-3-CHLORO-1-PHENYLPROPYL]-1H-ISOINDOLE-1,3(2H)-DIONE: According to the general procedure descibed in Srebnik, M.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1988, 53, 2916-2920, a mixture of phthalimide (0.147 g, 1.0 mmol), (R)-(+)-3-chloro-phenyl-1-propanol (0.171 g, 1.0 mmol), triphenylphosphine (0.262 g, 1.0 mmol) and diethyl azodicarboxylate (0.174 g, 1.0 mmol) in 5.0 mL of THF was stirred at room temperature for 24 h. The reaction mixture was concentrated in vacuo. The residue was washed with pentane (×3) and the combined pentane extracts were concentrated and chromatographed (silica with hexanes-EtOAc 8:1 as the eluent) to give the desired product (0.121 g, 50.2%) as a yellow solid: 1H NMR (400 MHz, CDCl3) δ 7.82 (apparent dd, 2H, J=2.9 Hz), 7.70 (apparent dd, 2H, J=2.9 Hz), 7.56 (m, 2H), 7.39-7.27 (m, 3H), 5.64 (apparent dd, 1H, J=7.0, 9.2 Hz), 3.57 (m, 2H), 3.05 (m, 1H), 2.82 (apparent sept, 1H, J=7.0 Hz); ESMS m/e: 300.13 (M+H)+.
Step 2:
N-(3-{1-[(3S)-3-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of potassium carbonate (29.2 mg, 0.211 mmol), sodium iodide (47.5 mg, 0.317 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (51.8 mg, 0.211 mmol) 2-[(1S)-3-chloro-1-phenylpropyl]-1H-isoindole-1,3(2H)-dione (63.1 mg, 0.211 mmol) in DMF (5.0 mL) was stirred at 100° C. for 3 hrs, at which time TLC indicated that the reaction was complete. The reaction mixture was poured into water (50 mL) and the aqueous layer was extracted with methylene chloride (3×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was purified by Prep-TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to give the desired product (74.1 mg, 77.1%) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.83 (apparent dd, 2H, J=2.9 Hz), 7.69 (apparent dd, 2H, J=2.9 Hz), 7.56 (apparent dt, 3H, J=2.9, 7.3 Hz), 7.33 (m, 4H), 7.21 (t, 1H, J=7.8 Hz), 7.09 (s, 1H), 6.81 (apparent d, 1H, J=7.8 Hz), 5.49 (apparent dd, 1H, J=5.5, 9.5 Hz), 2.98 (d, 1H, J=9.5 Hz), 2.87 (m, 2H), 2.50 (apparent sept, 1H, J=6.7 Hz), 2.40-2.35 (m, 4H), 1.94 (m, 2H), 1.70-1.50 (m, 4H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 510.37 (M+H)+.
Example 832-METHYL-N-(3-{1-[(3S)-3-(4-PHENOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE
Step 1:
4-{[(1S)-3-CHLORO-1-PHENYLPROPYL]OXY}-(4-PHENOXY)BENZENE: A mixture of 4-phenoxyphenol (1.86 g, 10.0 mmol), (R)-(−)-3-chloro-phenyl-1-propanol (1.70 g, 10.0 mmol), triphenylphosphine (2.62 g, 10.0 mmol), diethyl azodicarboxylate (1.57 mL, 10.0 mmol) in 5.0 mL of THF was stirred at room temperature for 24 h. The reaction mixture was concentrated in vacuo. The residue was washed with pentane (×3) and the combined pentane extracts were concentrated and chromatographed (silica with hexanes-EtOAc 97:3 as the eluent) to give the desired product as a thick oil which solidified on standing (2.51 g, 75.7%): 1H NMR (400 MHz, CDCl3) δ 7.4-7.23 (m, 7H), 7.03 (apparent t, 1H, J=7.3 Hz), 6.91 (apparent dm, 2H, J=7.8 Hz), 6.93 (apparent q, 4H, J=7.8 Hz), 5.31 (apparent dd, 1H, J=4.5, 8.6 Hz), 3.82 (m, 1H), 3.62 (apparent quintet, 1H, J=5.6 Hz), 2.47 (m, 1H), 2.20 (m, 1H).
Step 2:
2-METHYL-N-(3-{1-[(3S)-3-(4-PHENOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (65.5 mg, 0.266 mmol), 4-{[(1S)-3-chloro-1-phenylpropyl]oxy}-(4-phenoxy)benzene (0.100 mg, 0.296 mmol), potassium carbonate (40.9 mg, 0.296 mmol) and sodium iodide (67.0 mg, 0.444 mmol) in DMF (1.0 mL) at 100° C. for 3 hours. The reaction mixture was poured into water (50 mL) and the aqueous layer was extracted with methylene chloride (3×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was purified by Prep-TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to give the desired product (0.109 g, 74.6%) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H), 7.40-7.30 (m, 4H), 7.20-7.10 (m, 6H), 7.09 (s, 1H), 6.99 (apparent d, 1H, J=7.8 Hz), 6.98 (apparent t, 1H, J=7.8 Hz), 6.93 (apparent d, 2H, J=8.4 Hz), 6.84 (m, 2H), 5.20 (apparent dd, 1H, J=4.4, 8.5 Hz), 3.03 (m, 2H), 2.51 (m, 4H), 2.24 (apparent sept, 1H, J=7.8 Hz), 2.20-2.10 (m, 3H), 1.90 (m, 4H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 549.41 (M+H)+; Anal. Calc. for C36H40N2O3: C, 78.80; H, 7.35; N, 5.11. Found: C, 78.58; H, 7.48; N, 5.09.
Example 84N-(4-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE
Step 1:
1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-(4-NITROPHENYL)-1,2,3,6-TETRAHYDROPYRIDINE: A mixture of potassium carbonate (24.0 mg, 0.174 mmol), sodium iodide (39.0 mg, 0.260 mmol), 4-(4-nitrophenyl)-1,2,3,6-tetrahydropyridine (35.4 mg, 0.174 mmol) and 4-([(1R)-3-chloro-1-phenylpropyl]oxy)-1,2-dimethoxybenzene (53.4 mg, 0.174 mmol) in DMF (0.5 mL) was stirred at 100° C. for 3 hrs, at which time TLC indicated that the reaction was complete. The reaction mixture was poured into water (5.0 mL) and the aqueous layer was extracted with methylene chloride (3×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was purified by Prep-TLC plates [1:1=hexane:ethyl acetate with 1% NH3] afforded the product (63.1 mg, 76.6%) as a yellow oil. The product was used in next reaction without further purification.
Step 2:
4-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}ANILINE: A 25-mL RB flask, equipped with a hydrogen-filled balloon, was charged with 1-[(3R)-3-(3,4-dimethoxyphenoxy)-3-phenylpropyl]-4-(4-nitrophenyl)-1,2,3,6-tetrahydropyridine (63.0 mg, 0.133 mmol), palladium on carbon (5.0 mol-eq %, 0.00665 mmol, 7.04 mg) and ethanol (2.0 mL) at room temperature. After 1 hr the reaction mixture was filtered through a plug of Celite 545 and concentrated under reduced pressure. The crude product (54.1 mg, 89.4%) was used in next reaction without further purification.
Step 3:
N-(4-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 4-{1-[(3R)-3-(3,4-dimethoxyphenoxy)-3-phenylpropyl]-4-piperidinyl}aniline (5.31 mg, 0.0119 mmol), isobutyryl chloride (2.08 mg, 0.019 mmol), N,N-diisopropylethylamine (8.40 mg, 0.0650 mmol) in methylene chloride (1.0 mL) was stirred at room temperature for 24 hours. The reaction mixture was concentrated and chromatographed using a preparative TLC plate [2.5% of NH3 (2.0 M in methanol) in CHCl3] to give the product (3.5 mg, 56.5%) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.38 (d, 1H, J=8.6 Hz), 7.30-7.20 (m, 4H), 7.20 (m, 1H), 7.11 (d, 2H, J=8.6 Hz), 7.04 (s, 1H), 6.57 (d, 1H, J=8.3 Hz), 6.44 (d, 1H, J=2.6 Hz), 6.22 (dd, 1H, J=2.6, 8.3 Hz), 5.09 (apparent dd, 1H, J=4.4, 8.1 Hz), 3.72 (s, 3H), 3.70 (s, 3H), 3.08 (m, 2H), 2.57 (m, 2H), 2.43 (apparent sept, partially hidden, 2H, J=6.8 Hz), 2.30-2.10 (m, 6H), 1.80 (m, 2H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 517.3 (M+H)+.
Example 85 N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Into a 25-mL RB-flask was added triphenylphosphine (9.80 mg, 0.0375 mmol), diethyl azodicarboxylate (5.22 mg, 0.0300 mmol), N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 3-hydroxyacetophenone (100 mg) and THF (1.0 mL) at room temperature. The reaction mixture was stirred at room temperature overnight (16 hrs). The solvent was removed under reduced pressure and the residue was purified by preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to afford the desired product (2.73 mg, 39.9%) as a thick oil: 1H NMR (CDCl3) δ 7.70-7.64 (m, 2H), 7.54 (m, 2H), 7.49-7.44 (m, 6H), 7.25 (m, 1H), 7.05 (d, 1H, J=8.3 Hz), 6.96 (apparent d, 1H, J=7.7 Hz), 5.34 (apparent dd, 1H, J=4.8, 8.2 Hz), 3.15 (m, 2H), 2.67 (m, 2H), 2.52 (s, 3H), 2.53 (apparent sept, partially hidden, 2H, J=7.6 Hz), 2.30-2.10 (m, 6H), 1.89 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 499.4 (M+H)+.
The following additional abbreviations are used: HOAc, acetic acid; DMF, N,N-dimethylformamide; EtOAc, ethyl acetate; MeOH, methanol; NMP, 1-methyl-2-pyrrolidinone; TEA, triethylamine; THF, tetrahydrofuran; All solvent ratios are volume/volume unless stated otherwise.
1-(4-METHYLPHENYL)1H-INDOLE: A mixture of 1-H-indole (58.5 mg, 0.500 mmol), 1-(iodo)-4-methylbenzene (0.218 g, 1.00 mmol), copper powder (32.0 mg, 0.500 mmol), and K2CO3 (0.138 g, 1.00 mmol) in 1-methyl-2-pyrrolidinone (1 mL) was heated at 150° C. for 12 h under argon. The resulting mixture was diluted with H2O (6 mL). The aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by preparative TLC using EtOAc/hexane (1:4) to give the desired product (82 mg, 79%). 1H NMR (400 MHz, CDCl3) δ 7.67 (d, 1H, J=7.7 Hz), 7.52 (d, 1H, J=7.4 Hz), 7.38 (d, 2H, J=8.4 Hz), 7.34-7.29 (m, 3H), 7.21 (t, 1H, J=7.0 Hz), 7.15 (t, 1H, J=7.0 Hz), 6.66 (d, 1H, 3.3 Hz), 2.43 (s, 3H); ESMS m/e: 208.0 (M+H)+.
Example 86N-(3-{1-[(6-CHLORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A solution of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.369 g, 1.50 mmol) and 37 wt % aqueous formaldehyde (30.0 mg, 1.50 mmol) in 1 mL of HOAc:dioxane (1:4) was added to 6-chloro-1-H-indole (0.152 g, 1.00 mmol) and the reaction mixture was stirred for 12 h at room temperature. The resulting mixture was diluted with H2O (10 mL). The aqueous layer was extracted with CH2Cl2 (3×100 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by preparative TLC on silica using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (79 mg, 42%). 1H NMR (400 MHz, CDCl3) δ 9.14 (s, 1H), 8.04 (s, 1H), 7.52 (t, 2H, J=8.1 Hz), 7.35 (d, 2H, J=13.3 Hz), 7.18 (t, 1H, J=7.9 Hz), 7.09 (dd, 1H, J=1.9, 8.5 Hz), 6.85 (d, 1H, J=7.4 Hz), 5.18 (s, 1H), 4.01 (s, 2H), 2.55 (septet, 1H, J=6.8 Hz), 2.48-2.34 (m, 3H), 2.08-1.95 (m, 4H), 1.78 (d, 2H, J=12.8 Hz), 1.22 (d, 6H, J=6.8 Hz); ESMS m/e: 410.1 (M+H)+.
Example 872-METHYL-N-[3-(1-{[1-(4-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[[(6-chloro-1H-indol-3-yl)methyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 1-(4-methylphenyl)-1H-indole (0.207 g, 1.00 mmol) provided 2-methyl-N-[3-(1-{[1-(4-methylphenyl)-1H-indol-3-yl]methyl}-4-piperidinyl)phenyl]propanamide (0.441 g, 78%). 1H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.73 (d, 1H, J=7.2 Hz), 7.58-7.51 (m, 2H), 7.43-7.36 (m, 3H), 7.35-7.29 (m, 3H), 7.26-7.15 (m, 3H), 6.89 (d, 1H, J=7.7 Hz), 4.07 (s, 2H), 3.36 (d, 2H, J=11.6 Hz), 2.59-2.39 (m, 6H), 2.55 (sept, 1H, J=6.7 Hz), 2.10-1.98 (m, 2H), 1.83 (d, 2H, J=12.9 Hz), 1.23 (d, 6H, J=6.9 Hz); ESMS m/e: 466.2 (M+H)+.
2-[(1S)-3-CHLORO-1-PHENYLPROPYL]-1H-ISOINDOLE-1,3(2H)-DIONE: Triphenylphosphine (5.25 g, 20.0 mmol) and diethyl azodicarboxylate (3.58 g, 20.0 mmol) were added to a solution of (1R)-3-chloro-1-phenyl-1-propanol (3.42 g, 20.0 mmol) and phthalimide (2.94 g, 20.0 mmol) in THF (100 mL). The reaction mixture was stirred for 4 h at room temperature. The solvent was removed under reduced pressure and the residue was triturated with pentane (3×50 mL). The combined pentane fractions were concentrated in vacuo and the crude product was purified by chromatography on silica using EtOAc/hexane (3:97) to give the desired product (4.40 g, 74%). 1H NMR (400 MHz, CDCl3) δ 7.82 (d, 1H, J=5.7 Hz), 7.81 (d, 1H, J=5.5 Hz), 7.70 (d, 1H, J=5.4 Hz), 7.69 (d, 1H, J=5.8 Hz), 7.55 (d, 2H, J=7.2 Hz), 7.38-7.28 (m, 3H), 5.64 (dd, 1H, J=6.8, 9.2 Hz), 3.56 (t, 2H, J=6.4 Hz), 3.11-3.02 (m, 1H), 2.85-2.75 (m, 1H); ESMS m/e: 300.1 (M+H)+.
N-(3-{1-[(3S)-3-(1,3-DIOXO-1,3-DIHYDRO-2H-ISOINDOL-2-YL)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 2-[(1S)-3-chloro-1-phenylpropyl]-1H-isoindole-1,3(2H)-dione (4.50 g, 15.0 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (4.26 g, 15.0 mmol), K2CO3 (4.16 g, 30.0 mmol), and NaI (3.40 g, 20.0 mmol) in DMF (40 mL) was stirred at 90° C. for 12 hrs. The reaction mixture was diluted with water (50 mL), extracted with CH2Cl2 (3×50 mL), and the combined organic extracts were washed with brine (50 mL), dried over MgSO4, and concentrated under reduced pressure. The residue was purified by chromatography on silica using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (5.10 g, 74%). 1H NMR (400 MHz, CDCl3) δ 7.83 (d, 1H, J=5.5 Hz), 7.82 (d, 1H, J=5.5 Hz), 7.71 (d, 1H, J=5.5 Hz), 7.70 (d, 1H, J=5.4 Hz), 7.56 (d, 2H, J=7.1 Hz), 7.35-7.27 (m, 5H), 7.22 (t, 1H, J=7.5 Hz), 7.09 (s, 1H), 6.81 (d, 1H, J=7.8 Hz), 5.49 (dd, 1H, J=5.5, 9.6 Hz), 2.97 (d, 1H, J=10.1 Hz), 2.92-2.82 (m, 2H), 2.44 (sept, 1H, J=6.7 Hz), 2.40-2.29 (m, 3H), 2.00-1.83 (m, 2H), 1.79-1.39 (m, 5H), 1.26 (d, 6H, J=6.9 Hz); ESMS m/e: 510.4 (M+H)+.
N-(3-{1-[(3S)-3-AMINO-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (4.60 g, 9.06 mmol) and hydrazine (3.62 g, 72.4 mmol) in ethanol (150 mL) was refluxed for 12 h. The resulting white precipitate was filtered out and the filtrate was concentrated under vacuum. The residue was washed with CH2Cl2/EtOAc (1:1, 3×50 mL) and the combined organic fractions were concentrated in vacuo to give the desired product (2.90 g, 95%). 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.39-7.30 (m, 6H), 7.29-7.19 (m, 2H), 6.95 (d, 1H, J=7.2), 4.01 (t, 1H, J=6.8 Hz), 3.04 (t, 2H, J=10.6 Hz), 2.62-2.30 (m, 6H), 2.05-1.70 (m, 8H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 380.4 (M+H)+.
Example 882-METHYL-N-(3-{1-[(3S)-3-PHENYL-3-(PROPIONYLAMINO)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[(3S)-3-(acetylamino)-3-phenylpropyl]-4-piperidinyl)phenyl)-2-methylpropanamide, N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (11.0 mg, 0.0280 mmol) and propionyl chloride (3.80 mg, 0.0420 mmol) provided 2-methyl-N-(3-{1-[(3S)-3-phenyl-3-(propionylamino)propyl]-4-piperidinyl}phenyl)propanamide (12 mg, 97% yield). 1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.59 (s, 1H), 7.40-7.20 (m, 7H), 6.96 (s, 1H), 5.19-5.12 (m, 1H), 3.18 (d, 1H, J=12.0 Hz), 2.9.9 (d, 1H, J=10.4 Hz), 2.93-2.86 (m, 1H), 2.61-2.40 (m, 3H), 2.38-2.23 (m, 3H), 2.19-1.75 (m, 8H), 1.25 (d, 6H, J=6.9 Hz), 1.22-1.08 (m, 3H); ESMS m/e: 436.4 (M+H)+.
Example 89N-{3-[1-((3S)-3-{[(4-FLUOROPHENYL)ACETYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: A mixture of N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (11.0 mg, 0.0280 mmol) and (4-fluorophenyl)acetyl chloride (7.20 mg, 0.0420 mmol) in THF (5 mL) was stirred at room temperature for 4 h. The solvent was removed under reduced pressure and the residue was purified by preparative TLC using Hexane:EtOAc (2:1) to give the desired product (13 mg, 90% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, 1H, J=8.4 Hz), 7.59 (s, 1H), 7.31-6.93 (m, 13H), 5.13 (q, 1H, J=6.0 Hz), 3.56 (s, 2H), 3.07 (d, 1H, J=11.7 Hz), 2.91 (d, 1-H, J=11.0 Hz), 2.62-2.42 (m, 2H), 2.40-2.30 (m, 1H), 2.12-1.54 (m, 9H), 1.24 (d, 6H, J=6.7 Hz); ESMS m/e: 515.3 (M+H)+.
Example 90N-(3-{1-[3-(1,2-DIPHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 1,1-diphenylhydrazine hydrochloride (10.3 mg, 0.0470 mmol), 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide (14.7 mg, 0.0362 mmol), ZnCl2 (14.85 mg, 0.109 mmol), and HOAc (0.5 mL) was heated for 4 h at 80° C. The resulting crude mixture was diluted with water (10 mL), the aqueous layer was neutralized with saturated K2CO3 and extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide (4.1 mg, 37%). 1H NMR (400 MHz, CDCl3) δ 7.71-7.65 (m, 1H), 7.42 (d, 1H, J=7.4 Hz), 7.39 (s, 1H), 7.36-7.15 (m, 15H), 6.94 (d, 1H, J=7.8 Hz), 3.12 (d, 2H, J=11.2 Hz), 2.90 (t, 2H, J=7.8 Hz), 2.59-2.45 (m, 3H), 2.19-1.91 (m, 7H), 1.82 (d, 2H, J=13.5 Hz), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 555.3 (M+H)+.
Example 91N-(3-{1-[3-(5-METHOXY-2-PHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide (15.6 mg, 38.2 mmol), and 1-(4-methoxyphenyl)hydrazine hydrochloride (8.00 mg, 0.0458 mmol) provided N-(3-{1-[3-(5-methoxy-2-phenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide (3.9 mg, 20%). 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H); 7.55 (d, 2H, J=7.4 Hz), 7.43-7.39 (m, 3H), 7.38-7.35 (m, 2H), 7.27-7.19 (m, 3H), 7.08 (d, 1H, J=7.4 Hz), 6.94 (d, 1H, J=7.6 Hz), 6.87 (dd, 1H, J=4.0, 6.6 Hz), 3.88 (s, 3H), 3.80-3.69 (m, 1H), 2.99 (d, 2H, J=11.7 Hz), 2.89 (t, 2H, J=7.3), 2.55-2.39 (m, 4H), 2.02-1.88 (m, 3H), 1.82-1.68 (m, 4H), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 510.3 (M+H)+.
Example 92N-(3-{1-[4-(5-METHOXY-2-PHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide (14.3 mg, 0.0339 mmol) and 1-(4-methoxyphenyl)hydrazine hydrochloride (7.10 mg, 0.0407 mmol) provided N-(3-{1-[4-(5-methoxy-2-phenyl-1H-indol-3-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.8 mg, 33%). 1H NMR (400 MHz, CDCl3) δ 7.95 (d, 2H, J=7.8 Hz), 7.61-7.15 (m, 11H), 6.97 (d, 1H, J=7.0 Hz), 3.88 (s, 3H), 3.09 (d, 2H, J=11.3 Hz), 2.99 (t, 2H, J=7.0 Hz), 2.55-2.35 (m, 4H), 2.12-1.70 (m, 6H), 1.68-1.52 (m, 2H), 1.48-1.34 (m, 2H), 1.25 (d, 6H, J=6.7 Hz); ESMS m/e: 524.3 (M+H)+.
Example 932-METHYL-N-(3-{1-[(1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, N-{3-[1-(3,3-dimethoxypropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (15.2 mg, 0.0436 mmol) and 1,1-diphenylhydrazine hydrochloride (11.6 mg, 0.0524 mmol) provided 2-methyl-N-(3-{1-[(1-phenyl-1H-indol-3-yl)methyl]-4-piperidinyl}phenyl)propanamide (11 mg, 56%). 1H NMR (400 MHz, CDCl3) δ 7.79 (d, 1H, J=7.8 Hz), 7.57 (d, 1H, J=7.7 Hz), 7.54-7.47 (m, 4H), 7.43-7.32 (m, 4H), 7.25-7.16 (m, 4H), 6.95 (d, 1H, J=7.8 Hz), 3.87 (s, 2H), 2.53-2.47 (m, 2H), 2.21 (dt, 2H, J=3.0, 10.5 Hz), 2.12-1.77 (m, 6H), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 451.3 (M+H)+.
Example 942-METHYL-N-(3-{1-[(4E)-4-PHENYL-4-(2-PYRIDINYLHYDRAZONO)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide (8.70 mg, 0.0223 mmol) and 2-hydrazinopyridine (2.92 mg, 0.0268 mmol) provided 2-methyl-N-(3-{1-[(4E)-4-phenyl-4-(2-pyridinylhydrazono)butyl]-4-piperidinyl}phenyl)propanamide (2.5 mg, 24%). 1H NMR (400 MHz, CDCl3) δ 7.97 (d, 1H, J=8.6 Hz), 7.85 (d, 1H, J=7.3 Hz), 7.64-7.27 (m, 9H), 7.09 (d, 1H, J=8.0 Hz), 6.97 (d, 1H, J=8.4 Hz), 6.73 (q, 1H, J=6.6 Hz), 3.52-3.48 (m, 2H), 3.20-3.10 (m, 2H), 2.85-1.75 (m, 13H), 1.26 (d, 6H, J=6.8 Hz); ESMS m/e: 484.4 (M+H)+.
Example 95N-(3-{1-[3-(5-METHOXY-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide (23.5 mg, 0.0628 mmol) and 1-(4-methoxyphenyl)hydrazine hydrochloride (13.2 mg, 0.0774 mmol) provided N-(3-{1-[3-(5-methoxy-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide (11 mg, 42%). 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.45 (s, 1H), 7.32 (d, 1H, J=8.4 Hz), 7.28-7.21 (m, 2H), 7.10 (s, 1H), 7.05 (d, 1H, J=2.3 Hz), 7.00-6.91 (m, 2H), 6.85 (dd, 1H, J=2.7, 9.0 Hz), 3.87 (s, 3H), 3.06 (d, 2H, J=11.6 Hz), 2.75 (t, 2H, J=7.2 Hz), 2.55-2.42 (m, 4H), 2.08-1.90 (m, 4H), 1.88-1.74 (m, 4H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 434.2 (M+H)+.
TERT-BUTYL 4-[3-(PROPIONYLAMINO)PHENYL]-1-PIPERIDINECARBOXYLATE: Propionyl chloride (5.53 g, 0.0597 mol) was added dropwise to a solution of tert-butyl 4-(3-aminophenyl)-1-piperidinecarboxylate (15.0 g, 0.0543 mol) and TEA (16.5 g, 0.163 mol) in THF (200 mL) and the mixture was stirred at room temperature for 3 h. Water (50 mL) was added to the reaction mixture, the aqueous layer was extracted with CH2Cl2 (3×100 mL), and the combined organic extracts were washed with brine (50 mL), dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatography on silica using hexane/EtOAc (10:1) to afford the product (18.8 g, 99%). 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H), 7.34-7.21 (m, 3H), 6.93 (d, 1H, J=7.4 Hz), 2.77 (t, 2H, J=11.5 Hz), 2.68-2.58 (m, 1H), 2.38 (q, 2H, J=7.6 Hz), 1.87-1.67 (m, 4H), 1.67-1.54 (m, 2H), 1.48 (s, 9H), 1.25 (t, 3H, J=7.5 Hz); ESMS m/e: 333.4 (M+H)+.
N-[3-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Into a stirred solution of tert-butyl 4-[3-(propionylamino)phenyl]-1-piperidinecarboxylate (18.8 g, 0.0543 mmol) in dioxane (100 mL) at 5° C. was bubbled HCl gas for 2 h. The solvent was removed in vacuo, the residue was dissolved in water (100 mL) and neutralized by adding 10% KOH aqueous solution. The aqueous layer was extracted (3×200 mL) with a mixture of CHCl3/isopropyl alcohol (3:1), and the combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to afford the desired product (12.6 g, 99%). 1H NMR (400 MHz, CDCl3) δ 7.44 (s, 1H), 7.32 (d, 1H, J=7.2 Hz), 7.28-7.21 (m, 1H), 7.09 (s, 1H), 6.97 (d, 1H, J=7.6 Hz), 3.18 (d, 2H, J=12.6 Hz), 2.73 (dt, 2H, J=2.2, 11.2 Hz), 2.65-2.57 (m, 1H), 2.38 (q, 2H, J=7.4 Hz), 1.83 (d, 2H, J=12.1 Hz), 1.70-1.61 (m, 3H), 1.25 (t, 3H, J=7.5 Hz); ESMS m/e: 233.1 (M+H)+.
TERT-BUTYL 4-{3-[(CYCLOPROPYLCARBONYL)AMINO]PHENYL}-1-PIPERIDINECARBOXYLATE: According to the procedure used for the synthesis of tert-butyl 4-[3-(propionylamino)phenyl]-1-piperidinecarboxylate, tert-butyl 4-(3-aminophenyl)-1-piperidinecarboxylate (16.47 g 0.0596 mol) and cyclopropanecarbonyl chloride (6.27 g, 0.0597 mol) provided the tert-butyl 4-{3-[(cyclopropylcarbonyl)amino)phenyl}-1-piperidinecarboxylate (18.1 g, 100%). 1H NMR (400 MHz, CDCl3) δ 7.55-7.46 (m, 2H), 7.29-7.21 (m, 2H), 6.96-6.89 (m, 1H), 2.79 (t, 2H, J=12.1 Hz), 2.68-2.58 (m, 1H), 1.84 (d, 2H, J=12.6 Hz), 1.83-1.76 (m, 4H), 1.48 (s, 9H), 1.19-1.12 (m, 1H), 1.09-1.05 (m, 2H), 0.89-0.75 (m, 2H); ESMS m/e: 345.5 (M+H)+.
N-[3-(4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: According to the procedure used for the synthesis of N-[3-(4-piperidinyl)phenyl)propanamide, tert-butyl 4-{3-[(cyclopropylcarbonyl)amino]phenyl}-1-piperidinecarboxylate (18.9 g, 0.0543 mol) provided N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide (13.2 g, 100%). 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.36-7.22 (m, 3H), 7.23 (d, 1H, J=6.9 Hz), 3.17 (d, 2H, J=11.9 Hz), 2.72 (dt, 2H, J=2.6, 12.2 Hz), 2.65-2.55 (m, 1H), 1.82 (d, 2H, J=13.9 Hz), 1.63 (dt, 3H, J=4.1, 12.5 Hz), 1.53-1.45 (m, 1H), 1.11-1.06 (m, 2H), 0.87-0.81 (m, 2H); ESMS m/e: 245.03 (M+H)+.
1-(6-CHLOROHEXYL)-1H-INDOLE: To a mixture of NaH (0.249 g, 10.0 mmol) in DMF (5 mL) at 0° C. was added a solution of 1-H-indole (0.585 g, 5.00 mmol) in DMF (2 mL). The reaction mixture was stirred for 30 minutes and warmed up to room temperature. Then 1-bromo-6-chlorohexane (0.998 g, 5.00 mmol) was added dropwise by syringe and the reaction mixture was stirred overnight. The reaction mixture was diluted with EtOAc (30 mL), washed with water (3×10 mL), dried over MgSO4, concentrated in vacuo and purified by chromatography using hexane/EtOAc (97.5:2.5) to give the desired product (0.900 g, 76%) 1H NMR (CDCl3) δ 7.76-7.54 (m, 1H), 7.47-6.96 (m, 4H), 6.60-6.34 (m, 1H), 4.13 (t, 2H, J=6.8 Hz), 3.50 (t, 2H, J=5.6 Hz), 1.98-1.79 (m, 2H), 1.79-1.64 (m, 2H), 1.54-1.17 (m, 4H).
1-(5-CHLOROPENTYL)-1H-INDOLE: According to the procedure used for the synthesis of 1-(6-chlorohexyl)-1H-indole, 1-H-indole (0.585 g, 5.00 mmol) and 1-bromo-5-chloropentane (0.928 g, 5.00 mmol) gave the desired product (0.890 g, 80%). 1H NMR (CDCl3) δ 7.76-7.51 (m, 1H), 7.44-6.96 (m, 4H), 6.60-6.38 (m, 1H), 4.11 (t, 2H, J=6.8 Hz), 3.47 (t, 2H, J=6.4 Hz), 1.97-1.79 (m, 2H), 1.79-1.61 (m, 2H), 1.58-1.32 (m, 2H).
Example 96N-(3-{1-[6-(1H-INDOL-1-YL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: 1-(6-Chlorohexyl)-1H-indole (23.6 mg, 0.100 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (24.6 mg, 0.100 mmol), K2CO3 (27.6 mg, 0.200 mmol), NaI (22.5 mg, 0.150 mmol) and DMF (1.00 mL) were combined and stirred overnight at 100° C. The reaction mixture was cooled to room temperature and the crude material was purified by preparative TLC using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product as a yellow solid (40 mg, 90%). 1H NMR (400 MHz, CDCl3) δ 8.08-6.52 (m, 11H), 4.17 (t, 2H, J=7.2 Hz), 3.26 (d, 2H, J=11.6 Hz), 2.74-2.52 (m, 4H), 2.44-2.28 (m, 2H), 2.20-2.02 (m, 2H), 1.98-1.82 (m, 4H), 1.78-1.62 (m, 2H), 1.43-1.28 (m, 4H), 1.28 (d, 6H, J=6.8 Hz); ESMS m/e: 446.5 (M+H)+.
Example 97N-(3-{1-[5-(1H-INDOL-1-YL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared as above, using 1-(5-chloropentyl)-1H-indole (22.2 mg, 0.100 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (24.6 mg, 0.100 mmol), K2CO3 (27.6 mg, 0.200 mmol), NaI (23.0 mg, 0.150 mmol) and DMF (1.00 mL), giving the desired product as a yellow oil (36 mg, 81%). 1H NMR (400 MHz, CDCl3) δ 8.08-6.52 (m, 11H), 4.19 (t, 2H, J=7.2 Hz), 3.26-3.10 (m, 2H), 2.71-2.55 (m, 2H), 2.55-2.42 (m, 2H), 2.35-2.12 (m, 2H), 2.12-1.80 (m, 6H), 1.80-1.57 (m, 2H), 1.51-1.34 (m, 2H), 1.31 (d, 6H, J=6.8 Hz); ESMS m/e: 432.2 (M+H)+.
Example 98N-(4-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[4-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE (Example 108) N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 9-ethyl-9H-carbazole-3-carbaldehyde (22.3 mg, 0.100 mmol) and 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide (24.6 mg, 0.100 mmol) provided N-(4-[(1-[(9-ethyl-9H-carbazol-3-yl)methyl]-4-piperidinyl}phenyl)-2-methylpropanamide. The product was obtained as a white crystalline solid (20 mg, 44%). 1H NMR (400 MHz, CDCl3) δ 8.21-7.09 (m, 12H), 4.38 (q, 2H, J=7.2 Hz), 3.81 (s, 2H), 3.25-3.03 (m, 2H), 2.60-2.38 (m, 2H), 2.31-2.09 (m, 2H), 1.98-1.69 (m, 4H), 1.44 (t, 3H, J=7.2 Hz), 1.23 (d, 6H, J=6.8 Hz); ESMS m/e: 454.3 (M+H)+.
Example 99N-(3-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of N-(3-{1-[4-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE (Example 108) N-(4-{1-[(9-ethyl-9H-carbazol-3-yl)methyl]-4-piperidinyl}phenyl)-2-methylpropanamide, 9-ethyl-9H-carbazole-3-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide afforded N-(3-{1-[(9-ethyl-9H-carbazol-3-yl)methyl]-4-piperidinyl)phenyl)-2-methylpropanamide (37 mg, 95%). 1H NMR (400 MHz, CDCl3) δ 8.24-6.29 (m, 12H), 4.37 (q, 2H, J=7.2 Hz), 3.82 (s, 2H), 3.23-3.06 (m, 2H), 2.65-2.38 (m, 2H), 2.31-2.11 (m, 2H), 2.01-1.73 (m, 4H), 1.43 (t, 3H, J=7.2 Hz), 1.25 (d, 6H, J=4.0 Hz); ESMS m/e: 454.3 (M+H)+.
Example 100N-[3-(1-{[1-(4-METHOXYPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of 1-(4-methylphenyl)1H-indole, N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide (37.5 mg, 0.100 mmol) and 1-iodo-4-methoxybenzene (46.8 mg, 0.200 mmol) gave the desired product (27 mg, 56%). 1H NMR (400 MHz, CDCl3) δ 7.70-6.58 (m, 14H), 3.88 (s, 3H), 3.67 (s, 2H), 3.14-3.01 (m, 2H), 2.57-2.41 (m, 2H), 2.25-2.01 (m, 2H), 1.93-1.69 (m, 4H), 1.24 (d, 6H, J=7.2 Hz); ESMS m/e: 482.2 (M+H)+.
Example 101N-[3-(1-{[1-(4-FLUOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: According to the procedure used for the synthesis of 1-(4-methylphenyl)1H-indole, N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide (37.5 mg, 0.100 mmol) and 1-fluoro-4-iodobenzene (44.4 mg, 0.200 mmol) gave the desired product (21 mg, 45%). 1H NMR (400 MHz, CDCl3) δ 7.71-6.60 (m, 14H), 3.69 (s, 2H), 3.19-2.99 (m, 2H), 2.62-2.41 (m, 2H), 2.22-2.07 (m, 2H), 1.94-1.70 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 470.2 (M+H)+.
Example 102METHYL-4-[5-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-IPERIDINYL}METHYL)-1H-INDOL-1-YL]BENZOATE: According to the procedure used for the synthesis of 1-(4-methylphenyl)1H-indole, N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide (37.5 mg, 0.100 mmol) and methyl 4-iodobenzoate (52.4 mg, 0.200 mmol) gave the desired product (11 mg, 22%). 1H NMR (400 MHz, CDCl3) δ 8.31-6.64 (m, 14H), 3.96 (s, 3H), 3.67 (s, 2H), 3.16-2.96 (m, 2H), 2.57-2.41 (m, 2H), 2.18-2.02 (m, 2H), 1.91-1.73 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 510.2 (M+H)+.
Example 1032-METHYL-N-[3-(1-{[1-(3-METHYLPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: According to the procedure used for the synthesis of 1-(4-methylphenyl)1H-indole, N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide (37.5 mg, 0.100 mmol) and 1-iodo-3-methylbenzene (43.6 mg, 0.200 mmol) gave the desired product (28 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 7.68-6.60 (m, 14H), 3.66 (s, 2H), 3.16-2.96 (m, 2H), 2.59-2.44 (m, 2H), 2.44 (s, 3H), 2.18-2.01 (m, 2H), 1.91-1.68 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 466.2 (M+H)+.
Example 104N-{3-[1-(3-{[(4-CHLORO-3-NITROPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL)-2-METHYLPROPANAMIDE: A mixture of N-{3[1-(2-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (10.0 mg, 0.0350 mmol), 4-chloro-3-nitrobenzenesulfonyl chloride (9.90 mg, 0.0380 mmol), and TEA (7.00 mg, 0.0700 mmol) in THF (2 mL) was stirred for 12 h at room temperature. The crude product was purified by preparative TLC (CH2Cl2/MeOH/isopropyl amine=19:1:0.2)- to give the desired product (16 mg, 86%). 1H NMR (400 MHz, CDCl3) δ 8.45-8.38 (m, 1H), 8.02 (d, 1H, J=8.4 Hz), 7.72 (d, 1H, J=8.8 Hz), 7.48-7.40 (m, 3H), 7.29-7.24 (m, 2H), 6.96 (d, 1H, J=7.5 Hz), 3.17-3.09 (m, 4H), 2.63-2.48 (m, 4H), 2.15 (t, 2H, J=11.8 Hz), 1.96-1.72 (m, 6H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 523.2 (M+H)+.
Example 105N-[3-(1-{5-[4-(3,4-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDIN-3-YL]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: A mixture of 3-(5-bromopentyl)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one (38.0 mg, 0.110 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (26.0 mg, 0.100 mmol), NaI (23.0 mg, 0.150 mmol), and K2CO3 (14.0 mg, 0.100 mmol) in DMF (2 mL) was heated for 1 h at 50° C. The crude product was purified by preparative TLC using CH2Cl2/MeOH/isopropyl amine (19:1:0.2) to give the desired product (21 mg, 41%). 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 7.39-7.32 (m, 2H), 7.26-7.20 (m, 2H), 7.18-7.11 (m, 1H), 7.10-7.03 (m, 1H), 6.96 (d, 1H, J=7.6 Hz), 4.80-4.73 (m, 1H), 4.62 (t, 1H, J=7.9 Hz), 4.09-4.04 (m, 1H), 3.51-3.42 (m, 1H), 3.03 (d, 2H, J=11.7 Hz), 2.82-2.72 (m, 1H), 2.51-2.42 (m, 2H), 2.32 (t, 2H, J=7.9 Hz), 2.11 (s, 1H), 2.03-1.97 (m, 2H), 1.85-1.70 (m, 4H), 1.49 (m, 4H), 1.31-1.27 (m, 1H), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 514.4 (M+H)+.
Example 1063-(2,6-DICHLOROPHENYL)-N-(5-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PENTYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: A mixture of 3-(2,6-dichlorophenyl)-4-formyl-5-isoxazolecarbonyl chloride (69.0 mg, 0.250 mmol), N-{3-[1-(5-aminopentyl)-4-piperidinyl]phenyl}-2-ethylpropanamide (44.0 mg, 0.150 mmol), TEA (30.0 mg, 0.300 mmol) in THF (2 mL) was stirred for 12 h at room temperature. The crude product was purified by preparative TLC using CH2Cl2/MeOH/isopropyl amine (19:1:0.2) to give the desired product (52 mg, 67%). 1H NMR (400 MHz, CDCl3) δ 7.52-7.49 (m, 2H), 7.49-7.41 (m, 2H), 7.39-7.31 (m, 2H), 7.29-7.21 (m, 2H), 6.92 (d, 1H, J=7.6 Hz), 3.25-3.11 (m, 5H), 2.81-2.74 (m, 4H), 2.58-2.44 (m, 4H), 2.30-2.19 (m, 2H), 1.93-1.78 (m, 4H), 1.56-1.44 (m, 2H), 1.31-1.28 (m, 2H), 1.24 (d, 6H, J=6.6 Hz); ESMS m/e: 585.2 (M+H)+.
Example 107N-[3-(1-{2-[(DIPHENYLACETYL)AMINO]ETHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: A mixture of N-{3[1-(2-aminoethyl)-4-piperidinyl]phenyl}-2-methylpropanamide (20.0 mg, 0.0700 mmol), diphenylacetyl chloride (23.0 mg, 0.110 mmol), and TEA (20.0 mg, 0.140 mmol) in THF (2 mL) was stirred overnight at 23° C. The crude product was purified by preparative TLC using CH2Cl2/MeOH/isopropyl amine (19:1:0.2) to give the desired product (8.0 mg, 47%). 1H NMR (400 MHz, CDCl3) δ 7.53 (s, 1H), 7.37-7.20 (m, 13H), 6.97-6.92 (m, 1H), 6.67 (s, 1H), 4.98 (s, 1H), 3.43 (q, 2H, J=5.9 Hz), 2.90 (d, 2H, J=11.6 Hz), 2.57-2.42 (m, 4H), 2.11 (t, 2H, J=10.4 Hz), 1.75 (d, 2H, J=12.4 Hz), 1.70-1.58 (m, 2H), 1.25 (d, 6H, J=6.7 Hz); ESMS m/e: 484.2 (M+H)+.
Example 108N-(3-{1-[4-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: 4-(4-chlorophenoxy)benzaldehyde (0.119 g, 0.510 mmol) and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.126 g, 0.510 mmol) were mixed in 1,2-dichloroethane (5 mL) and then treated with sodium triacetoxyborohydride (0.424 g, 2.00 mmol) and HOAc (0.03 mL, 0.5 mmol). The mixture was stirred overnight at room temperature. The reaction mixture was neutralized with saturated NaHCO3 aqueous solution and the aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic layers were washed with brine, dried over MgSO4, concentrated in vacuo, and purified by preparative TLC using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (53 mg, 23%). 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.34-7.19 (m, 7H), 6.98-6.87 (m, 5H), 3.50 (s, 2H), 2.98 (d, 2H, J=11.8 Hz), 2.58-2.44 (m, 2H), 2.10-1.98 (m, 2H), 1.83-1.76 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 463.2 (M+H)+.
Example 109N-{3-[1-({2,5-DIMETHYL-1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-PYRROL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 2,5-dimethyl-1-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carbaldehyde (0.136 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.69-7.56 (m, 2H), 7.53-7.32 (m, 4H), 7.28-7.18 (m, 2H), 6.99 (s, 1H), 5.98 (s, 1H), 3.43 (s, 2H), 3.16-3.06 (m, 2H), 2.57-2.42 (m, 2H), 2.07-1.95 (m, 8H), 1.89-1.76 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 498.2 (M+H)+.
Example 110N-(3-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 4-(3,4-difluorophenoxy)benzaldehyde (0.119 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.52 (s, 1H), 7.32 (d, 2H, J=8.4 Hz), 7.28-7.21 (m, 2H), 7.14-7.06 (m, 2H), 6.98-6.94 (m, 3H), 6.86-6.79 (m, 1H), 6.76-6.69 (m, 1H), 3.51 (s, 2H), 2.99 (d, 2H, J=11.7 Hz), 2.55-2.44 (m, 2H), 2.12-2.02 (m, 2H), 1.86-1.74 (m, 4H), 1.25 (d, 6H, J=7.0 Hz); ESMS m/e: 465.2 (M+H)+.
Example 111N-(3-{1-[(5-CHLORO-3-METHYL-1-PHENYL-1H-PYRAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (0.113 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.62-7.19 (m, 9H), 6.97 (s, 1H), 3.43 (s, 2H), 3.08-2.98 (m, 2H), 2.58-2.43 (m, 2H), 2.39-2.32 (m, 3H), 2.18-1.71 (m, 6H), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 451.2 (M+H)+.
Example 112N-(3-{1-[4-(3,4-DICHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 4-(3,4-dichlorophenoxy)benzaldehyde (0.136 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.53 (s, 1H), 7.36-7.18 (m, 6H), 7.08 (d, 1H, J=1.8 Hz), 6.96 (d, 3H, J=6.8 Hz), 6.84 (dd, 1H, J=2.8, 8.9 Hz), 3.51 (s, 2H), 2.99 (d, 2H, J=11.5 Hz), 2.55-2.42 (m, 2H), 2.12-2.02 (m, 2H), 1.84-1.73 (m, 4H), 1.24 (d, 6H, J=7.0 Hz); ESMS m/e: 497.1 (M+H)+.
Example 1132-METHYL-N-(3-{1-[(2-PHENYL-1H-IMIDAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by the procedure described in example 108, substituting 2-phenyl-1H-imidazole-4-carbaldehyde (88.0 mg, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, 2H, J=7.4 Hz), 7.65-7.31 (m, 6H), 7.28-7.18 (m, 2H), 7.12-7.05 (m, 1H), 6.95-6.88 (m, 1H), 3.69 (s, 2H), 3.17-3.05 (m, 2H), 2.62-2.45 (m, 2H), 2.28-2.18 (m, 2H), 1.88-1.70 (m, 4H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 403.2 (M+H)+.
Example 114N-(3-{1-[4-(DIPHENYLAMINO)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 4-(diphenylamino)benzaldehyde (0.139 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 7.39-6.92 (m, 18H), 3.49 (s, 2H), 3.02-2.99 (m, 2H); 2.59-2.43 (m, 2H), 2.15-2.03 (m, 2H), 1.92-1.76 (m, 4H), 1.23 (d, 6H, J=6.8 Hz); ESMS m/e: 504.2 (M+H)+.
Example 115N-[3-(1-{[4-BROMO-1-(4-CHLOROBENZYL)-1H-PYRAZOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by the procedure described in example 108, substituting 4-bromo-1-(4-chlorobenzyl)-1H-pyrazole-5-carbaldehyde (0.153 g, 0.510 mmol) for 4-(4-chlorophenoxy)benzaldehyde. 1H NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 7.36 (d, 1H, J=8.8 Hz), 7.34-7.30 (m, 3H), 7.29-7.26 (m, 1H), 7.22 (t, 1H, J=7.8 Hz), 7.16 (d, 2H, J=8.6 Hz), 6.95 (d, 1H, J=7.5 Hz), 5.24 (s, 2H), 3.61 (s, 2H), 3.09 (d, 2H, J=11.9 Hz), 2.55-2.42 (m, 2H), 2.19 (dt, 2H, J=4.4, 11.4 Hz), 1.89-1.76 (m, 4H), 1.24 (d, 6H, J=6.7 Hz); ESMS m/e: 529.1 (M+H)+.
1-(3-[{(1R)-3-CHLORO-PHENYLPROPYL]OXY}PHENYL)ETHANONE: Azodicarboxylate (5.37 g, 0.0310 mol) was added to a solution of triphenylphosphine (8.09 g, 0.0308 mol), 1S-3-chloro-1-phenyl-1-propanol (4.20 g, 0.031 mol) and, 1-(3-hydroxyphenyl)ethanone in THF (150 mL). The reaction mixture was stirred for 4 days at 23° C. The solvent was removed under reduced pressure and the residue was triturated with ether/hexane (1:2, (3×100 mL). The combined organic fractions were concentrated in vacuo and the crude product was purified by chromatography using EtOAc/hexane (1:14) to give the desired product (6.55 g, 74%). 1H NMR (400 MHz, CDCl3) δ 7.48-7.31 (m, 6H), 7.26 (t, 2H, J=8.2 Hz), 7.04 (d, 1H, J=8.1 Hz), 5.44 (dd, 1H, J=4.4, 8.1 Hz), 3.83-3.74 (m, 1H), 3.63-3.56 (m, 1H), 2.51 (s, 3H), 2.51-2.45 (m, 1H), 2.29-2.17 (m, 1H); ESMS m/e: 289.0 (M+H)+.
Example 116N-(3-{1-[(3R)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 1-(3-{[(1R)-3-chloro-1-phenylpropyl]oxy}phenyl)ethanone (58.5 mg, 0.200 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (56.8 mg, 0.200 mmol), NaI (34.0 mg, 0.200 mmol) and K2CO3 (55.5 mg, 0.400 mmol) in DMF (1 mL) was stirred at 100° C. for 3 h. The solvent was removed under reduced pressure and the residue was purified by chromatography on silica using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (98 mg, 98%). 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.49-7.21 (m, 11H), 7.09-7.03 (m, 1H), 6.96 (d, 1H, J=7.9 Hz), 5.32 (dd, 1H, J=5.0, 7.9 Hz), 3.08-2.98 (m, 2H), 2.57-2.43 (m, 6H), 2.11-1.72 (m, 9H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 499.4 (M+H)+.
Procedures:
Procedure a (See Also Example 48)
N-(3-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE
Method A
4-{[(1R)-3-CHLORO-1-PHENYLPROPYL]OXY}-1,2-DIMETHOXYBENZENE: A mixture of 3,4-dimethoxyphenol (4.07 g, 26.4 mmol), (S)-(−)-3-chloro-phenyl-1-propanol (4.50 g, 26.4 mmol, 99% ee, Aldrich Chemical Co.), triphenylphosphine (6.92 g, 26.4 mmol) and diethyl azodicarboxylate (4.59 g, 26.4 mmol) in THF (110 mL) was stirred at room temperature for 24 h. The reaction mixture was concentrated in vacuo. At this point, the residue can either be washed with pentane and the combined pentane extracts were concentrated and chromatographed with hexane:EtOAc (8:1) as the eluent to give the desired product (as described as a general procedure by: Srebnik, M.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1988, 53, 2916-2920). This procedure was performed on a smaller scale reaction and only a 40% yield of the product was realized.
Alternatively, on a larger scale (26.4 mmol), the crude product was triturated with a small amount of dichloromethane and the precipitated triphenylphosphine oxide was filtered. The filtrate was concentrated and the crude product was chromatographed to give the desired product as a thick yellow oil (7.30 g, 88.9% yield): 1H NMR (400 MHz, CDCl3) δ 7.39-7.32 (m, 4H), 7.20 (m, 1H), 6.64 (d, 1H, J=8.7 Hz), 6.51 (d, 1H, J=2.7 Hz), 6.30 (dd, 1H, J=2.7, 8.7 Hz), 5.27 (apparent dd, 1H, J=4.5, 8.7 Hz), 3.79 (s, 3H), 3.77 (s, 3H), 3.61 (m, 1H), 2.45 (m, 1H), 2.20 (m, 1H), 1.80 (s, 1H); ESMS m/e: 307.1 (M+H)+.
N-(3-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of potassium carbonate (321 mg, 2.32 mmol), sodium iodide (522 mg, 3.48 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (570 mg, 2.32 mmol) and 4-{[(1R)-3-chloro-1-phenylpropyl]oxy}-1,2-dimethoxybenzene (712 mg, 2.32 mmol) in DMF (5.00 mL) was stirred at 100° C. for 3 h, at which time TLC indicated that the reaction was complete. The reaction mixture was poured into water (50 mL) and the aqueous layer was extracted with methylene chloride (3×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was purified by Preparatory TLC [2.5% of NH3 (2.0 M in methanol) in CHCl3] to afford the product (970 mg, 90.1%) as a thick oil.
Method B
Into a 25-mL RB-flask was added triphenylphosphine (9.80 mg, 0.0375 mmol), diethyl azodicarboxylate (5.22 mg, 0.0300 mmol), N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), 3,4-dimethoxyphenol (7.70 mg, 0.0500 mmol) and THF (1.00 mL) at room temperature. The reaction mixture was stirred at room temperature overnight (16 h). The solvent was removed under reduced pressure and the residue was purified by preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] to afford the desired product (4.40 mg, 34.1% yield) as a thick oil: 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.40-7.30 (m, 4H), 7.25 (m, 3H), 6.97 (d, 1H, J=7.8 Hz), 6.64 (d, 1H, J=9.1 Hz), 6.51 (d, 1H, J=2.6 Hz), 6.29 (d, 1H, J=2.6, 9.1 Hz), 5.20 (apparent dd, 1H, J=4.4, 8.5 Hz), 3.80 (s, 3H), 3.77 (s, 3H), 3.23 (m, 2H), 2.77 (m, 2H), 2.5 (m, 2H), 2.3-2.1 (m, 6H), 1.80 (m, 2H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 517.4 (M+H)+.
Procedure B (See Also Example 49)
2-METHYL-N-(3-{1-[(3S)-3-PHENOXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide (9.53 mg, 0.0250 mmol), phenol (4.70 mg, 0.050 mmol), triphenylphosphine (9.80 mg, 0.0375 mmol) and diethyl azodicarboxylate (5.22 mg, 0.0300 mmol) in THF (1.00 mL) was stirred at room temperature for 3 days. Chromatography using silica preparative TLC plates [2.5% of NH3 (2.0 M in methanol) in CHCl3] gave the desired product (2.70 mg, 23.6% yield) as a thick oil: 1H NMR δ 7.46 (s, 2H), 7.40-7.30 (m, 4H), 7.25 (m, 3H), 7.20 (m, 2H), 6.97 (apparent d, 1H, J=7.4 Hz), 6.89 (apparent tt, 1H, J=0.8, 7.6 Hz), 6.84 (apparent dt, 1H, J=0.8, 8.0 Hz), 5.20 (apparent dd, 1H, J=4.4, 8.5 Hz), 3.35 (m, 2H), 2.91 (m, 2H), 2.60 (m, 2H), 2.30-2.10 (m, 6H), 1.90 (m, 2H), 1.25 (d, 6H, J=7.9 Hz); ESMS m/e: 457.4 (M+H)+;
Procedure C
1-(4-METHYLPHENYL)1H-INDOLE: A mixture of 1-H-indole (58.5 mg, 0.500 mmol), 1-iodo-4-methylbenzene (0.218 g, 1.00 mmol), copper powder (32.0 mg, 0.500 mmol), and K2CO3 (0.138 g, 1.00 mmol) in 1-methyl-2-pyrrolidinone (1.00 mL) was heated at 150° C. for 12 h under argon. The resulting mixture was diluted with H2O (6 mL). The aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by preparative TLC using EtOAc:hexane (1:4) to give the desired product (82.0 mg, 79.0%): 1H NMR (400 MHz, CDCl3) δ 7.67 (d, 1H, J=7.7 Hz), 7.52 (d, 1H, J=7.4 Hz), 7.38 (d, 2H, J=8.4 Hz), 7.34-7.29 (m, 3H), 7.21 (t, 1H, J=7.0 Hz), 7.15 (t, 1H, J=7.0 Hz), 6.66 (d, 1H, J=3.3 Hz), 2.43 (s, 3H); ESMS m/e: 208.0 (M+H)+.
Procedure D (See Also Example 86)
N-(3-{1-[(6-CHLORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A solution of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.369 g, 1.50 mmol) and 37 wt % aqueous formaldehyde (30.0 mg, 1.50 mmol) in 1.00 mL of HOAc:dioxane (1:4) was added to 6-chloro-1-H-indole (0.152 g, 1.00 mmol) and the reaction mixture was stirred for 12 h at room temperature. The resulting mixture was diluted with H2O (10 mL). The aqueous layer was extracted with CH2Cl2 (3×100 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by preparative TLC plates using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (79.0 mg, 42.0%): 1H NMR (400 MHz, CDCl3) δ 9.14 (s, 1H), 8.04 (s, 1H), 7.52 (t, 2H, J=8.1 Hz), 7.35 (d, 2H, J=13.3 Hz), 7.18 (t, 1H, J=7.9 Hz), 7.09 (dd, 1H, J=1.9, 8.5 Hz), 6.85 (d, 1H, J 7.4 Hz), 5.18 (s, 1H), 4.01 (s, 2H), 2.55 (septet, 1H, J=6.8 Hz), 2.48-2.34 (m, 3H), 2.08-1.95 (m, 4H), 1.78 (d, 2H, J=12.8 Hz), 1.22 (d, 6H, J=6.8 Hz); ESMS m/e: 410.1 (M+H)+.
Procedure E (See Also Example 90)
N-(3-{1-[3-(1,2-DIPHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 1,1-diphenylhydrazine hydrochloride (10.3 mg, 0.0470 mmol), 2-methyl-N-(3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide (14.7 mg, 0.0362 mmol), ZnCl2 (14.8 mg, 0.109 mmol), and HOAc (0.500 mL) was heated for 4 h at 80° C. The resulting crude mixture was diluted with water (10 mL), the aqueous layer was neutralized with saturated K2CO3 (10 mL) and extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC plates using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product N-(3-{1-[3-(1,2-diphenyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide (4.10 mg, 37.0%): 1H NMR (400 MHz, CDCl3) δ 7.71-7.65 (m, 1H), 7.42 (d, 1H, J=7.4 Hz), 7.39 (s, 1H), 7.36-7.15 (m, 15H), 6.94 (d, 1H, J=7.8 Hz), 3.12 (d, 2H, J=11.2 Hz), 2.90 (t, 2H, J=7.8 Hz), 2.59-2.45 (m, 3H), 2.19-1.91 (m, 7H), 1.82 (d, 2H, J=13.5 Hz), 1.24 (d, 6H, J=6.9 Hz); ESMS m/e: 555.3 (M+H)+.
Procedure F (See Also Example 108)
N-(3-{1-[4-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A solution of 4-(4-chlorophenoxy)benzaldehyde (0.119 g, 0.510 mmol) and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (0.126 g, 0.510 mmol) in 1,2-dichloroethane (5.00 mL) was treated with sodium triacetoxyborohydride (0.424 g, 2.00 mmol) and HOAc (0.0300 mL, 0.500 mmol) at room temperature. The mixture was stirred overnight at room temperature. The reaction mixture was neutralized with saturated NaHCO3 aqueous solution (10 mL) and the aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic layers were washed with brine, dried over MgSO4, concentrated in vacuo and purified by preparative TLC plates using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (53.0 mg, 23.0%): 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.34-7.19 (m, 7H), 6.98-6.87 (m, 5H), 3.50 (s, 2H), 2.98 (d, 2H, J=11.8 Hz), 2.58-2.44 (m, 2H), 2.10-1.98 (m, 2H), 1.83-1.76 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 463.2 (M+H)+.
Procedure G (See Also Example 116)
N-(3-{1-[(3R)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 1-(3-{[(1R)-3-chloro-1-phenylpropyl]oxy}phenyl)ethanone (58.5 mg, 0.200 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (56.8 mg, 0.200 mmol), NaI (34.0 mg, 0.200 mmol) and K2CO3 (55.5 mg, 0.400 mmol) in DMF (1.00 mL) was stirred at 100° C. for 3 h. The solvent was removed under reduced pressure and the residue was purified by chromatography on silica using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (98.0 mg, 98.0): 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.49-7.21 (m, 11H), 7.09-7.03 (m, 1H), 6.96 (d, 1H, J=7.9 Hz), 5.32 (dd, 1H, J=5.0, 7.9 Hz), 3.08-2.98 (m, 2H), 2.57-2.43 (m, 6H), 2.11-1.72 (m, 9H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 499.4 (M+H)+.
2-METHYL-N-(3-{1-[3-(1-METHYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: A mixture of N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide (100 mg, 0.270 mmol), 1-methyl-1-phenylhydrazine (106 mg, 0.870 mmol), ZnCl2 (119 mg, 0.870 mmol), and HOAc (1.00 mL) was heated for 12 h at 80° C. The resulting crude mixture was diluted with water (20 mL), the aqueous layer was neutralized with saturated K2CO3 solotion (10 mL) and extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 3% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product 2-methyl-N-(3-{1-[3-(1-methyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)propanamide (20.7 mg, 18.7%):
1H NMR (400 MHz, CDCl3) δ 7.60 (d, 1H, J=8.1 Hz), 7.45 (s, 1H), 7.35 (d, 1H, J=7.4 Hz), 7.26-7.24 (m, 4H), 7.09 (t, 1H, J=7.3 Hz), 6.97 (d, 1H, J=7.3 Hz), 6.86 (s, 1H), 3.75 (s, 3H), 3.11 (d, 2H, J=11.6 Hz), 2.79 (t, 2H, J=7.3 Hz), 2.51-2.50 (m, 4H), 2.12-1.81 (m, 8H), 1.25 (d, 6H, J=7.1 Hz); Anal. Calcd for C27H35N3O+0.225CHCl3: C, 73.57; H, 7.99; N, 9.45. Found: C, 73.93; H, 7.90; N, 9.23; ESMS m/e: 418.2 (M+H)+.
Procedure I
7-(2-FLUOROPHENYL)-1H-INDOLE: A mixture of 2-fluorophenylboronic acid (83.4 mg, 0.600 mmol), 7-bromo-1H-indole (98.0 mg, 0.500 mmol), LiCl (42.0 mg, 1.00 mmol), Na2CO3 (2.0 M, 0.100 mL), Pd(PPh3)4 (115 mg, 0.100 mmol) and DME (2.00 mL) was heated at 75° C. for 12 h under Argon. The resulting crude mixture was diluted with water (40 mL), the aqueous layer was extracted with CH2Cl2 (3×20 mL). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by preparative TLC using hexane:EtOAc (8:1) to give the desired product 7-(2-fluorophenyl)-1H-indole (108 mg, 100%): 1H NMR (400 MHz, CDCl3) 8.21 (br s, 1H), 7.71 (dm, 1H, J=7.3), 7.55 (dt, 1H, J=7.3, 1.6 Hz), 7.39 (m, 1H), 7.30-7.19 (m, 5H), 6.62 (dd, 1H, J=2.1-3.3 Hz); ESMS m/e: 211.9 (M+H)+.
Procedure J
5-(4-METHYLPHENOXY)-1H-INDOLE: A mixture of 5-bromo-1H-indole (98.0 mg, 0.500 mmol), p-cresol (108 mg, 1.00 mmol), Cu (32.0 mg, 0.500 mmol), K2CO3 (138 mg, 1.00 mL) and DMF (1.00 mL) was heated at 160° C. for 12 h. The resulting crude mixture was diluted with water (40 mL), the aqueous layer was extracted with CH2Cl2 (3×20 mL). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by preparative TLC using hexane:EtOAc (4:1) to give the desired product 5-(4-methylphenoxy)-1H-indole (57.5 mg, 51.5%): ESMS m/e: 224.0 (M+H)+.
Procedure K
N-(3-{1-[7-(2-FLUOROPHENYL)-7-OXOHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A 50-mL round-bottom flask was charged with a solution of 7-chloro-1-oxo-[(2-fluorophenyl)heptane (2.42 g, 10.0 mmol), 2-methyl-N-[3-(4-piperidyl)phenyl]propanamide (2.46 g, 10.0 mmol), K2CO3 (2.76 g, 20.0 mmol) and NaI (2.25 g, 15.0 mmol) in DMF (25.0 mL). The mixture was stirred for 10 min at 25° C. and then heated at 100° C. for 12 h, cooled to 25° C. and diluted with EtOAc (100 mL). The reaction mixture was washed with water (4×50 mL) and the aqueous layer was extracted with EtOAc (100 mL). The organic layers were washed with brine (50 mL), dried over MgSO4, concentrated in vacuo and the crude product was purified by chromatography (EtOAc:MeOH 97:3) to give the desired product (3.70 g, 82.0%).
Procedure L
N-(3-{1-[7-(2-FLUOROPHENYL)-7-HYDROXYHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: To a 50-mL round-bottomed flask charged with N-(3-{1-[7-(2-fluorophenyl)-7-oxoheptyl]-4-piperidinyl}phenyl)-2-methylpropanamide (5.0 mmol) and methanol (20 mL) was added NaBH4 (7.5 mmol) at 0° C. in an ice-bath. The reaction mixture was warmed to 25° C. and stirred for 2 h. The reaction was monitored by TLC (EtOAc:MeOH 95:5). If necessary, another 5.0 mmol of NaBH4 was added to the reaction mixture and the reaction mixture was refluxed for 1 h. The reaction was quenched with water (5.0 mL) and diluted with EtOAc (10 mL). The organic layer was separated, washed with saturated NaHCO3 solution (10 mL), dried over MgSO4 and concentrated in vacuo. The crude product was purified by chromatography (EtOAc:MeOH 97:3) to give the desired product (90%).
Procedure M
Step 1: If reacted individually, a solution of the amine or aniline (1.00 eq), diisopropylethylamine or TEA (2.00 eq) and an electrophile (1.50 eq) in CH2Cl2 was stirred for 24 h at 23° C. The solvent was removed in vacuo and the crude product was chromatographed (silica) to give the final product.
TERT-BUTYL 4-{3-[(4-CHLOROBUTANOYL)AMINO]PHENYL}-1-PIPERIDINECARBOXYLATE (3.32 g, 87.4%) was synthesized according to Scheme A and Procedure M: 1H NMR (400 MHz, CDCl3) δ 7.55 (s, 1H), 7.47 (s, 1H), 7.37 (m, 1H), 7.28 (m, 1H), 6.97 (d, 1H, J=7.6 Hz), 3.89 (t, 1H, J=6.4 Hz), 3.74 (m, 2H), 2.79-2.75 (m, 4H), 2.64 (m, 2H), 1.88-1.77 (m, 4H), 1.60-1.59 (m, 4H), 1.48 (s, 9H).
TERT-BUTYL 4-[3-(2-OXO-1-PYRROLIDINYL)PHENYL]-1-PIPERIDINECARBOXYLATE: To a solution of tert-butyl 4-[3-(2-oxo-1-pyrrolidinyl)phenyl]-1-piperidinecarboxylate (0.429 g, 16.9 mmol) in dioxane (100 mL) was bubbled HCl gas for 1 h at 25° C. The resulting crude mixture was basified with 10% KOH solution (100 mL), the aqueous layer was extracted with 3:1 CHCl3:iso-propyl alcohol (3×150 mL). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by preparative TLC using 20% NH3 (2.0 M in MeOH) in CH2Cl2 solution to give the desired product tert-butyl 4-[3-(2-oxo-1-pyrrolidinyl)phenyl]-1-piperidinecarboxylate (245 mg, 78.7%): 1H NMR, (400 MHz, CDCl3) δ 7.52 (t, 1H, J=1.8 Hz), 7.41 (ddd, 1H, J=8.1, 2.3, 0.9 Hz), 7.30 (t, 1H, J=7.9 Hz), 7.02 (d, 1H, J=7.9 Hz), 3.86 (t, 2H, J=7.3 Hz), 3.21 (dt, 2H, J=11.9, 2.9 Hz), 2.76 (dt, 2H, J=12.1, 2.4 Hz), 2.65 (tt, 1H, J=11.9, 3.5 Hz), 2.61 (t, 2H, J=8.3 Hz), 2.22 (br s, 1H), 2.16 (qt, 2H, J=7.5 Hz), 1.85 (d, 2H, J=12.4 Hz), 1.67 (dq, 2H, J=12.5, 4.0 Hz).
TERT-BUTYL 4-(4-AMINOPHENYL)-1-PIPERIDINECARBOXYLATE: Available from Arch Chemical Company, NJ.
2-METHYL-N-[4-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: To a solution of tert-butyl 4-(4-aminophenyl)-1-piperidinecarboxylate (8.20 g, 29.7 mmol) and triethylamine (8.4 mL, 60 mmol) in dry THF (100 mL) at 0° C. was slowly added a solution of 2-methylpropanoyl chloride (3.84 g, 36.0 mmol) in THF (50 mL). The reaction mixture was then warmed up to room temperature and stirred for 2 h. After removing the solvent in vacuo, the crude product was purified by recrystallization (hexane/THF), affording the desired amide, tert-butyl 4-[4-(isobutyrylamino)phenyl]-1-piperidinecarboxylate, as a white solid (8.60 g, 84%). The tert-butyl 4-[4-(isobutyrylamino)phenyl]-1-piperidinecarboxylate was dissolved in CH2Cl2 (50 mL) at room temperature, TFA (13.68 g, 120 mmol, 5 equiv.) was added by syringe. The reaction mixture was stirred for 3 or 4 h and another 5 equivalents of TFA was added and the mixture was stirred for 2 or 3 more hours. The reaction solution was then basified to pH>14 by KOH (aq, 2 M). The solution was extracted with CH2Cl2 (8×200 mL). The combined organic layer was dried over K2CO3. Removal of solvent under reduced pressure gave the free amine, 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide, as a brownish solid (5.99 g, 98%). 1H NMR (400 MHz, CDCl3) δ 7.55-7.35 (m, 2H), 7.35-6.9 (m, 3H), 3.26-2.98 (m, 2H), 2.84-2.64 (m, 2H), 2.64-2.53 (m, 1H), 2.53-2.32 (m, 1H), 1.90-1.68 (m, 2H), 1.68-1.36 (m, 3H), 1.22 (d, 6H, J=6.0 Hz); ESMS m/e: 247.1 (M+H)+.
N-[4-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by the procedure for 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide using tert-butyl 4-(4-aminophenyl)-1-piperidinecarboxylate and propanoyl chloride: ESMS m/e: 233.1 (M+H)+.
N-[4-(4-PIPERIDINYL)PHENYL]BUTANAMIDE: Prepared by the procedure for 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide using tert-butyl 4-(4-aminophenyl)-1-piperidinecarboxylate and butanoyl chloride: ESMS m/e: 247.2 (M+H)+.
N-[3-(4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by the procedure for 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide using tert-butyl 4-(3-aminophenyl)-1-piperidinecarboxylate and cyclopropanecarbonyl chloride: Anal. Calcd for C15H20N2O+0.15CH2Cl2: C, 70.8; H, 7.87; N, 10.9. found: C, 70.9; H, 7.68; N, 11.1; ESMS m/e: 245.0 (M+H)+.
N-[3-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by the procedure for 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide using tert-butyl 4-(3-aminophenyl)-1-piperidinecarboxylate and propanoyl chloride: Anal. Calcd for C14H20N2O: C, 72.2; H, 8.63; N, 12.1. found: C, 72.4; H, 8.68; N, 12.1; ESMS m/e: 233.1.
Procedure N
The library was constructed in polypropylene Robbins 46 well plates Reactor Blocks. In the initial incubation period, each well was charged with PS-TBD resin (from Argonaut Technologies, 0.280 mmol, 2.50 eq, 200 mg) and piperidine (0.120 mmol, 1.10 eq) in acetonitrile (0.500 mL) and agitated for 1 h. A solution of benzyl iodide or bromide (0.110 mmol, 1.00 eq) in acetonitrile (0.500 mL) was added to each well followed by additional acetonitrile (1.00 mL) to make a total volume of 2.00 mL and the mixture was rotated in a Robbins rotating oven at room temperature for 16 h. Then AP-Isocyanate resin (Argonaut Technologies, 250 mg, 0.430 mmol, 4.00 eq) was added to each well and reacted further at room temperature for another 12 h. The mixture was filtered and the filtrate was concentrated in vacuo to obtain the desired product that was characterized via LC-MS.
Procedure O
Alkylation of Piperidines Using Alcohols and PS-TSCl Resin in Robbins 48 well “Reactor Blocks”
The library was constructed in polypropylene Robbins “Reactor Blocks”, 46 well plates. PS-TSCl resin (100 mg, 1.00 eq, purchased from Argonaut Technologies) was placed in each well of the “Reactor Blocks” 46 well plates. To each well was added an alcohol (1.50 mmol) in 3.00 mL of CH2Cl2 and pyridine (1:1). The mixture was stirred for 5 h and the resin was washed with CH2Cl2 (3×4 mL), DMF (5×4.0 mL), DMF/H2O (3:1, 5×4.0 mL), THF (3×4.0 mL), CH2Cl2 (3×4.0 mL), acetonitrile (2×4.0 mL) and dried under reduced pressure. A solution of an amine (0.0750 mmol, 0.500 eq) and N,N-diisopropylethyl amine (19.0 mg, 0.150 mmol, 1.00 eq) in acetonitrile (3.00 mL) was added to the well containing the derivatized resin and the mixture was reacted at 70° C. for 16 h. Finally, AP-Isocyanate resin (120 mg, 0.150 mmol, 1.00 eq) and THF (2.00 mL) was added to the reaction vessel and reacted at room temperature for another 3 h. The solution was filtered into the Robbins receiving plates and concentrated in vacuo to give the desired tertiary amine, which was analyzed via LC-MS.
Procedure P
N-{3-[1-(3-{[(4-FLUOROANILINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: A solution of N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (26.4 mg, 0.0870 mol), 1-fluoro-4-isocyanatobenzene (11.9 mg, 0.0870 mmol), in THF (1.00 mL) was stirred for 12 h at 25° C. The resulting crude mixture was diluted with water (10 mL), the aqueous layer was extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 2.5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product N-{3-[1-(3-{[(4-fluoroanilino)carbonyl]amino}propyl)-4-piperidinyl]phenyl}-2-methylpropanamide (4.18 mg, 10.9%): 1H NMR (400 MHz, CDCl3) 7.45 (q, 2H, J=4.7 Hz), 7.23-7.21 (m, 4H), 7.05 (t, 4H, J=7.8 Hz), 6.75 (m, 1H), 4.05 (m, 1H), 3.19 (s, 1H), 2.71 (m, 1H) 2.53 (m, 1H), 2.26-2.21 (m, 3H), 1.80-1.60 (m, 9H), 1.25 (d, 6H, J=6.4 Hz); ESMS m/e: 439.4 (M+H)+.
Procedure Q1
If reacted individually, a solution of the amine (1.0 eq), an electrophile (1.5 eq), diisopropylethylamine (2.0 eq) in CH2Cl2 was stirred for 1 day. The solvent was removed in vacuo and the crude product was chromatographed to give the final product.
2-METHYL-N-{3-[1-(3-{[(4-METHYLPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: A solution of 4-methylbenzenesulfonyl chloride (16.6 mg, 0.0870 mmol), N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (26.4 mg, 0.0870 mmol), TEA (10.0 mg, 0.174 mmol) in THF (1.00 mL) was stirred for 12 h at 25° C. The resulting crude mixture was diluted with water (20 mL), the aqueous layer was extracted with CH2Cl2 (2×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 2.5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product 2-methyl-N-{3-[1-(3-{[(4-methylphenyl)sulfonyl]amino}propyl)-4-piperidinyl]phenyl}propanamide (17.3 mg, 43.6%): 1H NMR (400 MHz, CDCl3) δ 8.19 (s, 1H), 7.53 (s, 1H), 7.41 (s, 1H), 7.32-7.21 (m, 4H), 7.16 (s, 1H), 6.97 (d, 1H, J=7.9 Hz), 3.44 (t, 2H, J=6.3 Hz), 3.15 (d, 2H, J=9.8 Hz), 2.62-2.45 (m, 4H), 2.15 (m, 3H), 2.05 (s, 3H), 1.95-1.71 (m, 5H), 1.26 (d, 6H, J=6.6 Hz); ESMS m/e: 458.2 (M+H)+.
Procedure Q2
The Capture and Release Method for the Synthesis and Purification of the Piperidine Library
The commercially obtained Amberlyst 15 exchange resin (Aldrich) was activated using the following procedure:
1. The resin was shaken in methanol for 24 hr.
2. The resin was filtered and washed with methanol on a fritted funnel.
3. The resin was neutralized with 2N NH3 in MeOH (pH checked)—shaken for 1 hr.
4. The neutralized resin was acidified with 3M HCl in MeOH (pH checked)—shaken for 1 hr.
5. The resin was captured on a fritted funnel and washed with MeOH.
6. The resin was dried in vacuo and stored.
Synthesis (Acylation of the Amines):
The library was constructed in polypropylene Robbins “Reactor Blocks”, 46 well plates. In each plate an array of 5 amines (0.10 mmol) and 8 electrophiles (acid chlorides, sulfonyl chlorides, 1.5 eq.) in the presence of triethylamine (2.0 eq) in THF/DCM 3:1 (2.0 mL) were reacted overnight to give 40 compounds/plate. The reactions were rigorously monitored via TLC to the depletion of the starting amine due to the ensuing purification methodology via the acidic Amberlyst 15 resin. Following the disappearance of the starting amine, the desired products were captured and then released using the process outlined below.
Purification of the Piperidine Products: Activated Amberlyst 15 ion-exchange resin (0.90 g, Aldrich) was added to each well, and the plates were rotated for 2 hours in a Robbins rotating oven to capture the desired final product from the reaction mixture. The solvent was filtered and the resin was washed with CH3OH and CH2Cl2 (×3) alternately with each of the solvents (for 10 minutes each time). After the last filtration, 2 N ammonia in methanol was added to the resin (2 mL to each well) and the reaction blocks were rotated for 2 hours to release the desired compounds from the resin. The final compounds were filtered into Robbins' “Receiving Blocks”, the solvent was removed and the compounds were analyzed via LC-MS.
Procedure R
[(3-CHLOROPROPYL)SULFANYL]BENZENE: A mixture of benzenethiol (0.550 g, 5.00 mmol), 1-bromo-3-chloropropane (106 mg, 5.50 mmol), TEA (1.01 g, 10.0 mmol) and THF (10.0 mL) was stirred for 12 h at 25° C. The resulting crude mixture was diluted with water (40 mL), the aqueous layer was extracted with CH2Cl2 (3×30 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using hexane:EtOAc (10:1) to give the desired product [(3-chloropropyl)sulfanyl]benzene (1.05 g, 100%).
3-CHLOROPROPYL 4-FLUOROPHENYL SULFOXIDE: A solution of 3-chloropropyl 4-fluorophenyl sulfide (77.5 mg, 0.380 mmol) in CH2Cl2 (2.00 mL) was cooled to 0° C. To this solution m-CPBA (78.7 mg, 0.460 mmol) was added. The reaction mixture was stirred at 0° C. for 30 min, then at 23° C. for 4 h. The resulting crude mixture was diluted with 10% aqueous Na2SO3 (10 mL), the aqueous layer was extracted with CH2Cl2 (2×15 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by preparative TLC using 2.5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product 3-chloropropyl 4-fluorophenyl sulfoxide (47.8 mg, 57.0%).
Procedure T
N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-N,2-DIMETHYLPROPANAMIDE: A mixture of N-(3-{1-[4-(3,4-dimethylphenyl)-4-oxobutyl]-4-piperidinyl}phenyl)-2-methylpropanamide (15.0 mg, 0.0357 mmol), MeI (5.07 mg, 0.0357 mmol), NaOtBu (6.86 mg, 0.0714 mmol) and THF (1.00 mL) was stirred for 5 h at 25° C. The resulting crude mixture was diluted with water (10 mL), the aqueous layer was extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 4.0% of NH3 (2.0 M in methanol) in CH2Cl2 to afford the desired product N-(3-{1-[4-(3,4-dimethylphenyl)-4-oxobutyl]-4-piperidinyl}phenyl)-N,2-dimethylpropanamide (13.8 mg, 89.1%): 1H NMR (400 MHz, CDCl3) 7.76 (s, 1H), 7.72 (dd, 1H, J=1.8, 7.7 Hz), 7.33 (t, 1H, J=8.8 Hz), 7.22 (d, 1H, J=7.8 Hz), 7.18 (d, 1H, J=8.8 Hz), 7.01 (m, 2H), 3.24 (s, 3H), 3.10 (d, 1H, J=10.6 Hz), 3.00 (t, 1H, J=7.6 Hz), 2.49-2.44 (m, 4H), 2.33 (s, 6H), 2.112.10 (m, 2H), 1.99 (m, 1H), 1.79-1.77 (m, 4H), 1.26 (t, 2H, J=7.6 Hz), 1.02 (d, 6H, J=7.6 Hz); ESMS m/e: 435.2 (M+H)+.
Procedure U
1-[3-(3-CHLOROPROPOXY)PHENYL]ETHANONE: To a suspension of NaH (50.5 mg, 2.00 mmol) in DMF (1.00 mL) was added 1-(3-hydroxyphenyl)ethanone (136 mg, 1.00 mmol) at 0° C. The reaction mixture was stirred at room temperature for 1 h. To this mixture was added a solution of 1-bromo-3-chloropropane (188 mg, 1.20 mmol) in DMF (0.500 mL). The reaction mixture was stirred at room temperature for 5 h. The resulting crude mixture was diluted with water (20 mL), the aqueous layer was extracted with CH2Cl2 (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by preparative TLC using hexane:EtOAc (4:1) to afford the desired product 1-[3-(3-chloropropoxy)phenyl]ethanone (235 mg, 55.2%): 1H NMR (400 MHz, CDCl3) δ 7.7 (d, 1H, J=6.6 Hz), 7.52 (s, 1H), 7.25 (t, 1H, J=6.6 Hz), 7.01 (m, 1H), 4.11 (t, 2H, J=7.9 Hz), 3.69 (t, 2H, J=7.9 Hz), 2.61 (s, 3H), 1.95-1.92 (m, 2H).
Procedure V
1-[(2,2-DIMETHYLPROPANOYL)OXY]-4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1,2,3,6-TETRAHYDROPYRIDINE: To a 50-mL RB-flask, charged with bis(pinacolato)diboron (422 mg, 1.66 mmol), KOAc (444 mg, 4.53 mmol) and PdCl2dppf (37.0 mg, 3.00 mol %), dppf (25.0 mg, 3.00 mol %), was added a solution of 1-[(2,2-dimethylpropanoyl)oxy]-1,2,3,6-tetrahydro-4-pyridinyl trifluoromethanesulfonate (500 mg, 1.51 mmol) in 1,4-dioxane (10.0 mL) at room temperature under argon. The mixture was heated at 80° C. overnight. After cooled to room temperature, the mixture was filtered through celite and the celite was washed with EtOAc (3×20 mL). The filtrates were concentrated in vacuo. The resulting residue was dissolved in EtOAc and washed with H2O and brine, dried over MgSO4, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (1:9 EtOAc:hexane) to give 1-[(2,2-dimethylpropanoyl)oxy]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine (355 mg, 76.0%).
Procedure W
TERT-BUTYL 4-[5-(ISOBUTYRYLAMINO)-2-METHYLPHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: To a 50-mL RB flask containing 1-[(2,2-dimethylpropanoyl)oxy]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine (500 mg, 1.62 mmol), K2CO3 (670 mg, 4.86 mmol) and PdCl2dppf (155 mg) was added a solution of N-(3-bromo-4-methylphenyl)-2-methylpropanamide (415 mg, 1.62 mmol) in DMF (10.0 mL) at room temperature under argon. The mixture was heated to 80° C. under argon overnight. After cooled to room temperature, the mixture was filtered through celite and the celite was washed with EtOAc (3×20 mL). The filtrates were washed with H2O (20 mL), brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude material was purified flash chromatography (20% EtOAc/hexane) to give tert-butyl 4-[5-(isobutyrylamino)-2-methylphenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate (360 mg, 62.0%).
Procedure X
TERT-BUTYL 4-[5-(ISOBUTYRYLAMINO)-2-METHYLPHENYL]-1-PIPERIDINECARBOXYLATE: A solution of tert-butyl 4-[5-(isobutyrylamino)-2-methylphenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate (335 mg, 0.93 mmol) and 10% Pd/C (35.0 mg) in EtOH (20.0 mL) was hydrogenated at room temperature overnight using the hydrogen balloon method. The reaction mixture was filtered through celite and washed with ethanol (3×10 mL). The combined extracts were concentrated in vacuo to afford tert-butyl 4-[5-(isobutyrylamino)-2-methylphenyl]-1-piperidinecarboxylate (335 mg, 100%).
Procedure Y
2-METHYL-N-[4-METHYL-3-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Into a solution of tert-butyl 4-[5-(isobutyrylamino)-2-methylphenyl]-1-piperidinecarboxylate (335 mg, 0.930 mmol) in CH2Cl2 (10.0 mL) was added TFA (10.0 mL) at room temperature. The reaction mixture was stirred for 2 h and concentrated in vacuo. The residue was dissolved in 20 mL of CHCl3/i-PrOH (3:1) and was basified with 5% KOH solution (10 mL). The aqueous layer was extracted with CHCl3/i-PrOH (3:1, 3×10 mL). The combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo to give 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide (190 mg, 78.0%).
Procedure Z
N-(3-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: A solution of 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide (49.0 mg, 0.190 mmol), 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene (58.0 mg, 0.210 mmol), NaI (42.0 mg, 0.280 mmol) and K2CO3 (52.0 mg, 0.380 mmol) in DMF (10.0 mL) was heated at 95° C. overnight. The mixture was diluted with water (20 mL) and the aqueous layer was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over MgSO4 and concentrated in vacuo. The crude product was purified by flash chromatography [5% NH3 (2.0 M in MeOH) in CH2Cl2] to afford N-(3-{1-[4,4-bis(4-fluorophenyl)butyl]-4-piperidinyl}-4-methylphenyl)-2-methylpropanamide (37.0 mg, 38.0%).
Procedure AA
N-(3-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: To a solution of 4-(3,4-Difluorophenoxy)benzaldehyde (41.0 mg, 0.170 mmol) and 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide (45.0 mg, 0.170 mmol) in 1,2-dichloroethane (5.00 mL) was added sodium triacetoxyborohydride (110 mg, 0.520 mmol) and AcOH (10.0 μL, 0.170 mmol) at room temperature. The mixture was stirred overnight. The reaction mixture was quenched by saturated NaHCO3 solution (10 mL) and extracted with CH2Cl2 (3×10 mL). The combined organic layers were washed with brine, dried over MgSO4, concentrated in vacuo. The crude product was purified by preparative TLC using 5% NH3 {2.0 M in MeOH) in CH2Cl2 to give the desired product N-(3-{1-[4-(3,4-difluorophenoxy)benzyl]-4-piperidinyl}-4-methylphenyl)-2-methylpropanamide (44.0 mg, 54.0%).
Procedure AC
A mixture of a carboxylic acid (0.0800 mmol) and PS-Carbodiimide Resin (2.00 eq, 80.0 mg, 1.34 mmol/g) in DCM:DMF (10:1, 3.00 mL) was shaken for 30 min. To the reaction mixture was added amine (0.0540 mmol) and the resulting mixture was shaken for 12 h at room temperature. The reaction mixture was filtered and the resin was washed with CH2Cl2. The combined organic extracts were concentrated to a small volume, applied to a preparative TLC plate and eluted with 6% NH3 (2.0 M in MeOH) in CH2Cl2 to give the desired product.
Procedure AD
TERT-BUTYL N-(3-BROMOPROPYL)CARBAMATE: Prepared from 3-bromopropylamine hydrobromide and BOC2O in the presence of base in CH2Cl2: 1H NMR (300 MHz) δ 5.07 (br, 1H), 3.31 (t, 2H, J=6.6 Hz), 3.12 (apparent br q, 2H, J=6.0 Hz), 1.92 (p, 2H, J=6.6 Hz), 1.30 (s, 9H).
Step 1. To a solution of piperidine (19.3 mmol) in dioxane (20.0 mL) was N-(tert-butoxycarbonyl)-3-bromopropylamine (21.2 mmol) and potassium carbonate (38.7 mmol) at room temperature and the mixture was heated at reflux temperature for 24 h. The reaction mixture was cooled to room temperature, concentrated in vacuo and partitioned between CHCl3 (40 mL) and water (5 mL). The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (ethyl acetate: methanol 9:1) to yield the required product tert-butyl 3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propylcarbamate as a colorless oil: ESMS m/e: 376.2 [M+H]+.
Step 2. HCl gas was bubbled into a solution of the boc-protected amine (12.1 mmol) in dioxane (5.00 mL) for 10-20 minutes at 0-5° C. The resulting solution was stirred at 0-5° C. for 1 h, concentrated, neutralized with 10% KOH solution (10 mL) and extracted into CH2Cl2 (25 mL). The organic extract was washed with brine, dried over sodium sulfate and concentrated in vacuo. The crude product was chromatographed to give the desired product N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}acetamide: ESMS m/e: 276.1 [M+H]+.
Procedure AE
Step 1: A mixture of piperidine (1.00 eq, 0.0226 mmol), N-(bromoalkyl)phthalimide (1.50 eq, 0.0338 mmol), Bu4NI (200 mg) and diisopropylethylamine (5.00 eq, 0.113 mmol) in dioxane (200 mL) was heated at 99° C. for 24 h. The reaction was followed by TLC analysis (95:5 CH2Cl2:methanol). If necessary additional 0.0113 mmol of the appropriate bromoalkylphthalimides was added to each reaction mixture and the heating was continued for additional 48 h. The reaction mixture was cooled to room temperature, the ammonium salts were filtered out and the solvent was removed under reduced pressure. The crude product was chromatographed to give the desired product.
Step 2: Deprotection of the resulting phthalimides was conducted by heating a solution of phthaliamide-protected amines with excess hydrazine hydrate (10 eq) in ethanol (0.5-1.0 M) at 90° C. for 4 h. The reaction mixture was monitored by TLC to completion. Upon the reaction was completed, the mixture was cooled to room temperature, the insoluble by-products were filtered out through celite and the solvent was removed in vacuo. The crude product was chromatographed (dichloromethane-methanol-isoprpylamine) to give the desired products.
Procedure AF
(4R)-4-(3,4-DIFLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE was synthesized according to Scheme H and Procedure AF: To a solution of (4R)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one (this compound and analogs were prepared according to J. Med. Chem 2000, 43, 2775 (0.300 mol, 60.0 mg) in THF (5.00 mL) at −78° C. under argon. After 30 min at −78° C., to the mixture was added a solution of 4-nitro-phenyl chloroformate (0.330 mmol, 51.2 mg) in THF (0.500 mL) at −78° C. After stirring for 30 min at −78° C. the reaction mixture was diluted with a saturated Na2CO3 solution (5.0 mL) and the aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. The residue was purified by preparative TLC plates (10:1 hexane:ethyl acetate) to afford 4-nitrophenyl(4R)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate (51.5 mg, 54.0%).
4-Nitrophenyl(4R)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate (169 mg, 0.465 mmol), N-(3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide (141 mg, 0.465 mmol), K2CO3 (0.193 g, 1.3.9 mmol), CH2Cl2 (10 mL), and methanol (0.1 mL) were combined in a flask. The mixture was stirred overnight at room temperature, the solvent was removed in vacuo, and the residue was purified by chromatography [2.5% of NH3 (2.0 M in methanol) in CH2Cl2] to afford the desired product (26.1 mg, 10.6%): 1H NMR (400 MHz, CDCl3) δ 8.08 (t, 1H, J=5.5 Hz), 7.45 (S, 2H), 7.38 (d, 1H, J=8.6 Hz), 7.24-7.12 (m, 3H), 7.06 (m, 1H), 6.97 (d, 1H, J=8.6 Hz), 5.40 (dd, 1H, J=3.9-8.8 Hz), 4.71 (t, 1H, J=8.8 Hz), 4.23 (dd, 1H, J=4.4, 9.1 Hz), 3.32 (qt, 2H, J=6.1 Hz), 2.99 (d, 2H, J=11.0 Hz), 2.49 (qt, 2H, J=7.0 Hz), 2.41 (t, 2H, J=7.0 Hz), 1.99-1.97 (m, 2H), 1.82-1.68 (m, 6H), 1.23 (d, 6H, J=7.3 Hz); Anal. Calcd. for C28H34F2N4O4+HCl+0.185CHCl3: C, 57.6; H, 6.04; N, 9.54. Found: C, 58.5; H, 6.08; N, 9.47; ESMS m/e: 529.1 (M+H)+.
Procedure AG
Step 1: A solution of ketoester (10 mmol), Meldrum's acid (10 mmol), aldehyde (10 mmol) and an ammonium acetate (11 mmol) in HOAc (10 mL) was heated at reflux temperature for 18 h.1 The cooled reaction mixture was poured over ice (100 g). The precipitated oils were collected and dried under reduced pressure. The benzyl ester protected analogs solidified upon trituration with a mixture of ether/hexane.
1 MORALES, A.; OCHOA, E.; SUAREZ, M.; VERDECIA, Y.; GONZALEZ, L.; MARTIN, N.; QUINTEIRO, M.; SEOANE, C.; SOTO, J. L.; J. Heterocycl. Chem. [JHTCAD] 1996, 33 (1), 103-107.
Step 2: A mixture of a benzyl ester and 10% Pd/C in methanol was hydrogenated using the balloon method at room temperature. The reaction mixture was monitored (TLC) to completion, filtered through Celite 545 and the Celite filter cake was washed with methanol (3×10 mL). The combined methanol extracts were concentrated in vacuo to give the desired carboxylic acid that was used in the next step without any further purification.
4-(2,4-DIFLUOROPHENYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXYLIC ACID was synthesized according to Procedure AG and Scheme AR: 1H NMR (CDCl3, 400 MHz) δ 7.82 (s, 1H), 7.00-6.72 (m, 3H), 4.51 (d, 1H, J=8.4 Hz), 2.90 (dd, 1H, J=8.4, 16.3 Hz), 2.68 (d, 1H, J=16.3 Hz), 2.46 (s, 3H).
4-(3,4-DIFLUOROPHENYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXYLIC ACID was synthesized according to Procedure AG and Scheme AR: 1H NMR (CDCl3, 300 MHz) δ 7.40-6.80 (m, 4H), 4.23 (d, 1H, J=7.5 avg. Hz), 2.93 (dd, 1H, J=16.8, 7.5 avg. Hz), 2.68 (d, 1H, J=16.5 avg. Hz), 2.45 (s, 3H).
Procedure AH
1-(6-CHLOROHEXYL)-1H-INDOLE: To a mixture of NaH (0.249 g, 10.0 mmol) in DMF (5.00 mL) was added a solution of 1-H-indole (0.585 g, 5.00 mmol) in DMF (2.00 mL) at 0° C. The reaction mixture was stirred for 30 minutes at 0° C. and warmed up to room temperature. To the reaction mixture 1-bromo-6-chlorohexane (0.998 g, 5.00 mmol) was added dropwise via syringe and the reaction mixture was stirred overnight. The reaction mixture was diluted with EtOAc (30 mL), washed with water (3×10 mL), brine (10 mL), dried over MgSO4, concentrated in vacuo and purified by chromatography using hexane:EtOAc (97.5:2.5) to give the desired product (0.900 g, 76.0%): 1H NMR (400 MHz, CDCl3) δ 7.76-7.54 (m, 1H), 7.47-6.96 (m, 4H), 6.60-6.34 (m, 1H), 4.13 (t, 2H, J=6.8 Hz), 3.50 (t, 2H, J=5.6 Hz), 1.98-1.79 (m, 2H), 1.79-1.64 (m, 2H), 1.54-1.17 (m, 4H).
N-(3-{1-[6-(1H-INDOL-1-YL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: A mixture of 1-(6-Chlorohexyl)-1H-indole (23.6 mg, 0.100 mmol), 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (24.6 mg, 0.100 mmol), K2CO3 (27.6 mg, 0.200 mmol), NaI (22.5 mg, 0.150 mmol) and DMF (1.00 mL) was heated at 100° C. for 12 h. The reaction mixture was cooled to room temperature and the crude material was purified by preparative TLC using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product as a yellow solid (40 mg, 90%): 1H NMR (400 MHz, CDCl3) δ 8.08-6.52 (m, 11H), 4.17 (t, 2H, J=7.2 Hz), 3.26 (d, 2H, J=11.6 Hz), 2.74-2.52 (m, 4H), 2.44-2.28 (m, 2H), 2.20-2.02 (m, 2H), 1.98-1.82 (m, 4H), 1.78-1.62 (m, 2H), 1.43-1.28 (m, 4H), 1.28 (d, 6H, J=6.8 Hz); ESMS m/e: 446.5 (M+H)+.
Procedure AI:
The library was constructed in polypropylene Robbins “Reactor Blocks”, 48 well plates. PS-TSCl resin (100 mg, 1.00 eq, purchased from Argonaut Technologies) was placed in each well of the “Reactor Blocks” 48 well plates. To each well was added 2-10 eq of an alcohol in dichloromethane:pyridine (1:1, 3.00 mL). The mixture was stirred at room temperature for 5 h and the resin was washed with dichloromethane (3×4.00 mL), DMF (5×4.00 mL), DMF/H2O (3:1, 5×4.00 mL), THF (3×4.00 mL), dichloromethane (3×4.00 mL), acetonitrile (2×4.00 mL) and dried under reduced pressure. A solution of an amine (0.0750 mmol, 0.500 eq) and N,N-diisopropylethyl amine (19.0 mg, 0.150 mmol, 1.00 eq) in acetonitrile (3.00 mL) was added to the well containing the derivatized resin and the mixture was reacted at 70° C. for 16 h in the Robbins rotating oven. After cooling, AP-isocyanate resin (120 mg, 0.150 mmol, 1.00 eq) and THF (2.00 mL) was added to the each reaction vessel and reacted at room temperature for additional 3 h. The solution was filtered into the Robbins® receiving plates and concentrated in vacuo to give the desired tertiary amines which were analyzed via LC-MS.
Procedure AJ:
The library was constructed in polypropylene Robbins® 48 well plates Reactor Blocks. In the initial incubation period, each well was charged with PS-TBD resin (from Argonaut Technologies, 200 mg, 0.280 mmol, 2.50 eq) and piperidine (0.120 mmol, 1.10 eq) in acetonitrile (0.500 mL) and agitated for 1 h. A solution of benzyl iodide or bromide (0.110 mmol, 1.00 eq) in acetonitrile (0.500 mL) was added to each well followed by additional acetonitrile (1.00 mL) to make a total volume of 2 mL and the mixture was rotated in a Robbins rotating oven at room temperature for 16 h. Then AP-Isocyanate resin (Argonaut Technologies, 250 mg (0.430 mmol, 4.00 eq) was added to each well and reacted further at room temperature for another 12 h. The mixture was filtered and the filtrate was concentrated in vacuo to obtain the desired product that was characterized via LC-MS.
N-(3-{1-[3-(4-BROMOPHENYL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 1-(4-bromophenyl)-3-chloro-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 457.1 (M+H)+.
Example 118N-(3-{1-[3-(4-CHLOROPHENYL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Procedure K (KI) and Schemes E (K2CO3) using 3-chloro-1-(4-chlorophenyl)-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.1 (M+H)+.
Example 119N-(3-{1-[3-(4-METHOXYPHENYL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 3-chloro-1-(4-methoxyphenyl)-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409.2 (M+H)+.
Example 120N-(3-{1-[3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 3-chloro-1-(2,3-dihydro-1H-inden-5-yl)-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 419.2 (M+H)+.
Example 1212-METHYL-N-{3-[1-(3-OXO-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 3-chloro-1-phenyl-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 379.2 (M+H)+.
Example 1222-METHYL-N-(3-{1-[3-(4-METHYLPHENYL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 3-chloro-1-(4-methylphenyl)-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 393.2 (M+H)+.
Example 123N-(3-{1-[3-(4-FLUOROPHENYL)-3-OXOPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Procedure K (KI) and Scheme E (K2CO3) using 3-chloro-1-(4-fluorophenyl)-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 397.2 (M+H)+.
Example 124N-(3-{1-[3-(4-CHLOROPHENYL)-3-HYDROXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-oxopropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 415.1 (M+H)+.
Example 125N-(3-{1-[3-(4-CHLOROPHENYL)-3-(3,4-DIFLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,4-difluorophenol: ESMS m/e: 526.8 (M+H)+.
Example 126N-(3-{1-[3-(4-CHLOROPHENYL)-3-(2-METHYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and o-cresol: ESMS m/e: 505.4 (M+H)+.
Example 127N-(3-{1-[3-(4-FLUOROPHENYL)-3-HYDROXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-oxopropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 399.2 (M+H)+.
Example 128N-(3-{1-[3-HYDROXY-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[3-(4-methoxyphenyl)-3-oxopropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 411.2 (M+H)+.
Example 129N-(3-{1-[3-(4-BROMOPHENYL)-3-HYDROXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-oxopropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 459.1 (M+H)+.
Example 130N-(3-{1-[3-(4-CHLOROPHENYL)-3-(4-METHOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenol: ESMS m/e: 520.8 (M+H)+.
Example 131N-(3-{1-[3-(4-CHLOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-chlorophenol: ESMS m/e: 509.1 (M+H)+.
Example 132N-(3-{1-[3-(4-FLUOROPHENYL)-3-(2,3,4,5,6-PENTAFLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2,3,4,5,6-pentafluorophenol: ESMS m/e: 564.7 (M+H)+.
Example 133N-(3-{1-[3-(4-BROMOPHENYL)-3-(2-METHYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-methylphenol: ESMS m/e: 548.8 (M+H)+.
Example 134is N-(3-{1-[3-(3,4-DIFLUOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,4-difluorophenol: ESMS m/e: 511.1 (M+H)+.
Example 135N-(3-{1-[3-(4-BROMOPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-bromophenol: ESMS m/e: 553.0 (M+H)+.
Example 136N-(3-{1-[3-(3,4-DICHLOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,4-dichlorophenol: ESMS m/e: 542.7 (M+H)+.
Example 137N-[3-(1-{3-(4-FLUOROPHENYL)-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethyl)phenol: ESMS m/e: 543.1 (M+H)+.
Example 138N-(3-{1-[3-(3-BROMOPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-bromophenol: ESMS m/e: 552.7 (M+H)+.
Example 139N-(3-{1-[3-(4-FLUOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-fluorophenol: ESMS m/e: 493.2 (M+H)+.
Example 140N-(3-{1-[3-(3-FLUOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-fluorophenol: ESMS m/e: 492.9 (M+H)+.
Example 141N-(3-{1-[3-(2,6-DICHLOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2,6-dichlorophenol: ESMS m/e: 543.0 (M+H)+.
Example 142N-(3-{1-[3-(2,5-DIFLUOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2,5-difluorophenol: ESMS m/e: 511.5 (M+H)+.
Example 143N-(3-{1-[3-(3-CHLOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-chlorophenol: ESMS m/e: 509.1 (M+H)+.
Example 144N-(3-{1-[3-(4-BROMOPHENYL)-3-(3-METHYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-methylphenol: ESMS m/e: 549.1 (M+H)+.
Example 145N-(3-{1-[3-([1,1′-BIPHENYL]-4-YLOXY)-3-(4-BROMOPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-phenylphenol: ESMS m/e: 611.2 (M+H)+.
Example 146N-(3-{1-[3-(2,4-DIFLUOROPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2,4-difluorophenol: ESMS m/e: 511.1 (M+H)+.
Example 147N-(3-{1-[3-(4-BROMOPHENYL)-3-(3-METHOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-methoxyphenol: ESMS m/e: 564.6 (M+H)+.
Example 148METHYL 4-(1-(4-BROMOPHENYL)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPOXY)BENZOATE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and methyl 4-hydroxybenzoate: ESMS m/e: 593.0 (M+H)+.
Example 149N-(3-{1-[3-(4-BROMOPHENYL)-3-(4-PHENOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-phenoxyphenol: ESMS m/e: 626.6 (M+H)+.
Example 150N-(3-{1-[3-(4-BROMOPHENYL)-3-(2-CHLORO-4-METHYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-chloro-4-methylphenol: ESMS m/e: 583.0 (M+H)+.
Example 151N-(3-{1-[3-(4-BROMOPHENYL)-3-PHENOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenol: ESMS m/e: 535.0 (M+H)+.
Example 152N-[3-(1-{3-(4-BROMOPHENYL)-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethyl)phenol: ESMS m/e: 603.1 (M+H)+.
Example 153N-(3-{1-[3-(2-ACETYLPHENOXY)-3-(4-BROMOPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-acetylphenol: ESMS m/e: 576.6 (M+H)+.
Example 154N-(3-{1-[3-(3-ACETYLPHENOXY)-3-(4-BROMOPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-acetylphenol: ESMS m/e: 576.9 (M+H)+.
Example 155N-(3-{1-[3-(3-ACETYLPHENOXY)-3-(2,3-DIHYDRO-1H-INDEN-5-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-acetylphenol: ESMS m/e: 539.2 (M+H)+.
Example 156N-(3-{1-[3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-PHENOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenol: ESMS m/e: 497.2 (M+H)+.
Example 157N-(3-{1-[3-(2-ACETYLPHENOXY)-3-(2,3-DIHYDRO-1H-INDEN-5-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-[1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide 2-acetylphenol: ESMS m/e: 539.1 (M+H)+.
Example 158N-(3-{1-[3-(4-BROMOPHENOXY)-3-(4-BROMOPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-bromophenol: ESMS m/e: 612.7 (M+H)+.
Example 159N-(3-{1-[3-(4-BROMOPHENYL)-3-(4-CHLOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-chlorophenol: ESMS m/e: 568.7 (M+H)+.
Example 160N-(3-{1-[3-(4-BROMOPHENYL)-3-(4-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-fluorophenol: ESMS m/e: 552.8 (M+H)+.
Example 161N-(3-{1-[3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-(4-METHOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenol: ESMS m/e: 527.3 (M+H)+.
Example 162N-(3-{1-[3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-(4-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-(3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-fluorophenol: ESMS m/e: 515.2 (M+H)+.
Example 163N-(3-{1-[3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-HYDROXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE Prepared by Procedure L and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-oxopropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 421.2 (M+H)+.
Example 164N-[3-(1-{3-(2,3-DIHYDRO-1H-INDEN-5-YL)-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-trifluoromethylphenol: ESMS m/e: 565.0 (M+H)+.
Example 165 N-(3-{1-[3-(4-BROMOPHENOXY)-3-(2,3-DIHYDRO-1H-INDEN-5-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDEPrepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-bromophenol: ESMS m/e: 577.4 (M+H)+.
Example 166N-(3-{1-[3-(3-ACETYLPHENOXY)-3-(4-CHLOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-acetylphenol: SMS m/e: 533.1 (M+H)+.
Example 167N-(3-{1-[3-(4-METHOXYPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenol: ESMS m/e: 517.4 (M+H)+.
Example 168N-(3-{1-[3-(4-CHLOROPHENOXY)-3-(2,3-DIHYDRO-1H-INDEN-5-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(2,3-dihydro-1H-inden-5-yl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-chlorophenol: ESMS m/e: 531.1 (M+H)+.
Example 169N-(3-{1-[3-(2-ACETYLPHENOXY)-3-(4-CHLOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-(3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-acetylphenol: ESMS m/e: 533.4 (M+H)+.
Example 170N-(3-{1-[3-(4-BROMOPHENYL)-3-(4-METHOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-bromophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenol: ESMS m/e: 565.0 (M+H)+.
Example 171N-(3-{1-[3-(4-BROMOPHENOXY)-3-(4-CHLOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-bromophenol: ESMS m/e: 568.8 (M+H)+.
Example 172N-(3-{1-[3-(4-CHLOROPHENOXY)-3-(4-CHLOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-chlorophenol: ESMS m/e: 525.0 (M+H)+.
Example 173N-(3-{1-[3-(4-METHOXYPHENYL)-3-PHENOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenol: ESMS m/e: 487.4 (M+H)+.
Example 174N-(3-{1-[3-(4-FLUOROPHENYL)-3-PHENOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenol: ESMS m/e: 475.6 (M+H)+.
Example 175N-(3-{1-[3-(2-ACETYLPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-acetylphenol: ESMS m/e: 517.1 (M+H)+.
Example 176N-(3-{1-[3-(3-ACETYLPHENOXY)-3-(4-FLUOROPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-acetylphenol: ESMS m/e: 516.9 (M+H)+.
Example 177N-(3-{1-[3-(4-FLUOROPHENYL)-3-(4-METHOXYPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenol: ESMS m/e: 505.2 (M+H)+.
Example 178N-(3-{1-[3-(4-CHLOROPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-cholorophenol: ESMS m/e: 521.5 (M+H)+.
Example 179N-(3-{1-[3-(3-ACETYLPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-[1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-acetylphenol: ESMS m/e: 529.0 (M+H)+.
Example 180N-(3-{1-[3-(4-CHLOROPHENYL)-3-PHENOXYPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenol. ESMS m/e: 490.9 (M+H)+.
Example 181N-(3-{1-[3-(4-BROMOPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-bromophenol: ESMS m/e: 564.9 (M+H)+.
Example 182N-[3-(1-{3-(4-METHOXYPHENYL)-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-trifluoromethyphenol: ESMS m/e: 555.1 (M+H)+.
Example 183N-(3-{1-[3-(4-CHLOROPHENYL)-3-(4-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-fluorophenol: ESMS m/e: 509.1 (M+H)+.
Example 184N-(3-{1-[3-(4-FLUOROPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-fluorophenol: ESMS m/e: 505.5 (M+H)+.
Example 185N-(3-{1-[3-(2-ACETYLPHENOXY)-3-(4-METHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-acetylphenol: ESMS m/e: 529.2 (M+H)+.
Example 186N-[3-(1-{3-(4-CHLOROPHENYL)-3-[4-(TRIFLUOROMETHYL)PHENOXY]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using N-(3-{1-[3-(4-chlorophenyl)-3-hydroxypropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-trifluoromethylphenol: SMS m/e: 559.1 (M+H)+.
Example 187N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-(3-{[(1S)-3-chloro-1-phenylpropyl]oxy}phenyl)ethanone and 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 513.0 (M+H)+.
2-(ISOPENTYLOXY)-1-NAPHTHALDEHYDE: 2-Hydroxy-1-naphthaldehyde (1.72 g, 10.0 mmol) and THF (50 ml) were combined in a flask. NaH (312 mg, 13 mmol) was added, followed by 1-bromo-3-methylbutane (1.20 mL, 10.0 mmol). The solution was stirred at room temperature overnight, the solvent was removed in vacuo, and the residue was purified by chromatography (5-10% ethyl acetate/hexane): 1H NMR (400 MHz, CDCl3) δ 10.9 (s, 1H), 9.28 (dd, 1H, J=0.7 Hz, 8.6 Hz), 8.02 (d, 1H, J=9.1 Hz), 7.75 (d, 1H, J=8.1 Hz), 7.63-7.59 (m, 1H), 7.43-7.39 (m, 1H), 7.27 (d, 1H, J=9.2 Hz), 4.25 (t, 2H, J=6.5 Hz), 1.98-1.84 (m, 1H), 1.80-1.75 (m, 2H), 0.99 (d, 6H, J=6.6 Hz); ESMS m/e: 242.8 (M+H)+.
Example 188N-[3-(1-{[2-(ISOPENTYLOXY)-1-NAPHTHYL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2-(isopentyloxy)-1-naphthaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.3 (M+H)+.
2-PROPOXY-1-NAPHTHALDEHYDE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 2-hydroxy-1-naphthaldehyde and 1-bromopropane.
Example 1892-METHYL-N-(3-{1-[(2-PROPOXY-1-NAPHTHYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-propoxy-1-naphthaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 445.2 (M+H)+.
4-{[(1-FORMYL-2-NAPHTHYL)OXY]METHYL}BENZONITRILE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 2-hydroxy-1-naphthaldehyde and 4-(bromomethyl)benzonitrile.
Example 190N-{3-[1-({2-[(4-CYANOBENZYL)OXY]-1-NAPHTHYL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-{[(1-formyl-2-naphthyl)oxy]methyl}benzonitrile and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 518.2 (M+H)+. [(1-FORMYL-2-NAPHTHYL)OXY]ACETONITRILE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 2-hydroxy-1-naphthaldehyde and bromoacetonitrile.
Example 191N-[3-(1-{[2-(CYANOMETHOXY)-1-NAPHTHYL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using [(1-formyl-2-naphthyl)oxy]acetonitrile and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 442.2 (M+H)+.
2-[(3-CHLOROBENZYL)OXY]-1-NAPHTHALDEHYDE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 2-hydroxy-1-naphthaldehyde and 1-(bromomethyl)-3-chlorobenzene.
Example 192N-{3-[1-({2-[(3-CHLOROBENZYL)OXY]-1-NAPHTHYL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2-[(3-chlorobenzyl)oxy]-1-naphthaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 527.2 (M+H)+.
Example 193N-(3-{1-[4-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(4-chlorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.34-7.19 (m, 7H), 6.98-6.87 (m, 5H), 3.50 (s, 2H), 2.98 (d, 2H, J=11.8 Hz), 2.58-2.44 (m, 2H), 2.10-1.98 (m, 2H), 1.83-1.76 (m, 4H), 1.24 (d, 6H, J=6.8 Hz); ESMS m/e: 463.2 (M+H)+.
Example 194N-(3-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(3,4-difluorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 465.2 (M+H)+.
4-(ISOPENTYLOXY)-1-NAPHTHALDEHYDE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 4-hydroxy-1-naphthaldehyde and 1-bromo-3-methylbutane.
Example 195N-[3-(1-{[4-(ISOPENTYLOXY)-1-NAPHTHYL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(isopentyloxy)-1-naphthaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.3 (M+H)+.
Example 196N-(3-{1-[4-(4-METHOXYPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(4-methoxyphenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 459.2 (M+H)+.
4-PROPOXY-1-NAPHTHALDEHYDE: Prepared according to the Procedure for 2-(isopentyloxy)-1-naphthaldehyde using 4-hydroxy-1-naphthaldehyde and 1-bromopropane.
Example 1972-METHYL-N-(3-{1-[(4-PROPOXY-1-NAPHTHYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-propoxy-1-naphthaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 445.2 (M+H)+.
Example 198N-(3-{1-[4-(3,4-DICHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(3,4-dichlorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.1 (M+H)+.
Example 199N-(3-{1-[4-(DIPHENYLAMINO)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(diphenylamino)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 504.2 (M+H)+.
Example 200N-{3-[1-({2,5-DIMETHYL-1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-PYRROL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,5-dimethyl-1-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 498.2 (M+H)+.
Example 2012-METHYL-N-(3-{1-[1-(2-PHENYL-1,3-THIAZOL-4-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 1-(2-phenyl-1,3-thiazol-4-yl)ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 434.2 (M+H)+.
Example 202N-(3-{1-[(5-CHLORO-3-METHYL-1-PHENYL-1H-PYRAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 451.2 (M+H)+.
Example 2032-METHYL-N-(3-{1-[(2-PHENYL-1H-IMIDAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-phenyl-1H-imidazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 403.2 (M+H)+.
Example 204N-[3-(1-{[4-BROMO-1-(4-CHLOROBENZYL)-1H-PYRAZOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-bromo-1-(4-chlorobenzyl)-1H-pyrazole-5-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 529.1 (M+H)+.
Example 2052-METHYL-N-{3-[1-(3-PHENOXYBENZYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-phenoxybenzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.2 (M+H)+.
Example 206N-(3-{1-[3-(3,4-DICHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(3,4-dichlorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.15 (M+H)+.
Example 207N-(3-{1-[3-(3,5-dichlorophenoxy)benzyl]-4-piperidinyl}phenyl)-2-methylpropanamide: Prepared by Procedure F and Scheme R using 3-(3,5-dichlorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.2 (M+H)+.
Example 2082-METHYL-N-(3-{1-[3-(4-METHYLPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(4-methylphenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 443.2 (M+H)+.
Example 2092-METHYL-N-[3-(1-{3-[3-(TRIFLUOROMETHYL)PHENOXY]BENZYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-[3-(trifluoromethyl)phenoxy]benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.2 (M+H)+.
Example 210N-(3-{1-[3-(4-CHLOROPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(4-chlorophenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 463.2 (M+H)+.
Example 211N-(3-{1-[3-(DIMETHYLAMINO)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METRYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(dimethylamino)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 380.2 (M+H)+.
Example 212N-(3-{1-[3-(4-METHOXYPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(4-methoxyphenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 459.2 (M+H)+.
Example 213N-(3-{1-[3-(4-TERT-BUTYLPHENOXY)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(4-tert-butylphenoxy)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 485.3 (M+H)+.
Example 2142-METHYL-N-(3-{1-[3-NITRO-4-(1-PIPERIDINYL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-nitro-4-(1-piperidinyl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 465.2 (M+H)+.
Example 215N-(3-{1-[(3,4-DIMETHYLTHIENO[2,3-B]THIEN-2-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3,4-dimethylthieno[2,3-b]thiophene-2-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 427.1 (M+H)+.
Example 2162-METHYL-N-{3-[1-({3-[4-(TRIFLUOROMETHYL)PHENYL]-1H-PYRAZOL-4-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-[4-(trifluoromethyl)phenyl]-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 471.1 (M+H)+.
Example 2172-METHYL-N-(3-{1-[4-(1H-1,2,4-TRIAZOL-1-YL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(1H-1,2,4-triazol-1-yl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 404.1 (M+H)+.
Example 2182-METHYL-N-(3-{1-[(5-METHYL-1-PHENYL-1H-PYRAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 417.1 (M+H)+.
Example 2192-METHYL-N-(3-{1-[4-(4-MORPHOLINYL)-3-NITROBENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(4-morpholinyl)-3-nitrobenzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 467.1 (M+H)+.
Example 220N-{3-[1-({5-[2-CHLORO-4-(TRIFLUOROMETHYL)PHENYL]-2-FURYL}METHYL)-4-PIPERIDINYL]PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[2-chloro-4-(trifluoromethyl)phenyl]-2-furaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 505.0 (M+H)+.
Example 221ETHYL 4-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-2,5-DIMETHYL-1-PHENYL-1H-PYRROLE-3-CARBOXYLATE: Prepared by Procedure F and Scheme R using ethyl 4-formyl-2,5-dimethyl-1-phenyl-1H-pyrrole-3-carboxylate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 502.2 (M+H)+.
Example 222ETHYL 5-(4-CHLOROPHENYL)-2-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-3-FUROATE: Prepared by Procedure F and Scheme R using ethyl 5-(4-chlorophenyl)-2-formyl-3-furoate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 509.0 (M+H)+.
Example 223N-{3-[1-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,3-dihydro-1,4-benzodioxine-6-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 395.1 (M+H)+.
Example 2242-METHYL-N-(3-{1-[(6-PHENOXY-3-PYRIDINYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 6-phenoxynicotinaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 430.1 (M+H)+.
Example 2252-METHYL-N-[3-(1-{[5-(2-PYRIDINYL)-2-THIENYL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-(2-pyridinyl)-2-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 420.1 (M+H)+.
Example 2262-METHYL-N-{3-[1-({5-[1-METHYL-3-(TRIFLUOROMETHYL)-1H-PYRAZOL-5-YL]-2-THIENYL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl]-2-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 491.0 (M+H)+.
Example 2272-METHYL-N-[3-(1-{[1-(PHENYLSULFONYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure F and Scheme R using 1-(phenylsulfonyl)-1H-indole-3-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 516.1 (M+H)+.
Example 228N-(3-{1-[(1,5-DIMETHYL-3-OXO-2-PHENYL-2,3-DIHYDRO-1H-PYRAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 447.2 (M+H)+.
Example 229N-(3-{1-[4-(4-TERT-BUTYL-1,3-THIAZOL-2-YL)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(4-tert-butyl-1,3-thiazol-2-yl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide.
Example 230N-{3 [1-(2,3-DIHYDRO-1-BENZOFURAN-5-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,3-dihydro-1-benzofuran-5-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 379.1 (M+H)+.
Example 2312-METHYL-N-(3-{1-[(4-METHYL-2-PHENYL-5-PYRIMIDINYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-methyl-2-phenyl-5-pyrimidinecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.2 (M+H)+.
Example 232N-{3-[1-(2,1,3-BENZOTHIADIAZOL-5-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,1,3-benzothiadiazole-5-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 395.1 (M+H)+.
Example 2332-METHYL-N-(3-{1-[(5-PHENYL-2-THIENYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-phenyl-2-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 419.1 (M+H)+.
Example 234N-{3-[1-(3,4-DIHYDRO-2H-1,5-BENZODIOXEPIN-7-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3,4-dihydro-2H-1,5-benzodioxepine-7-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409.2 (M+H)+.
Example 2352-METHYL-N-[3-(1-{[3-(2-THIENYL)-1H-PYRAZOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(2-thienyl)-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409.1 (M+H)+.
Example 236N-{3-[1-([1,1′-BITHIENYL]-4-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,2′-Bithiophene-5-carboxaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.0 (M+H)+.
Example 237N-(3-{1-[(2,2-DIMETHYL-3,4-DIHYDRO-2H-CHROMEN-6-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2,2-dimethyl-6-chromanecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 421.2 (M+H)+.
Example 2382-METHYL-N-{3-[1-({5-[1-METHYL-5-(TRIFLUOROMETHYL)-1H-PYRAZOL-3-YL]-2-THIENYL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 491.1 (M+H)+.
Example 2392-METHYL-N-(3-{1-[(2-PHENYL-1,3-THIAZOL-4-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-phenyl-1,3-thiazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 420.0 (M+H)+.
Example 2402-METHYL-N-(3-{1-[(3-PHENOXY-2-THIENYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 3-phenoxy-2-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 435.0 (M+H)+.
Example 241N-{3-[1-({2-[(4-CHLOROPHENYL)SULFANYL]-3-THIENYL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METRYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 2-[(4-chlorophenyl)sulfanyl]-3-thiophenecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 485.0 (M+H)+.
Example 242N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-PYRROL-2-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 1-(4-chlorophenyl)-1H-pyrrole-2-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 436.0 (M+H)+.
Example 2432-METHYL-N-{3-[1-({5-[2-(TRIFLUOROMETHOXY)PHENYL]-2-FURYL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[2-(trifluoromethoxy)phenyl]-2-furaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 487.1 (M+H)+.
Example 2442-METHYL-N-(3-{1-[2-(4-MORPHOLINYL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-(4-morpholinyl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 422.2 (M+H)+.
Example 245N-[3-(1-{[3-(4-METHOXYPHENYL)-1H-PYRAZOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 433.1 (M+H)+.
Example 2462-METHYL-N-(3-{1-[4-(1H-PYRAZOL-1-YL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(1H-pyrazol-1-yl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 402.8 (M+H)+.
Example 2472-METHYL-N-{3-[1-(4-QUINOLINYLMETHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-quinolinecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 388.1 (M+H)+.
Example 2482-METHYL-N-(3-{1-[4-(4-MORPHOLINYL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(4-morpholinyl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 422.5 (M+H)+.
Example 2492-METHYL-N-(3-{1-[4-(2-THIENYL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(2-thienyl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 419.1 (M+H)+.
Example 2502-METHYL-N-(3-{1-[(2-METHYL-5-PHENYL-3-FURYL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-methyl-5-phenyl-3-furaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 417.2 (M+H)+.
Example 251N-(3-{1-[3-(CYCLOPENTYLOXY)-4-METHOXYBENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 3-(cyclopentyloxy)-4-methoxybenzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 451.1 (M+H)+.
Example 2522-METHYL-N-{3-[1-({5-[4-(TRIFLUOROMETHOXY)PHENYL]-2-FURYL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[4-(trifluoromethoxy)phenyl]-2-furaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 487.1 (M+H)+.
Example 253N-{3-[1-(1-BENZOTHIEN-2-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 1-benzothiophene-2-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 393.2 (M+H)+.
Example 2542-METHYL-N-{3-[1-({5-[3-(TRIFLUOROMETHOXY)PHENYL]-2-FURYL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 5-[3-(trifluoromethoxy)phenyl]-2-furaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 487.2 (M+H)+.
Example 2552-METHYL-N-{3-[1-(2-QUINOLINYLMETHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 2-quinolinecarbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 388.1 (M+H)+.
Example 256N-(3-{1-[4-(1H-IMIDAZOL-1-YL)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(1H-imidazol-1-yl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 403.2 (M+H)+.
Example 257N-(3-[1-(9H-FLUOREN-2-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 9H-fluorene-2-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.1 (M+H)+.
Example 258METHYL 3-[5-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-2-FURYL]-2-THIOPHENECARBOXYLATE: Prepared by Procedure F and Scheme R using methyl 3-(5-formyl-2-furyl)-2-thiophenecarboxylate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 467.1 (M+H)+.
Example 2592-METHYL-N-{3-[1-(4-PHENOXYBENZYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-phenoxybenzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.2 (M+H)+.
Example 260N-{3-[1-([1,1′-BIPHENYL]-4-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using [1,1′-biphenyl]-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.2 (M+H)+.
Example 261N-(3-{1-[4-(DIBUTYLAMINO)BENZYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(dibutylamino)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 464.6 (M+H)+.
Example 2622-METHYL-N-[3-(1-{4-[(4-METHYLPHENYL)SULFANYL]-3-NITROBENZYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-[(4-methylphenyl)sulfanyl]-3-nitrobenzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/:e 504.2 (M+H)+.
Example 2632-METHYL-N-(3-{1-[4-(1,2,3-THIADIAZOL-4-YL)BENZYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R using 4-(1,2,3-thiadiazol-4-yl)benzaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 421.1 (M+H)+.
1-(3-{[(1S)-3-CHLORO-1-PHENYLPROPYL]OXY}PHENYL)ETHANONE: (1R)-3-Chloro-1-phenyl-1-propanol (1.000 g, 5.86 mmol), 1-(3-hydroxyphenyl)ethanone (0.797 g, 5.86 mmol), triphenylphosphine (1.54 g, 5.86 mmol) and diethylazodicarboxylate (1.53 g, 8.79 mmol) were combined in a flask, which was immediately flushed with argon. THF (20 mL) was added and the mixture was stirred overnight under argon. THF was removed in vacuo, the crude product was dissolved in 50 mL of CH2Cl2/H2O (1:1) and the organic layer was separated and dried over MgSO4. After removing the solvent in vacuo, the residue was purified by flash chromatography using 10% ethyl acetate/hexane to yield the desired product (900 mg, 76.0%): 1H NMR (400 MHz, CDCl3) δ 7.49-7.46 (m, 2H), 7.40-7.26 (m, 6H), 7.07-7.04 (m, 1H), 5.46-5.43 (dd, 1H, J=4.4 Hz, 8.8 Hz), 3.84-3.78 (m, 1H), 3.64-3.59 (m, 1H), 2.52 (s, 3H), 2.51-2.46 (m, 1H), 2.29-2.22 (m, 1H).
4-(3,4-DIFLUOROPHENOXY)BENZALDEHYDE: 4-Fluorobenzaldehyde (5.32 mL, 49.6 mmol), 3,4-difluorophenol (7.10 g, 54.6 mmol) and K2CO3 (8.31 g, 60.1 mmol) were combined in a flask, which was immediately flushed with argon. DMF (50.0 mL) was added and the mixture was heated at reflux under argon for 6 h. Upon cooling to room temperature, EtOAc (100 mL) and H2O (100 mL) were added; the ethyl acetate layer was separated and washed with H2O (2×100 mL). The combined organic layers were washed with brine, dried over MgSO4, and the solvent was removed in vacuo. The desired product was obtained (11.4 g, 98.0%): 1H NMR (400 MHz, CDCl3) δ 9.95 (s, 1H), 7.88 (dd, 2H, J=0.8 Hz, 8.8 Hz), 7.24-7.17 (m, 1H), 7.07 (d, 2H, J=8.8 Hz), 6.97-6.92 (m, 1H), 6.86-6.82 (m, 1H); ESMS m/e: 235.0 (M+H)+.
TERT-BUTYL 4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: To a flask were added bis(pinacolato)diboron (422 mg, 1.66 mmol), KOAc (444 mg, 4.53 mmol), PdCl2dppf (37.0 mg, 3.00 mol %), dppf (25.0 mg, 3.00 mol %) and the flask was flushed with argon. A solution of tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-1,2,3,6-tetrahydro-1-pyridinecarboxylate (500 mg, 1.51 mmol) in 1,4-dioxane (10.0 ml) was added and the mixture was stirred at 80° C. overnight. The mixture was filtered through Celite and the filtrate was evaporated in vacuo. The resulting residue was dissolved in EtOAc and washed with H2O, followed by brine. The organic layer was dried over MgSO4, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10% EtOAC/hexane) to give tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate (355 mg, 76.0%): 1H NMR (400 MHz, CDCl3) δ 6.44 (br s, 1H), 3.93 (br s, 2H), 3.42 (br s, 2H), 2.21 (br s, 2H), 1.45 (s, 9H), 1.25 (s, 12H); ESMS m/e: 310.4 (M+H)+.
N-(6-BROMO-2-PYRIDINYL)-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 using 2-methylpropanoyl chloride and 6-bromo-2-pyridinamine: ESMS m/e: 242.8 (M+H)+.
TERT-BUTYL 4-[6-(ISOBUTYRYLAMINO)-2-PYRIDINYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: Prepared by Procedure W and Scheme AF using N-(6-bromo-2-pyridinyl)-2-methylpropanamide and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 245.8 (M−100)+.
2-METHYL-N-[6-(4-PIPERIDINYL)-2-PYRIDINYL]PROPANAMIDE: Prepared by Procedures X and Y, Schemes AG and AH, respectively using tert-butyl 4-[6-(isobutyrylamino)-2-pyridinyl]-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 248.1 (M+H)+.
Example 264N-(6-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}-2-PYRIDINYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 4-chloro-1-(3,4-dimethylphenyl)-1-butanone and 2-methyl-N-[6-(4-piperidinyl)-2-pyridinyl]propanamide: ESMS m/e: 422.1 (M+H)+.
Example 265N-(6-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}-2-PYRIDINYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene and 2-methyl-N-[6-(4-piperidinyl)-2-pyridinyl]propanamide: ESMS m/e: 492.2 (M+H)+.
Example 266N-(6-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL}-2-PYRIDINYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 4-(3,4-difluorophenoxy)benzaldehyde and 2-methyl-N-[6-(4-piperidinyl)-2-pyridinyl]propanamide: ESMS m/e: 466.0 (M+H)+.
N-(3-BROMO-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 using 2-methylpropanoyl chloride and 3-bromo-4-methylaniline: ESMS m/e: 255.9 (M+H)+.
TERT-BUTYL 4-[5-(ISOBUTYRYLAMINO)-2-METHYLPHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: Prepared by Procedure W and Scheme AF using N-(3-bromo-4-methylphenyl)-2-methylpropanamide and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 259.1 (M−100)+.
2-METHYL-N-[4-METHYL-3-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedures X and Y, Schemes AG and AH, respectively using tert-butyl 4-[5-(isobutyrylamino)-2-methylphenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 261.0 (M+H)+.
Example 267N-(3-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL)-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 4-(3,4-difluorophenoxy)benzaldehyde and using 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 479.1 (M+H)+.
N-(5-BROMO-2-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 using 2-methylpropanoyl chloride and 5-bromo-2-methylaniline: ESMS m/e: 255.9 (M+H)+.
TERT-BUTYL 4-[3-(ISOBUTYRYLAMINO)-4-METHYLPHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: Prepared by Procedure W and Scheme AF using N-(5-bromo-2-methylphenyl)-2-methylpropanamide and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 259.1 (M−100)+.
2-METHYL-N-[2-METHYL-5-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedures X and Y, Schemes AG and AH, respectively using tert-butyl 4-[3-(isobutyrylamino)-4-methylphenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 261.0 (M+H)+.
Example 268N-(5-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}-2-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 9-ethyl-9H-carbazole-3-carbaldehyde and 2-methyl-N-[2-methyl-5-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 468.1 (M+H)+.
Example 269N-(5-{1-[4-(3,4-DIFLUOROPHENOXY)BENZYL]-4-PIPERIDINYL}-2-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 4-(3,4-difluorophenoxy)benzaldehyde and 2-methyl-N-[2-methyl-5-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 479.2 (M+H)+.
Example 270N-(3-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 9-ethyl-9H-carbazole-3-carbaldehyde and 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 468.1 (M+H)+.
Example 2712-METHYL-N-[2-METHYL-5-(4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene and 2-methyl-N-[2-methyl-5-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 505.1 (M+H)+.
Example 272N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-(3-{[(1S)-3-chloro-1-phenylpropyl]oxy}phenyl)ethanone and 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 513.0 (M+H)+.
Example 273N-(5-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}-2-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-(3-{[(1S)-3-chloro-1-phenylpropyl]oxy}phenyl)ethanone and 2-methyl-N-[2-methyl-5-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 512.9 (M+H)+.
N-(2-IODOPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 using 2-methylpropanoyl chloride and 2-iodoaniline: ESMS m/e: 289.9 (M+H)+.
TERT-BUTYL 4-[2-(ISOBUTYRYLAMINO)PHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINECARBOXYLATE: Prepared by Procedure W and Scheme AF using N-(2-iodophenyl)-2-methylpropanamide and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 245.1 (M−100)+.
2-METHYL-N-[2-(4-PIPERIDINYL) PHENYL]PROPANAMIDE: Prepared by Procedures X and Y, Schemes AG and AH, respectively using tert-butyl 4-[2-(isobutyrylamino)phenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 247.1 (M+H)+.
Example 274N-(2-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AA and Scheme AJ using 9-ethyl-9H-carbazole-3-carbaldehyde and 2-methyl-N-[2-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 454.1 (M+H)+.
Example 275N-(3-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}-4-METHYLPHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene and 2-methyl-N-[4-methyl-3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 505.0 (M+H)+.
Example 276N-(2-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene and 2-methyl-N-[2-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 490.9 (M+H)+.
N-[2-BROMO-4-(TRIFLUOROMETHOXY)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 using 2-methylpropanoyl chloride and 2-bromo-4-(trifluoromethoxy)aniline: ESMS m/e: 325.9 (M+H)+.
TERT-BUTYL 4-[2-(ISOBUTYRYLAMINO)-5-(TRIFLUOROMETHOXY)PHENYL]-3,6-DIHYDRO-[(2H)-PYRIDINECARBOXYLATE: Prepared by Procedure W and Scheme AF using N-[2-bromo-4-(trifluoromethoxy)phenyl]-2-methylpropanamide and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 329.0 (M−100)+.
2-METHYL-N-[2-(4-PIPERIDINYL)-4-(TRIFLUOROMETHOXY)PHENYL]PROPANAMIDE: Prepared by Procedures X and Y, Schemes AG and AH, respectively using tert-butyl 4-[2-(isobutyrylamino)-5-(trifluoromethoxy)phenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate: ESMS m/e: 330.9 (M+H)+.
Example 277N-[2-{1-[4,4-BIS(4-FLUOROPHENYL)BUTYL]-4-PIPERIDINYL}-4-(TRIFLUOROMETHOXY)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme AI using 1-[4-chloro-1-(4-fluorophenyl)butyl]-4-fluorobenzene and 2-methyl-N-[2-(4-piperidinyl)-4-(trifluoromethoxy)phenyl]propanamide: ESMS m/e: 574.8 (M+H)+.
N-{3-[1-(4-HYDROXYBUTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 4-chloro-1-butanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 319.3 (M+H)+.
N-{3-[1-(5-HYDROXYPENTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 5-chloro-1-pentanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 333.3 (M+H)+.
N-{3-[1-(6-HYDROXYHEXYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 6-chloro-1-hexanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 347.3 (M+H)+.
N-{3-[1-(3-HYDROXYPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 3-chloro-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 305.3 (M+H)+.
N-(3-{1-[(2S)-2-HYDROXY-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (1S)-2-chloro-1-phenylethanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 367.2 (M+H)+.
N-(3-{1-[(2R)-2-HYDROXY-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (1R)-2-chloro-1-phenylethanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 367.2 (M+H)+.
N-(3-{1-[(2R)-2-HYDROXY-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (2R)-3-chloro-2-methyl-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 319.2 (M+H)+.
N-(3-{1-[(2R)-3-HYDROXY-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (2S)-3-chloro-2-methyl-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 319.2 (M+H)+.
Example 278N-(3-{1-[(3R)-3-HYDROXY-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using (1R)-3-chloro-1-phenyl-1-propanol and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 379.2 (M+H)+.
Example 279N-{3-[1-(4-HYDROXY-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN, Step 1 using 2-methyl-N-{3-[1-[(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide: Anal. Calcd for C25H34N2O2+0.08CHCl3: C, 74.5; H, 8.50; N, 6.93. Found: C, 74.5; H, 8.63; N, 6.81; ESMS m/e: 395.2 (M+H)+.
Example 280N-{3-[1-(5-HYDROXY-5-PHENYLPENTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN, Step 1 using 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide: Anal. Calcd for C26H36N2O2+0.25CHCl3: C, 71.9; H, 8.33; N, 6.39. Found: C, 71.3; H, 8.96; N, 6.86; ESMS m/e: 409.2 (M+H)+.
Example 281N-{3-[1-(6-HYDROXY-6-PHENYLHEXYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN, Step 1 using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide: Anal. Calcd for C27H38N2O2+0.1CHCl3: C, 75.5; H, 8.93; N, 6.50. Found: C, 75.3; H, 8.52; N, 6.00; ESMS m/e: 423.2 (M+H)+.
Example 282N-{3-[1-(7-HYDROXY-7-PHENYLHEPTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN, Step 1 using 2-methyl-N-{3-[1-(7-oxo-7-phenylheptyl)-4-piperidinyl]phenyl}propanamide: Anal. Calcd for C28H40N2O2+0.1CHCl3: C, 75.8; H, 9.10; N, 6.29. Found: C, 75.1; H, 9.24; N, 6.51; ESMS m/e: 437.1 (M+H)+.
Example 283N-(3-{1-[4-(4-FLUOROPHENYL)-4-HYDROXYBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN, Step 1 using N-(3-{1-[4-(4-fluorophenyl)-4-oxobutyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 413.1 (M+H)+.
Example 2844-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLBUTYL 3-(2,6-DICHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-(1-(4-hydroxy-4-phenylbutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: 1H NMR (400 MHz, CDCl3) δ 7.56 (m, 1H), 7.47 (m, 2H), 7.44-7.39 (m, 3H), 7.25 (m, 2H), 7.09 (s, 1H), 7.03 (m, 2H), 6.95 (m, 1H), 6.83 (m, 1H), 5.75 (t, 1H, J=7.1 Hz), 3.03 (t, 2H, J=7.2 Hz), 2.93 (m, 2H), 2.78 (s, 3H), 2.48 (m, 3H), 2.25 (m, 2H), 1.48 (m, 3H), 1.77 (m, 2H), 1.54 (m, 2H), 1.25 (d, 6H, J=7.3 Hz); ESMS m/e: 647.7 (M+H)+.
Example 2854-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLBUTYL (4-FLUOROPHENYL)ACETATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-(3-[1-(4-hydroxy-4-phenylbutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and (4-fluorophenyl)acetyl chloride: 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.34-7.19 (m, 8H), 7.11 (m, 1H), 6.98 (m, 3H), 5.75 (t, 1H, J=6.8 Hz), 3.61 (s, 2H), 2.92 (d, 2H, J=8.1 Hz), 2.48 (m, 2H), 2.31 (m, 2H), 1.99-1.84 (m, 4H), 1.84-1.67 (m, 5H), 1.55-1.35 (m, 2H), 1.25 (d, 6H, J=6.9 Hz); ESMS m/e: 531.1 (M+H)+.
Example 2863-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL (4-FLUOROPHENYL)ACETATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(3-hydroxypropyl)-4-piperidinyl]phenyl)-2-methylpropanamide and (4-fluorophenyl)acetyl chloride: ESMS m/e: 441.3 (M+H)+.
Example 2873-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL 3-(2-CHLORO-6-FLUOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(3-hydroxypropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 542.2 (M+H)+.
Example 2883-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL 3-(2,6-DICHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(3-hydroxypropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 558.2 (M+H)+.
Example 2893-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL 3-(2-CHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(3-hydroxypropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 524.2 (M+H)+.
Example 290(1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL 3-(2,6-DICHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 633.6 (M+H)+.
Example 2914-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL 3-(2-CHLORO-6-FLUOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxybutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: Anal. Calcd for C30H35ClFN3O4+CH2Cl2: C, 63.3; H, 6.23; N, 7.33. Found: C, 63.0; H, 6.39; N, 7.03; ESMS m/e: 556.2 (M+H)+.
Example 2924-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL 3-(2-CHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxybutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 538.2 (M+H)+.
Example 2933-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL 5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(3-hydroxypropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 490.3 (M+H)+.
Example 2944-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL 3-(2,6-DICHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxybutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 572.2 (M+H)+.
Example 2954-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLBUTYL 3-(2-CHLORO-6-FLUOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxy-4-phenylbutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: Anal. Calcd for C36H39ClFN3O4+0.54CHCl3: C, 63.0; H, 5.72; N, 6.03. Found: C, 63.0; H, 5.54; N, 6.05; ESMS m/e: 632.2 (M+H)+.
Example 2964-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL 5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxybutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 504.3 (M+H)+.
Example 2976-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL 3-(2,6-DICHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(6-hydroxyhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 600.0 (M+H)+.
Example 2986-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL 5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(6-hydroxyhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 532.1 (M+H)+.
Example 2994-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL (4-FLUOROPHENYL)ACETATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-(3-[1-(4-hydroxybutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and (4-fluorophenyl)acetyl chloride: ESMS m/e: 455.3 (M+H)+.
Example 3004-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLBUTYL 3-(2-CHLOROPHENYL)-5-METHYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxy-4-phenylbutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 614.2 (M+H)+.
Example 3014-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLBUTYL 5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXYLATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-{3-[1-(4-hydroxy-4-phenylbutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 580.0 (M+H)+.
Example 302(1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL (4-FLUOROPHENYL)ACETATE: Prepared by Procedure Q1 and Scheme C2 (TEA) using N-(3-{1-[(3S)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and (4-fluorophenyl)acetyl chloride: Anal. Calcd for C32H37FN2O3+0.07CHCl3: C, 73.4; H, 7.12; N, 5.34. Found: C, 73.4; H, 6.96; N, 5.14; ESMS m/e: 517.1 (M+H)+.
Example 303N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and benzoyl chloride: Anal. Calcd for C31H37N3O2+0.55CHCl3: C, 69.0; H, 6.89; N, 7.65. Found: C, 69.7; H, 6.73; N, 6.03; ESMS m/e: 484.4 (M+H)+.
Example 304N-[3-(1-{(35)-3-[(DIPHENYLACETYL)AMINO]-3-PHENYLPROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and diphenylacetyl chloride: ESMS m/e: 574.3 (M+H)+.
Example 3053-CHLORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-chlorobenzoyl chloride: ESMS m/e: 518.3 (M+H)+.
Example 3063,5-DICHLORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,5-dichlorobenzoyl chloride: ESMS m/e: 552.3 (M+H)+.
Example 3072-(ETHYLSULFANYL)-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)NICOTINAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-(ethylsulfanyl)nicotinoyl chloride: ESMS m/e: 545.3 (M+H)+.
Example 308N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)[1,1′-BIPHENYL]-4-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and [1,1′-biphenyl]-4-carbonyl chloride: ESMS m/e: 560.3 (M+H)+.
Example 309N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-PYRIDINECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-pyridinecarbonyl chloride: ESMS m/e: 484.6 (M+H)+.
Example 310N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-METHOXYBENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-methoxybenzoyl chloride: ESMS m/e: 514.1 (M+H)+.
Example 311N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL)-1-PHENYLPROPYL)-1-NAPHTHAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthoyl chloride: ESMS m/e: 533.7 (M+H)+.
Example 3122,4-DIFLUORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2,4-difluorobenzoyl chloride: ESMS m/e: 520.2 (M+H)+.
Example 3133-(2-CHLORO-6-FLUOROPHENYL)-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 617.2 (M+H)+.
Example 3143-CHLORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL)-1-PHENYLPROPYL)-2-THIOPHENECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3-chloro-2-thiophenecarbonyl chloride: ESMS m/e: 524.2 (M+H)+.
Example 315N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-PHENOXYNICOTINAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-phenoxynicotinoyl chloride: ESMS m/e: 577.3 (M+H)+.
Example 3161-(4-CHLOROPHENYL)-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-3-PROPYL-1H-PYRAZOLE-4-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(4-chlorophenyl)-3-propyl-1H-pyrazole-4-carbonyl chloride: ESMS m/e: 626.3 (M+H)+.
Example 3174-CHLORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-1,3-DIMETHYL-1H-PYRAZOLO[3,4-B]PYRIDINE-5-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-chloro-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridine-5-carbonyl chloride: ESMS m/e: 587.3 (M+H)+.
Example 3185-(3,5-DICHLOROPHENOXY)-N-((1S)-3-(4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-1H-PYRROLE-2-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 5-(3,5-dichlorophenoxy)-1H-pyrrole-2-carbonyl chloride: ESMS m/e: 634.2 (M+H)+.
Example 319N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)NICOTINAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and nicotinoyl chloride: ESMS m/e: 485.3 (M+H)+.
Example 3203,4-DIFLUORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,4-difluorobenzoyl chloride: ESMS m/e: 520.3 (M+H)+.
Example 321N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-1-PHENYL-3-PROPYL-1H-PYRAZOLE-4-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-phenyl-3-propyl-1H-pyrazole-4-carbonyl chloride: ESMS m/e: 592.2 (M+H)+.
Example 3224-(DIMETHYLAMINO)-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)BENZAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(dimethylamino)benzoyl chloride: ESMS m/e: 527.3 (M+H)+.
Example 323N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-THIOPHENECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 2-thiophenecarbonyl chloride: ESMS m/e: 490.2 (M+H)+.
Example 324N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-5-NITRO-2-FURAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 5-nitro-2-furoyl chloride: ESMS m/e: 519.2 (M+H)+.
Example 325N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl)-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 489.1 (M+H)+.
Example 326N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-FURAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-furoyl chloride: ESMS m/e: 474.2 (M+H)+.
Example 327N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL)-1-PHENYLPROPYL)-1-(4-NITROPHENYL)-5-(TRIFLUOROMETHYL)-1H-PYRAZOLE-4-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(4-nitrophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carbonyl chloride: ESMS m/e: 663.2 (M+H)+.
Example 3283-(2-CHLORO-6-FLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 541.2 (M+H)+.
Example 329N-[3-(1-{3-[(DIPHENYLACETYL)AMINO]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and diphenylacetyl chloride: 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.33-7.21 (m, 13H), 6.94 (m, 2H), 4.88 (s, 1H), 3.39 (t, 2H, J=5.6 Hz), 2.93 (d, 2H, J=11.3 Hz), 2.52-2.36 (m, 4H), 1.97 (t, 2H, J=11.3 Hz), 1.83-1.58 (m, 6H), 1.24 (d, 6H, J=7.6 Hz); Anal. Calcd for C32H39N3O2+HCl+0.19CHCl3: C, 69.44; H, 7.27; N, 7.55. Found: C, 69.44; H, 7.43; N, 7.43; ESMS m/e: 498.4 (M+H)+.
Example 330N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-1-BENZOTHIOPHENE-3-CARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 1-benzothiophene-3-carbonyl chloride: ESMS m/e: 464.2 (M+H)+.
Example 3313-(2-CHLOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 523.1 (M+H)+.
Example 3323-(2,6-DICHLOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: 1H NMR (400 MHz, CDCl3) δ 7.50 (d, 1H, J=2.3 Hz), 7.48 (s, 1H), 7.4 (m, 1H), 7.39 (s, 1H), 7.37 (m, 2H), 7.24 (t, 1H, J=7.2 Hz), 6.92 (d, 1H, J=7.9 Hz), 6.06 (s, 1H), 3.31 (q, 2H, J=6.4 Hz), 2.94 (d, 2H, J=10.8 Hz), 2.79 (s, 3H), 2.53 (q, 1H, J=6.1), 2.47 (tt, 1H, J=4.2, 11.4 Hz), 2.29 (t, 2H, J=7.2 Hz), 1.99 (t, 2H, J=11.4 Hz), 1.81 (m, 2H), 1.69 (dt, 2H, J=2.4, 11.6), 1.59 (q, 2H, J=6.6 Hz), 1.24 (d, 6H, J=6.5 Hz); ESMS m/e: 557.0 (M+H)+.
1-[3-(3-CHLOROPROPOXY)PHENYL]ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-3-chloropropane.
1-(3-CHLOROPROPOXY)-2-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 2-fluorophenol and 1-bromo-3-chloropropane.
1-CHLORO-3-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 3-chlorophenol and 1-bromo-3-chloropropane.
1-CHLORO-4-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 4-chlorophenol and 1-bromo-3-chloropropane.
1-(3-CHLOROPROPOXY)-3-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 3-fluorophenol and 1-bromo-3-chloropropane.
1-(3-CHLOROPROPOXY)-4-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 4-fluorophenol and 1-bromo-3-chloropropane.
1-CHLORO-2-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 2-chlorophenol and 1-bromo-3-chloropropane.
4-(3-CHLOROPROPOXY)-1,2-DIMETHYLBENZENE: Prepared by Procedure U and Scheme AK using 3,4-dimethylphenol and 1-bromo-3-chloropropane.
1-BROMO-2-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 2-bromophenol and 1-bromo-3-chloropropane.
1-BROMO-3-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 3-bromophenol and 1-bromo-3-chloropropane.
1-BROMO-4-(3-CHLOROPROPOXY)BENZENE: Prepared by Procedure U and Scheme AK using 4-bromophenol and 1-bromo-3-chloropropane.
1-(3-CHLOROPROPOXY)-4-METHYLBENZENE: Prepared by Procedure U and Scheme AK using p-cresol and 1-bromo-3-chloropropane.
4-BROMOPHENYL (2R)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 4-bromophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-{([(2R)-3-CHLORO-2-METHYLPROPYL]OXY}-2,4,5-TRIFLUOROBENZENE: Prepared by Procedure U and Scheme AK using 2,4,5-trifluorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-3-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 3-chlorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}-4-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 4-fluorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}-3-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 3-fluorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-2-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 2-chlorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}-2-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 2-fluorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-4-{[(2R)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 4-chlorophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
3-BROMOPHENYL (2R)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 3-bromophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
2-BROMOPHENYL (2R)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 2-bromophenol and (2S)-1-bromo-3-chloro-2-methylpropane.
1-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}-3-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 3-fluorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}-4-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 4-fluorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}-2-FLUOROBENZENE: Prepared by Procedure U and Scheme AK using 2-fluorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-2-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 2-chlorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-4-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 4-chlorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
4-BROMOPHENYL (2S)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 4-bromophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
3-BROMOPHENYL (2S)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 3-bromophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
2-BROMOPHENYL (2S)-3-CHLORO-2-METHYLPROPYL ETHER: Prepared by Procedure U and Scheme AK using 2-bromophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-CHLORO-3-{[(2S)-3-CHLORO-2-METHYLPROPYL]OXY}BENZENE: Prepared by Procedure U and Scheme AK using 3-chlorophenol and (2R)-1-bromo-3-chloro-2-methylpropane.
1-[3-(4-CHLOROBUTOXY)PHENYL]ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-4-chlorobutane.
1-[3-(4-CHLOROBUTOXY)PHENYL]ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-4-chlorobutane.
1-(4-CHLOROBUTOXY)-3-METHOXYBENZENE: Prepared by Procedure U and Scheme AK using 3-methoxyphenol and 1-bromo-4-chlorobutane.
1-(4-CHLOROBUTOXY)-4-METHOXYBENZENE: Prepared by Procedure U and Scheme AK using 4-methoxyphenol and 1-bromo-4-chlorobutane.
1-(4-CHLOROBUTOXY)-2-METHOXYBENZENE: Prepared by Procedure U and Scheme AK using 2-methoxyphenol and 1-bromo-4-chlorobutane.
4-(4-CHLOROBUTOXY)-1,2-DIMETHYLBENZENE: Prepared by Procedure U and Scheme AK using 3,4-dimethylphenol and 1-bromo-4-chlorobutane.
1-{3-[(5-CHLOROPENTYL)OXY]PHENYL}ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-5-chloropentane.
1-{3-[(5-CHLOROPENTYL)OXY]PHENYL}ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-5-chloropentane.
1-{3-[(6-CHLOROHEXYL)OXY]PHENYL}ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-6-chlorohexane.
1-{3-[(6-CHLOROHEXYL)OXY]PHENYL}ETHANONE: Prepared by Procedure U and Scheme AK using 1-(3-hydroxyphenyl)ethanone and 1-bromo-6-chlorohexane.
Example 333N-(3-{1-[(2S)-2-(3-ACETYLPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[(2R)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 485.0 (M+H)+.
Example 334N-(3-{1-[(2S)-2-(2-ACETYLPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 1-(2-hydroxyphenyl)ethanone and N-(3-{1-[(2R)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 485.2 (M+H)+.
Example 335N-(3-{1-[(2S)-2-(3-CHLOROPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 3-chlorophenol and N-(3-{1-[(2R)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 477.1 (M+H)+.
Example 336N-(3-{1-[(2S)-2-(3,4-DIMETHOXYPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 3,4-dimethoxyphenol and N-(3-{1-[(2R)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 503.2 (M+H)+.
Example 337N-(3-{-[(2R)-2-(4-FLUOROPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 4-fluorophenol and N-(3-(1-[(2S)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 461.2 (M+H)+.
Example 338N-(3-{1-[(2R)-2-(3-METHOXYPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 3-methoxyphenol and N-(3-{1-[(2S)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 472.9 (M+H)+.
Example 339N-(3-{1-[(2R)-2-(3-CHLOROPHENOXY)-2-PHENYLETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme B1 using 3-chlorophenol and N-(3-{1-[(2S)-2-hydroxy-2-phenylethyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 478.5 (M+H)+.
N-{3-[1-(3,3-DIMETHOXYPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 3-bromo-1,1-dimethoxypropane and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 349.2 (M+H)+
Example 340N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure B and Scheme B1 using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[(3R)-3-hydroxy-3-phenylpropyl]-4-piperidinyl}phenyl)cyclopropanecarboxamide: ESMS m/e: 497.1 (M+H)+.
Example 341N-(3-{1-[3-(3-ACETYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-[3-(3-chloropropoxy)phenyl]ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 423.2 (M+H)+.
Example 342N-(3-{1-[3-(3-ACETYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-[3-(3-chloropropoxy)phenyl]ethanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 421.2 (M+H)+.
Example 343N-(3-{1-[3-(2-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(3-chloropropoxy)-2-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 399.2 (M+H)+.
Example 344N-(3-{1-[3-(3-CHLOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-3-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 415.2 (M+H)+.
Example 345N-(3-{1-[3-(4-CHLOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-4-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.71 (dd, 1H, J=3.2, 5.7 Hz), 7.53 (dd, 1H, J=3.2, 5.7 Hz), 7.50 (m, 1H), 7.31 (m, 1H), 7.24-7.20 (m, 2H), 6.94 (d, 1H, J=7.9 Hz), 6.85-6.82 (m, 2H), 4.00 (t, 2H, J=6.1 Hz), 3.07 (d, 2H, J=10.9 Hz), 2.55 (m, 3H), 2.50 (sept, 1H, J=6.2 Hz), 2.08 (dt, 2H, J=3.1, 10.9 Hz), 2.00 (m, 2H), 1.83 (m, 3H), 1.69 (qt, 1H, J=6.2 Hz), 1.24 (d, 6H, J=6.8 Hz); Anal. Calcd for C24H31ClN2O2+HCl: C, 63.8; H, 7.09; N, 6.21. Found: C, 63.3; H, 7.04; N, 6.27; ESMS m/e: 415.2 (M+H)+.
Example 346N-(3-{1-[3-(3-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(3-chloropropoxy)-3-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 399.2 (M+H)+.
Example 347N-(3-{1-[3-(4-FLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(3-chloropropoxy)-4-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 399.2 (M+H)+.
Example 348N-(3-{1-[3-(2-CHLOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-2-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 415.2 (M+H)+.
Example 349N-(3-{1-[3-(3,4-DIMETHYLPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 4-(3-chloropropoxy)-1,2-dimethylbenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409.2 (M+H)+.
Example 350N-(3-{1-[3-(2-BROMOPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-bromo-2-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, 1H, J=1.6, 7.9 Hz), 7.48 (s, 1H), 7.32 (m, 1H), 7.28-7.22 (m, 3H), 7.17 (s, 1H), 6.98 (d, 1H, J=7.7 Hz), 6.93 (dd, 1H, J=1.4, 8.4 Hz), 6.82 (dt, 1H, J=7.6, 1.4 Hz), 4.11 (t, 2H, J=6.3 Hz), 3.07 (d, 2H, J=11.3 Hz), 2.61 (t, 2H, J=6.9 Hz), 2.50 (m, 3H), 2.07 (m, 1H), 1.8-1.75 (m, 5H), 1.25 (d, 6H, J=6.7 Hz); Anal. Calcd for C24H31BrN2O2.HCl+0.2 CHCl3: C, 55.9; H, 6.24; N, 5.39. Found: C, 55.8; H, 6.23; N, 5.47; ESMS m/e: 459.1 (M+H)+.
Example 351N-(3-{1-[3-(3-BROMOPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-bromo-3-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 459.1 (M+H)+.
Example 352N-(3-{1-[3-(4-BROMOPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-bromo-4-(3-chloropropoxy)benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.37 (d, 2H, J=7.6 Hz), 7.26 (m, 3H), 6.97 (d, 1H, J=7.7 Hz), 6.79 (d, 2H, J=7.7 Hz), 4.01 (t, 2H, J=5.6 Hz), 3.08 (d, 2H, J=9.4 Hz), 2.53 (m, 4H), 2.05 (m, 4H), 1.84 (m, 4H), 1.24 (d, 6H, J=5.9 Hz); Anal. Calcd for C24H31BrN2O2.HCl+0.34CHCl3: C, 54.5; H, 6.08; N, 5.22. Found: C, 54.5; H, 6.22; N, 5.22; ESMS m/e: 459.1 (M+H)+.
Example 353N-(3-{1-[(3R)-3-(3,4-DIMETHOXYPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-N,2-DIMETHYLPROPANAMIDE: Prepared by Procedure T and Scheme AD using N-(3-{1-[(3R)-3-(3,4-dimethoxyphenoxy)-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and methyl iodide: ESMS m/e: 531.2 (M+H)+.
Example 354N-(3-{1-[(3R)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-N,2-DIMETHYLPROPANAMIDE: Prepared by Procedure T and Scheme AD using N-(3-{1-[(3R)-3-(3-acetylphenoxy)-3-phenylpropyl]-4-piperidinyl)phenyl)-2-methylpropanamide and methyl iodide: ESMS m/e: 513.2 (M+H)+.
Example 355N-(3-{1-[(3S)-3-(3-ACETYLPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-N,2-DIMETHYLPROPANAMIDE: Prepared by Procedure T and Scheme AD using N-(3-{1-[(3S)-3-(3-acetylphenoxy)-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide and methyl iodide: ESMS m/e: 513.2 (M+H)+.
Example 356N-(3-{1-[(2S)-3-(4-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 4-bromophenyl(2R)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.0 (M+H)+.
Example 3572-METHYL-N-(3-{1-[(2S)-2-METHYL-3-(2,4,5-TRIFLUOROPHENOXY)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2R)-3-chloro-2-methylpropyl]oxy}-2,4,5-trifluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 449.2 (M+H)+.
Example 358N-(3-{1-[(2S)-3-(3-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-3-{[(2R)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.2 (M+H)+.
Example 359N-(3-{1-[(2S)-3-(4-FLUOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2R)-3-chloro-2-methylpropyl]oxy}-4-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.2 (M+H)+.
Example 360N-(3-{1-[(2S)-3-(3-FLUOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2R)-3-chloro-2-methylpropyl]oxy}-3-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.2 (M+H)+.
Example 361N-(3-{1-[(2S)-3-(2-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-2-{[(2R)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.1 (M+H)+.
Example 362N-(3-{1-[(2S)-3-(2-FLUOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2R)-3-chloro-2-methylpropyl]oxy}-2-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.2 (M+H)+.
Example 363N-(3-{1-[(2S)-3-(4-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-4-{[(2R)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.2 (M+H)+.
Example 364N-(3-{1-[(2S)-3-(3-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 3-bromophenyl(2R)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 474.0 (M+H)+.
Example 365N-(3-{1-[(2S)-3-(2-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 2-bromophenyl(2R)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.0 (M+H)+.
Example 366N-(3-{1-[(2R)-3-(3-FLUOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2S)-3-chloro-2-methylpropyl]oxy}-3-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.2 (M+H)+.
Example 367N-(3-{1-[(2R)-3-(4-FLUOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{[(2S)-3-chloro-2-methylpropyl]oxy)-4-fluorobenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.8 (M+H)+.
Example 368N-(3-{1-[(2R)-3-(2-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-2-([(2S)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.1 (M+H)+.
Example 369N-(3-{1-[(2R)-3-(4-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-4-([(2S)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.1 (M+H)+.
Example 370N-(3-{1-[(2R)-3-(4-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 4-bromophenyl(2S)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.0 (M+H)+.
Example 371N-(3-{1-[(2R)-3-(3-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 3-bromophenyl(2S)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.0 (M+H)+.
Example 372N-(3-{1-[(2R)-3-(2-BROMOPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 2-bromophenyl(2S)-3-chloro-2-methylpropyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 473.0 (M+H)+.
Example 373N-(3-{1-[(2R)-3-(3-CHLOROPHENOXY)-2-METHYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-chloro-3-{[(2S)-3-chloro-2-methylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 429.1 (M+H)+.
Example 374N-(3-{1-[3-(5,5-DIMETHYL-1,3-DIOXAN-2-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 2-(3-bromopropyl)-5,5-dimethyl-1,3-dioxane and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 403.2 (M+H)+
Example 375N-(3-{1-[4-(3-ACETYLPHENOXY)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-[3-(4-chlorobutoxy)phenyl]ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 437.2 (M+H)+.
Example 376N-(3-{1-[4-(3-METHOXYPHENOXY)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(4-chlorobutoxy)-3-methoxybenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 377N-(3-{1-[4-(4-METHOXYPHENOXY) BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(4-chlorobutoxy)-4-methoxybenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 378N-(3-{1-[4-(2-METHOXYPHENOXY)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(4-chlorobutoxy)-2-methoxybenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 379N-(3-{1-[4-(3,4-DIMETHYLPHENOXY)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 4-(4-chlorobutoxy)-1,2-dimethylbenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 423.2 (M+H)+.
Example 380N-(3-{1-[4-(1,3-DIOXOLAN-2-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 2-(4-chlorobutyl)-1,3-dioxolane and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 375.2 (M+H)+.
Example 381N-(3-{1-[5-(3-ACETYLPHENOXY)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-{3-[(5-chloropentyl)oxy]phenyl}ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 451.3 (M+H)+.
Example 382N-(3-{1-[5-(3-ACETYLPHENOXY)PENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using 1-{3-[(5-chloropentyl)oxy]phenyl)ethanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 449.2 (M+H)+.
Example 383N-(3-{1-[6-(3-ACETYLPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-(3-[(6-chlorohexyl)oxy]phenyl}ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 465.3 (M+H)+.
Example 384N-(3-{1-[6-(3-ACETYLPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using 1-{3-[(6-chlorohexyl)oxy]phenyl}ethanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 463.3 (M+H)+.
Example 385N-(3-{1-[4-(4-CHLOROPHENOXY)-4-(4-CHLOROPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure B and Scheme AN using 4-chlorophenol and N-(3-{1-[4-(4-chlorophenyl)-4-hydroxybutyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 562.9 (M+23)+.
Example 3862-METHYL-N-(3-{1-[2-(1-METHYL-2-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 480.3 (M+H)+.
Example 3872-METHYL-N-(3-{1-[2-(2-PHENYL-1H-BENZO[G]INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-(1-naphthyl)hydrazine hydrochloride: ESMS m/e: 516.4 (M+H)+.
Example 3882-METHYL-N-(3-{1-[3-(2-PHENYL-1H-BENZO[G]INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-(1-naphthyl)hydrazine hydrochloride: ESMS m/e: 530.2 (M+H)+.
Example 3892-METHYL-N-[3-(1-{3-[2-PHENYL-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-[4-(trifluoromethoxy)phenyl]hydrazine hydrochloride: ESMS m/e: 564.2 (M+H)+.
Example 3902-METHYL-N-[3-(1-{4-[2-PHENYL-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]BUTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-[4-(trifluoromethoxy)phenyl]hydrazine hydrochloride: ESMS m/e: 578.2 (M+H)+.
Example 3912-METHYL-N-(3-{1-[3-(1-METHYL-2-PHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 495.3 (M+H)+.
Example 392N-(3-{1-[4-(1,2-DIPHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: (M+H)+. 570.3
Example 3932-METHYL-N-[3-(1-{5-[2-PHENYL-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(7-oxo-7-phenylheptyl)-4-piperidinyl]phenyl}propanamide and 1-[4-(trifluoromethoxy)phenyl]hydrazine hydrochloride: ESMS m/e: 592.3 (M+H)+.
Example 394N-(3-{1-[5-(1,2-DIPHENYL-1H-INDOL-3-YL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(7-oxo-7-phenylheptyl)-4-piperidinyl]phenyl}propanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 584.3 (M+H)+.
Example 3952-METHYL-N-(3-{1-[5-(1-METHYL-2-PHENYL-1H-INDOL-3-YL)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(7-oxo-7-phenylheptyl)-4-piperidinyl]phenyl}propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 522.3 (M+H)+.
Example 3962-METHYL-N-(3-{1-[4-(2-PHENYL-1H-BENZO[G]INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-(1-naphthyl)hydrazine hydrochloride: ESMS m/e: 544.3 (M+H)+.
Example 3972-METHYL-N-(3-{1-[4-(1-METHYL-2-PHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 508.3 (M+H)+.
Example 3982-METHYL-N-(3-{1-[5-(2-PHENYL-1H-BENZO[G]INDOL-3-YL)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(7-oxo-7-phenylheptyl)-4-piperidinyl]phenyl}propanamide and 1-(1-naphthyl)hydrazine hydrochloride: ESMS m/e: 558.2 (M+H)+.
Example 3992-METHYL-N-(3-{1-[2-(5-METHYL-2-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-(4-methylphenyl)hydrazine hydrochloride: ESMS m/e: 480.2 (M+H)+.
Example 400N-(3-{1-[2-(7-METHOXY-2-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-(2-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 496.2 (M+H)+.
Example 4012-METHYL-N-(3-{1-[2-(7-METHYL-2-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 480.2 (M+H)+.
Example 402N-(3-{1-[3-(7-METHOXY-2-PHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-(2-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 510.2 (M+H)+.
Example 4032-METHYL-N-(3-{1-[4-(7-METHYL-2-PHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 508.3 (M+H)+.
Example 404N-(3-{1-[2-(5-METHOXY-2-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(4-oxo-4-phenylbutyl)-4-piperidinyl]phenyl}propanamide and 1-(4-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 496.2 (M+H)+.
Example 4052-METHYL-N-(3-{1-[3-(5-METHYL-2-PHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(5-oxo-5-phenylpentyl)-4-piperidinyl]phenyl}propanamide and 1-(4-methylphenyl)hydrazine hydrochloride: ESMS m/e: 494.3 (M+H)+.
Example 406N-(3-{1-[4-(7-METHOXY-2-PHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-(2-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 524.3 (M+H)+.
Example 4072-METHYL-N-(3-{1-[3-(1-PHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 480.2 (M+H)+.
Example 4082-METHYL-N-(3-{1-[2-(1-PHENYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 466.2 (M+H)+.
Example 4092-METHYL-N-(3-{1-[2-(7-METHYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 404.2 (M+H)+.
Example 4102-METHYL-N-(3-{1-[2-(1-METHYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 404.2 (M+H)+.
Example 4112-METHYL-N-(3-{1-[2-(5-METHYL-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(4-methylphenyl)hydrazine hydrochloride: ESMS m/e: 404.2 (M+H)+.
Example 4122-METHYL-N-[3-(1-{2-[5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]ETHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-[4-(trifluoromethoxy)phenyl]hydrazine hydrochloride: ESMS m/e: 474.2 (M+H)+.
Example 413N-(3-{1-[3-(1H-BENZO[G]INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(1-naphthyl)hydrazine hydrochloride: ESMS 454.2 m/e: (M+H)+.
Example 4142-METHYL-N-(3-{1-[3-(1-METHYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S. A mixture of N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide (100 mg, 0.270 mmol), 1-methyl-1-phenylhydrazine (106 mg, 0.870 mmol), ZnCl2 (119 mg, 0.870 mmol) and HOAc (1.00 mL) was heated for 12 h at 80° C. The resulting crude mixture was diluted with water (20 mL), the aqueous layer was neutralized with a saturated K2CO3 solution (10 mL) and extracted with CH2Cl2 (3×20 mL). The combined organic layers were concentrated in vacuo and the residue was purified by preparative TLC using 3% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product 2-methyl-N-(3-{1-[3-(1-methyl-1H-indol-3-yl)propyl]-4-piperidinyl}phenyl)propanamide (20.7 mg, 18.7%): 1H NMR (400 MHz, CDCl3) δ 7.60 (d, 1H, J=8.1 Hz), 7.45 (s, 1H), 7.35 (d, 1H, J=7.4 Hz), 7.25 (m, 4H), 7.09 (t, 1H, J=7.3 Hz), 6.97 (d, 1H, J=7.3 Hz), 6.86 (s, 1H), 3.75 (s, 3H), 3.11 (d, 2H, J=11.6 Hz), 2.79 (t, 2H, J=7.3 Hz), 2.51 (m, 4H), 2.12-1.81 (m, 8H), 1.25 (d, 6H, J=7.1 Hz); Anal. Calcd for C27H35N3O+0.225 CHCl3: C, 73.57; H, 7.99; N, 9.45. Found: C, 73.93; H, 7.90; N, 9.23; ESMS m/e: 418.2 (M+H)+.
Example 4152-METHYL-N-(3-{1-[3-(5-METHYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(4-methylphenyl)hydrazine hydrochloride: ESMS m/e: 418.2 (M+H)+.
Example 4162-METHYL-N-[3-(1-{3-[5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-[4-(trifluoromethoxy)phenyl]hydrazine hydrochloride: ESMS m/e: 488.2 (M+H)+.
Example 4172-METHYL-N-(3-{1-[3-(7-METHYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 418.2 (M+H)+.
Example 418N-(3-{1-[3-(7-METHOXY-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[4-(1,3-dioxolan-2-yl)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 434.0 (M+H)+.
Example 419N-(3-{1-[2-(7-METHOXY-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 420.2 (M+H)+.
Example 420N-(3-{1-[2-(5-METHOXY-1H-INDOL-3-YL)ETHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure H and Scheme S using N-(3-{1-[3-(1,3-dioxolan-2-yl)propyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(4-methoxyphenyl)hydrazine hydrochloride: ESMS m/e: 420.2 (M+H)+.
Example 4212-METHYL-N-(3-{1-[4-(5-METHYL-2-PHENYL-1H-INDOL-3-YL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-{3-[1-(6-oxo-6-phenylhexyl)-4-piperidinyl]phenyl}propanamide and 1-(4-methylphenyl)hydrazine hydrochloride: ESMS m/e: 508.3 (M+H)+.
Example 4222-METHYL-N-[4-(1-{[1-(4-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide and 1-(4-methylphenyl)-1H-indole: ESMS m/e: 466.2 (M+H)+.
Example 423N-[4-(1-{[1-(4-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]BUTANAMIDE: Prepared by Procedure D and Scheme N using N-[4-(4-piperidinyl)phenyl]butanamide and 1-(4-methylphenyl)-1H-indole: ESMS m/e: 466.2 (M+H)+.
Example 424N-[3-(1-{[2-(2-AMINOPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 2-(1H-indol-2-yl)aniline: ESMS m/e: 467.2 (M+H)+.
Example 425ETHYL 3-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-1H-INDOLE-2-CARBOXYLATE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and ethyl 1H-indole-2-carboxylate: ESMS m/e: 448.2 (M+H)+.
Example 4262-METHYL-N-(3-{1-[(1-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-methyl-1H-indole: ESMS m/e: 390.2 (M+H)+.
Example 427N-(3-{1-[(5-METHOXY-2-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-methoxy-2-methyl-1H-indole: ESMS m/e: 420.2 (M+H)+.
Example 4282-METHYL-N-(3-{1-[(1-METHYL-2-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-methyl-2-phenyl-1H-indole: ESMS m/e: 466.2 (M+H)+.
Example 4292-METHYL-N-(3-{1-[(5-NITRO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-nitro-1H-indole: ESMS m/e: 421.1 (M+H)+.
Example 4302-METHYL-N-(3-{1-[(2-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 2-methyl-1H-indole: ESMS m/e: 390.2 (M+H)+.
Example 431N-(3-{1-[(4-BROMO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-bromo-1H-indole: ESMS m/e: 455.0 (M+H)+.
Example 432N-[3-(1-{[2-(4-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 2-(4-fluorophenyl)-1H-indole: ESMS m/e: 470.0 (M+H)+.
Example 433N-(3-{1-[(1,2-DIPHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1,2-diphenyl-1H-indole: ESMS m/e: 528.2 (M+H)+.
Example 434N-[3-(1-{[2-(4-CHLOROPHENYL)-1-ETHYL-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 2-(4-chlorophenyl)-1-ethyl-1H-indole: ESMS m/e: 514.1 (M+H)+.
Example 435N-(3-{1-[(5-CHLORO-2-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-chloro-2-methyl-1H-indole: ESMS m/e: 424.1 (M+H)+.
Example 436N-(3-{1-[(5-CYANO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1H-indole-5-carbonitrile: ESMS m/e: 401.1 (M+H)+.
Example 4372-METHYL-N-(3-{1-[(5-METHYL-2-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-methyl-2-phenyl-1H-indole: ESMS m/e: 466.2 (M+H)+.
Example 4382-METHYL-N-[3-(1-{[1-(4-NITROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(4-nitrophenyl)-1H-indole: ESMS m/e: 497.2 (M+H)+.
Example 439N-[3-(1-{[1-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL) PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(2-fluorophenyl)-1H-indole: ESMS m/e: 470.1 (M+H)+.
Example 440N-(3-{1-[(5,6-DIMETHOXY-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5,6-dimethoxy-1H-indole: ESMS m/e: 436.2 (M+H)+.
Example 4412-METHYL-N-[3-(1-{[1-(3-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(3-methylphenyl)-1H-indole: ESMS m/e: 466.2 (M+H)+.
Example 4422-METHYL-N-{3-[1-({1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-[3-(trifluoromethyl)phenyl]-1H-indole: ESMS m/e: 520.2 (M+H)+.
Example 443N-[3-(1-{[1-(4-METHOXYPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(4-methoxyphenyl)-1H-indole: ESMS m/e: 482.2 (M+H)+.
Example 444N-(3-{1-[(5-METHOXY-2-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-methoxy-2-phenyl-1H-indole: ESMS m/e: 482.2 (M+H)+.
Example 4452-METHYL-N-(3-{1-[(5-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 5-methyl-1H-indole: ESMS m/e: 390.2 (M+H)+.
Example 446N-[3-(1-{[1-(2-NITROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-nitrophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.2 (M+H)+.
Example 447N-[3-(1-{[1-(2-METHOXYPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-methoxyphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 482.2 (M+H)+.
Example 4482-METHYL-N-{3-[1-({1-[2-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-[2-(trifluoromethyl)phenyl]-1H-indole, and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 520.2 (M+H)+.
Example 449N-(3-{1-[(5-METHOXY-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1H-indol-5-yl methyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 406.2 (M+H)+.
Example 450N-[3-(1-{[1-(4-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(4-fluorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 470.2 (M+H)+.
Example 451N-[3-(1-{[1-(3-METHOXYPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(3-methoxyphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 482.2 (M+H)+.
Example 4522-METHYL-N-[3-(1-{[1-(2-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 466.2 (M+H)+.
Example 453ETHYL 3-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-5-METHOXY-1H-INDOLE-2-CARBOXYLATE: Prepared by Procedure D and Scheme N using ethyl 5-methoxy-1H-indole-2-carboxylate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 478.2 (M+H)+.
Example 454N-(3-{1-[(5-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 5-fluoro-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 394.2 (M+H)+.
1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and iodobenzene: ESMS m/e: 193.9 (M+H)+.
1-(4-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-chloro-4-iodobenzene: ESMS m/e: 227.9 (M+H)+.
1-(3-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-chloro-3-iodobenzene: ESMS m/e: 227.9 (M+H)+.
1-(2-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-chloro-2-iodobenzene: ESMS m/e: 227.9 (M+H)+.
1-[2-(TRIFLUOROMETHYL)PHENYL]-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-2-(trifluoromethyl)benzene: ESMS m/e: 262.0 (M+H)+.
4-(1H-INDOL-1-YL)BENZONITRILE: Prepared by Procedure C and Scheme O using 1H-indole and 4-iodobenzonitrile: ESMS m/e: 219.0 (M+H)+.
1-(4-NITROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-4-nitrobenzene: ESMS m/e: 238.2 (M+H)+.
1-(2-NITROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-2-nitrobenzene: ESMS m/e: 238.2 (M+H)+.
Example 455N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(4-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 472.1 (M+H)+.
Example 456N-[3-(1-{[1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(3-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 472.1 (M+H)+.
Example 457N-[3-(1-{[1-(2-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 1-(2-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 484.1 (M+H)+.
Example 458N-[3-(1-{[1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(3-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 486.1 (M+H)+.
Example 459N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(4-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 486.2 (M+H)+.
Example 460N-[3-(1-{[1-(2-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 486.2 (M+H)+.
Example 461N-[3-(1-{[1-(2-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 472.1 (M+H)+.
Example 462N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 1-(4-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 484.1 (M+H)+.
Example 463N-[3-(1-{[1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 1-(3-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 484.1 (M+H)+.
Example 464N-(3-{1-[(1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-phenyl-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 438.2 (M+H)+.
Example 465N-(3-{1-[(1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 1-phenyl-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 450.2 (M+H)+.
6-CHLORO-1-(4-NITROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-4-nitrobenzene: ESMS m/e: 272.6 (M+H)+.
6-CHLORO-1-(2,3-DICHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1,2-dichloro-3-iodobenzene: ESMS m/e: 296.5 (M+H)+.
6-CHLORO-1-(3-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-3-methylbenzene: ESMS m/e: 241.9 (M+H)+.
6-CHLORO-1-(2-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-2-methylbenzene: ESMS m/e: 241.9 (M+H)+.
2-(6-CHLORO-1H-INDOL-1-YL)PHENYL METHYL ETHER: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-2-methoxybenzene: ESMS m/e: 257.9 (M+H)+.
6-CHLORO-1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-3-(trifluoromethyl)benzene: ESMS m/e: 295.6 (M+H)+.
6-CHLORO-1-(2-FLUOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-fluoro-2-iodobenzene: ESMS m/e: 245.9 (M+H)+.
6-CHLORO-1-(3-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-chloro-3-iodobenzene: ESMS m/e: 261.9 (M+H)+.
6-CHLORO-1-(4-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-chloro-4-iodobenzene: ESMS m/e: 262.9 (M+H)+.
6-CHLORO-1-(2-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-chloro-2-iodobenzene: ESMS m/e: 262.9 (M+H)+.
3-(6-CHLORO-1H-INDOL-1-YL)PHENYL METHYL ETHER: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-3-methoxybenzene: ESMS m/e: 257.9 (M+H)+.
6-CHLORO-1-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-4-(trifluoromethyl)benzene ESMS m/e: 295.6 (M+H)+.
6-CHLORO-1-(4-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-iodo-4-methylbenzene: ESMS m/e: 241.9 (M+H)+.
6-CHLORO-1-(4-FLUOROPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and 1-fluoro-4-iodobenzene: ESMS m/e: 245.9 (M+H)+.
Example 466N-[3-(1-{[6-CHLORO-1-(4-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-fluorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 502.1 (M+H)+.
Example 467N-[3-(1-{[6-CHLORO-1-(4-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-fluorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 490.1 (M+H)+.
Example 468N-(3-{1-[(6-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-fluoro-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 380.1 (M+H)+.
Example 469N-(3-{1-[(6-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 6-fluoro-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 392.1 (M+H)+.
Example 470N-(3-{1-[(6-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-fluoro-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 394.1 (M+H)+.
Example 471N-[3-(1-{[6-CHLORO-1-(4-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-fluorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 504.1 (M+H)+.
Example 472N-[3-(1-{[6-CHLORO-1-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2-fluorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 490.1 (M+H)+.
Example 473N-[3-(1-{[6-CHLORO-1-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2-fluorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 502.1 (M+H)+.
Example 474N-[3-(1-{[6-CHLORO-1-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2-fluorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide ESMS m/e: 504.1 (M+H)+.
Example 475N-[3-(1-{[6-CHLORO-1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide ESMS m/e: 506.1 (M+H)+.
Example 476N-[3-(1-{[6-CHLORO-1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide ESMS m/e: 518.1 (M+H)+.
Example 477N-[3-(1-{[6-CHLORO-1-(4-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide ESMS m/e: 520.1 (M+H)+.
Example 478N-[3-(1-{[6-CHLORO-1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(3-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 506.1 (M+H)+.
Example 479N-[3-(1-{[6-CHLORO-1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(3-chlorophenyl)-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: 1H NMR (400 MHz, CDCl3) δ 7.72 (d, 1H, J=8.4 Hz), 7.68 (s, 1H), 7.49 (m, 2H), 7.44 (d, 2H, J=7.9 Hz), 7.49-7.25 (m, 4H), 7.21 (d, 1H, J=7.9 Hz), 7.17 (d, 1H, J=7.9 Hz), 6.93 (d, 1H, J=7.9 Hz), 3.79 (s, 2H), 3.13 (d, 2H, J=9.4 Hz), 2.48 (sept, 1H, J=7.5 Hz), 2.16 (m, 2H), 1.80 (m, 4H), 1.51 (s, 1H), 1.06 (m, 2H), 0.806 (m, 2H); Anal. Calcd for C30H29Cl2N3O+HCl+1.4H2O: C, 62.11; H, 5.70; N, 7.24. Found: C, 62.19; H, 6.21; N, 7.06; ESMS m/e: 519.2 (M+H)+.
Example 480N-[3-(1-{[6-CHLORO-1-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(3-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 520.1 (M+H)+.
Example 481N-(3-{1-[(5-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 5-fluoro-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 392.1 (M+H)+.
Example 482N-[3-(1-{[6-CHLORO-1-(2-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 520.2 (M+H)+.
Example 483N-[3-(1-{[6-CHLORO-1-(3-METHOXYPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 3-(6-chloro-1H-indol-1-yl)phenyl methyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 516.2 (M+H)+.
Example 484N-[3-(1-{[6-CHLORO-1-(2-METHOXYPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 2-(6-chloro-1H-indol-1-yl)phenyl methyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 516.2 (M+H)+.
Example 485N-[3-(1-{[6-CHLORO-1-(2,3-DICHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2,3-dichlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 555.1 (M+H)+.
Example 486N-[3-(1-{[6-CHLORO-1-(4-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(4-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 500.2 (M+H)+.
Example 487N-{3-[1-{6-CHLORO-1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-[3-(trifluoromethyl)phenyl]-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 554.2 (M+H)+.
Example 488N-{3-[1-({6-CHLORO-1-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}METHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-[4-(trifluoromethyl)phenyl]-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 554.2 (M+H)+.
Example 489N-[3-(1-{[6-CHLORO-1-(2-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(2-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 500.2 (M+H)+.
Example 490N-[3-(1-{[6-CHLORO-1-(3-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-(3-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 500.2 (M+H)+.
Example 491N-(3-{1-[(7-CHLORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 7-chloro-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 408.1 (M+H)+.
Example 492N-(3-{1-[(7-CHLORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 7-chloro-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 410.1 (M+H)+.
Example 493N-(3-{1-[(4-FLUORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 4-fluoro-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 380.2 (M+H)+.
Example 494N-(3-{1-[(7-CHLORO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-chloro-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 396.1 (M+H)+.
Example 4952-METHYL-N-(3-{1-[(6-METHYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-methyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 390.2 (M+H)+.
Example 496N-[3-(1-{[6-(BENZYLOXY)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-(benzyloxy)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 482.2 (M+H)+.
Example 497N-(3-{1-[(6-METHOXY-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1H-indol-6-yl methyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 406.2 (M+H)+.
Example 498METHYL 3-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-LH-INDOLE-6-CARBOXYLATE: Prepared by Procedure D and Scheme N using methyl 1H-indole-6-carboxylate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 434.2 (M+H)+.
Example 4992-METHYL-N-[3-(1-{[6-(TRIFLUOROMETHYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-(trifluoromethyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 8.11 (s, 1H), 7.66 (s, 1H), 7.63 (s, 2H), 7.44 (d, 1H, J=8.4 Hz), 7.39 (s, 2H), 7.32 (d, 1H, J=8.4 Hz), 7.16 (t, 1H, J=8.4 Hz), 6.84 (d, 1H, J=8.4 Hz), 4.06 (s, 2H), 3.27 (d, 2H, J=11.6 Hz), 2.56 (sept, 1H, J=6.8 Hz), 2.37 (m, 3H), 1.93 (m, 2H), 1.75 (m, 2H), 1.22 (d, 6H, J=6.8 Hz); Anal. Calcd for C25H28F3N3O+2HCl+0.5EtOAc: C, 57.8; H, 6.11; N, 7.50. Found: C, 56.5; H, 6.46; N, 7.77; ESMS m/e: 444.2 (M+H)+.
1-(2-PYRIDINYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 2-iodopyridine and 1H-indole: ESMS m/e: 195.0 (M+H)+.
1-(3-PYRIDINYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 3-iodopyridine and 1H-indole: ESMS m/e: 195.0 (M+H)+.
Example 5002-METHYL-N-[3-(1-{[1-(3-PYRIDINYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(3-pyridinyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 453.2 (M+H)+.
Example 5012-METHYL-N-[3-(1-{[1-(2-PYRIDINYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-(2-pyridinyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 453.2 (M+H)+.
Example 502N-(3-{1-[(6-FLUORO-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-fluoro-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 470.2 (M+H)+.
Example 503N-(3-{1-[(6-CHLORO-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-chloro-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 486.2 (M+H)+.
7-METHYL-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 7-methyl-1H-indole and iodobenzene: ESMS m/e: 208.1 (M+H)+.
METHYL 1-PHENYL-1H-INDOLE-6-CARBOXYLATE: Prepared by Procedure C and Scheme O using methyl 1H-indole-6-carboxylate and iodobenzene: ESMS m/e: 252.0 (M+H)+.
6-METHYL-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-methyl-1H-indole and iodobenzene: ESMS m/e: 208.0 (M+H)+.
7-CHLORO-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 7-chloro-1H-indole and iodobenzene: ESMS m/e: 228.0 (M+H)+.
6-NITRO-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-nitro-1H-indole and iodobenzene: ESMS m/e: 238.2 (M+H)+.
6-METHOXY-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indol-6-yl methyl ether and iodobenzene: ESMS m/e: 224.0 (M+H)+.
BENZYL 1-PHENYL-1H-INDOL-6-YL ETHER: Prepared by Procedure C and Scheme O using 6-(benzyloxy)-1H-indole and iodobenzene: ESMS m/e: 300.0 (M+H)+.
1-PHENYL-1H-INDOL-6-YL TRIFLUOROMETHYL ETHER: Prepared by Procedure C and Scheme O using 6-(trifluoromethoxy)-1H-indole and iodobenzene: ESMS m/e: 278.0 (M+H)+.
7-METHOXY-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indol-7-yl methyl ether and iodobenzene: ESMS m/e: 224.0 (M+H)+.
1-PHENYL-6-(TRIFLUOROMETHYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-(trifluoromethyl)-1H-indole and iodobenzene: ESMS m/e: 262.0 (M+H)+.
1-(4-PYRIDINYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 4-iodopyridine: ESMS m/e: 195 (M+H)+.
Example 504N-[3-(1-{[6-(BENZYLOXY)-1-PHENYL-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using benzyl 1-phenyl-1H-indol-6-yl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 558.0 (M+H)+.
Example 5052-METHYL-N-(3-{1-[(6-METHYL-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-methyl-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.64 (d, 1H, J=7.8 Hz), 7.51 (d, 1H, J=3.9 Hz), 7.50 (m, 3H), 7.4 (m, 2H), 7.36-7.32 (m, 2H), 7.31 (s, 1H), 7.19 (t, 1H, J=7.8 Hz), 7.04 (d, 1H, J=7.8 Hz), 6.91 (d, 1H, J=7.8 Hz), 3.94 (s, 2H), 3.25 (d, 2H, J=9.2 Hz), 2.52 (sept, 1H, J=6.4 Hz), 2.46 (s, 3H), 2.28 (dt, 2H, J=11.8, 2.6 Hz), 1.89 (dq, 2H, J=2.9 Hz), 1.80 (m, 3H), 1.22 (d, 6H, J=6.9 Hz); Anal. Calcd for C31H35N3O+HCl+0.6EtOAc: C, 72.2; H, 7.41; N, 7.57. Found: C, 71.0; H, 7.40; N, 7.66; ESMS m/e: 466 (M+H)+.
Example 506METHYL 3-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-1-PHENYL-1H-INDOLE-6-CARBOXYLATE: Prepared by Procedure D and Scheme N using methyl 1-phenyl-1H-indole-6-carboxylate and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 510.0 (M+H)+.
Example 5072-METHYL-N-(3-{1-[(6-NITRO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-nitro-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 421.0 (M+H)+.
Example 5082-METHYL-N-[3-(1-{[1-PHENYL-6-(TRIFLUOROMETHYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 1-phenyl-6-(trifluoromethyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 520.0 (M+H)+.
Example 5092-METHYL-N-(3-{1-[(7-METHYL-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-methyl-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 466.0 (M+H)+.
Example 510N-(3-{1-[(7-METHOXY-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1H-indol-7-yl methyl ether and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 406.0 (M+H)+.
Example 511N-(3-{1-[(7-METHOXY-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 7-methoxy-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 482.0 (M+H)+.
Example 512N-(3-{1-[(7-CHLORO-1-PHENYL-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 7-chloro-1-phenyl-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 488.6 (M+H)+.
Example 5132-METHYL-N-(3-{1-[(7-NITRO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-nitro-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 421.1 (M+H)+.
Example 514N-(3-{1-[(7-NITRO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure D and Scheme N using 7-nitro-1H-indole and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 419.5 (M+H)+.
Example 515N-(3-{1-[(7-NITRO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-nitro-1H-indole and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 407.3 (M+H)+.
7-(2-FLUOROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 2-fluorophenylboronic acid: ESMS m/e: 211.9 (M+H)+.
Example 516N-[3-(1-{[7-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N. A solution of 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide (23.3 mg, 0.0948 mmol) and 37 wt % aqueous formaldehyde (11.4 mg, 0.142 mmol) in 1.00 mL of HOAc:dioxane (1:4) was added to 7-(2-fluorophenyl)-1H-indole (20.0 mg, 0.0948 mmol) and the reaction mixture was stirred for 12 h at room temperature. The resulting mixture was diluted with H2O (10 mL). The aqueous layer was extracted with CH2Cl2 (3×10 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by preparative TLC on silica using 4% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product (56.1 mg, 100%): 1H NMR (400 MHz, CDCl3) δ 8.58 (s, 1H), 7.73 (dd, 1H, J=2.8, 6.3 Hz), 7.69 (s, 1H), 7.53 (dt, 1H, J=1.8, 7.6 Hz), 7.44 (d, 1H, J=8.1 Hz), 7.38 (m, 2H), 7.32 (s, 1H), 7.27-7.21 (m, 4H), 7.17 (t, 1H, J=7.6 Hz), 6.88 (d, 1H, J=7.6 Hz), 3.92 (s, 2H); 3.20 (d, 1H, J=11.6 Hz), 2.51 (qt, 1H, J=6.7 Hz), 2.42 (m, 1H), 2.25 (dt, 2H, J=2.2, 11.6 Hz), 1.89-1.72 (m, 5H), 1.22 (d, 6H, J=7.3 Hz); ESMS m/e: 470.1 (M+H)+.
7-(4-ETHYLPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 4-ethylphenylboronic acid: ESMS m/e: 222.0 (M+H)+.
7-(2-NAPHTHYL)-1N-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 2-naphthylboronic acid: ESMS m/e: 244.0 (M+H)+.
7-(3-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 3-chlorophenylboronic acid: ESMS m/e: 227.9 (M+H)+.
6-(2-FLUOROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 2-fluorophenylboronic acid: ESMS m/e: 211.9 (M+H)+.
7-(3-NITROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 3-nitrophenylboronic acid: ESMS m/e: 238.9 (M+H)+.
1-[4-(1H-INDOL-7-YL)PHENYL]ETHANONE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 4-acetylphenylboronic acid: ESMS m/e: 235.2 (M+H)+.
6-(2-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 2-methylphenylboronic acid: ESMS m/e: 207.9 (M+H)+.
6-(3-CHLOROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 3-chlorophenylboronic acid: ESMS m/e: 227.9 (M+H)+.
1-[4-(1H-INDOL-6-YL)PHENYL]ETHANONE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 4-acetylphenylboronic acid: ESMS m/e: 235.8 (M+H)+.
7-(2-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 7-bromo-1H-indole and 2-methylphenylboronic acid: ESMS m/e: 208 (M+H)+.
6-(4-ETHYLPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 4-ethylphenylboronic acid: ESMS m/e: 221.9 (M+H)+.
Example 5172-METHYL-N-[3-(1-{[7-(2-NAPHTHYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-(2-naphthyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 502.2 (M+H)+.
Example 518N-[3-(1-{[7-(4-ETHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 7-(4-ethylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 480.2 (M+H)+.
Example 5192-METHYL-N-[3-(1-{[6-(2-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 6-(2-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 8.2 (s, 1H), 7.53 (m, 4H), 7.41 (d, 1H, J=8.4 Hz), 7.34 (m, 2H), 7.27-7.12 (m, 5H), 6.81 (d, 1H, J=8.4 Hz), 4.09 (s, 2H), 3.32 (d, 2H, J=11.4 Hz), 2.57 (q, 2H, J=7.6 Hz), 2.43 (m, 3H), 2.08 (s, 3H), 1.98 (m, 1H), 1.75 (m, 2H), 1.22 (d, 6H, J=6.3 Hz); Anal. Calcd for C31H35N3O+CHCl3+DMF: C, 57.0; H, 6.09; N, 8.06. Found: C, 56.5; H, 5.94; N, 7.76; ESMS m/e: 466.2 (M+H)+.
Example 520N-[3-(1-{[7-(3-CHLOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 7-(3-chlorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 486.1 (M+H)+.
Example 5212-METHYL-N-[3-(1-{[7-(3-NITROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-(3-nitrophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 497.0 (M+H)+.
Example 522N-[3-(1-{[7-(4-ACETYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 1-[4-(1H-indol-7-yl)phenyl]ethanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 493.6 (M+H)+.
Example 523N-[3-(1-{[6-(4-ETHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-(4-ethylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 480.1 (M+H)+.
Example 5242-METHYL-N-[3-(1-{[7-(2-METHYLPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 7-(2-methylphenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 466.1 (M+H)+.
Example 525N-[3-(1-{[6-(2-FLUOROPHENYL)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 6-(2-fluorophenyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 470.2 (M+H)+.
5-(4-METHYLPHENOXY)-1H-INDOLE: Prepared by Procedure J and Scheme U using 5-bromo-1H-indole and p-cresol: ESMS m/e: 224.0 (M+H)+.
Example 526N-(3-{1-[(5-BROMO-1H-INDOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure D and Scheme N using 5-bromo-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 454.0 (M+H)+.
1-(4-PYRIDINYL)-6-(TRIFLUOROMETHYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-(trifluoromethyl)-1H-indole and 4-iodopyridine: ESMS m/e: 262.9 (M+H)+.
Example 5272-METHYL-N-[3-(1-{[5-(4-METHYLPHENOXY)-1H-INDOL-3-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure D and Scheme N using 5-(4-methylphenoxy)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 481.9 (M+H)+.
1-(4-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-4-methylbenzene: ESMS m/e: 208.0 (M+H)+.
1-(3-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-3-methylbenzene: ESMS m/e: 208.0 (M+H)+.
1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-3-(trifluoromethyl)benzene: ESMS m/e: 262.0 (M+H)+.
1-(4-METHOXYPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-4-methoxybenzene: ESMS m/e: 224.0 (M+H)+.
1-(2-METHOXYPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-2-methoxybenzene: ESMS m/e: 224.0 (M+H)+.
1-(3-METHOXYPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-3-methoxybenzene: ESMS m/e: 224.0 (M+H)+.
1-(2-METHYLPHENYL)-1H-INDOLE: Prepared by Procedure C and Scheme O using 1H-indole and 1-iodo-2-methylbenzene: ESMS m/e: 208.0 (M+H)+.
6-FLUORO-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-fluoro-1H-indole and iodobenzene: ESMS m/e: 212.0 (M+H)+.
6-CHLORO-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 6-chloro-1H-indole and iodobenzene: ESMS m/e: 228.0 (M+H)+.
7-CHLORO-1-PHENYL-1H-INDOLE: Prepared by Procedure C and Scheme O using 7-chloro-1H-indole and iodobenzene: ESMS m/e: 228.0 (M+H)+.
6-(2-FLUOROPHENYL)-1H-INDOLE: Prepared by Procedure I and Scheme T using 6-bromo-1H-indole and 2-fluorophenylboronic acid: ESMS m/e: 211.9 (M+H)+.
Example 5282-METHYL-N-{3-[1-(7-OXO-7-PHENYLHEPTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 7-chloro-1-phenyl-1-heptanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 435.1 (M+H)+.
Example 5292-METHYL-N-{3-[1-(6-OXO-6-PHENYLHEXYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 6-chloro-1-phenyl-1-hexanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: Anal. Calcd for C27H36N2O2+0.1CHCl3: C, 75.3; H, 8.39; N, 6.46. Found: C, 75.4; H, 7.89; N, 6.18; ESMS m/e: 421.1 (M+H)+.
Example 5302-METHYL-N-{3-[1-(5-OXO-5-PHENYLPENTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-phenyl-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 407.1 (M+H)+.
Example 531N-(3-{1-[4-(4-METHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-methoxyphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409.2 (M+H)+.
Example 532N-(3-{1-[4-(4-CHLOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-chlorophenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 413.1 (M+H)+.
Example 533N-(3-{1-[4-(4-BROMOPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 1-(4-bromophenyl)-4-chloro-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 457.1 (M+H)+.
Example 534N-(3-{1-[4-(4-TERT-BUTYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 1-(4-tert-butylphenyl)-4-chloro-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 435.2 (M+H)+.
Example 535N-(3-{1-[4-(4-FLUOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-fluorophenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 397.2 (M+H)+.
Example 536N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-phenoxyphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 471.2 (M+H)+.
Example 537N-(3-{1-[4-(4-ISOPROPYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-isopropylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 433.2 (M+H)+.
Example 538N-(3-{1-[4-(4-METHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-methoxyphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 421.2 (M+H)+.
Example 539N-(3-{1-[4-OXO-4-(4-PHENOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-phenoxyphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 483.2 (M+H)+.
Example 540N-(3-{1-[4-(4-ISOPROPYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-isopropylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 421.3 (M+H)+.
Example 541N-(3-{1-[4-(4-TERT-BUTYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 1-(4-tert-butylphenyl)-4-chloro-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 447.2 (M+H)+.
Example 542N-(3-{1-[4-(4-METHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-methylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 393.2 (M+H)+.
Example 543N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(3,4-dimethylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 407.2 (M+H)+.
Example 544N-(3-{1-[4-(4-BROMOPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 1-(4-bromophenyl)-4-chloro-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 469.1 (M+H)+.
Example 545N-(3-{1-[5-(4-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 411.2 (M+H)+.
Example 546N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(3,4-dimethylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 419.2 (M+H)+.
Example 547N-(3-{1-[4-(4-METHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-methylphenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 405.2 (M+H)+.
Example 548N-(3-{1-[4-(4-FLUOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-(4-fluorophenyl)-1-butanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 409.2 (M+H)+.
Example 549N-(3-{1-[5-(3-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 423.2 (M+H)+.
Example 550N-[3-(1-{5-OXO-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[4-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 461.2 (M+H)+.
Example 551N-(3-{1-[5-(4-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 423.2 (M+H)+.
Example 552N-(3-{1-[5-(3-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-nitrophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 438.2 (M+H)+.
Example 553N-(3-{1-[5-(3-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-nitrophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 450.2 (M+H)+.
Example 554N-(3-{1-[5-(2-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(2-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 411.2 (M+H)+.
Example 555N-(3-{1-[5-(3-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 411.2 (M+H)+.
Example 556N-(3-{1-[5-(4-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-nitrophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 438.1 (M+H)+.
Example 557N-(3-{1-[5-(4-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-nitrophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 450.1 (M+H)+.
Example 558N-(3-{1-{[5-(4-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 439.1 (M+H)+.
Example 559N-[3-(1-{5-OXO-5-[2-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[2-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 461.2 (M+H)+.
Example 560N-[3-(1-{5-OXO-5-[2-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[2-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 473.2 (M+H)+.
Example 561N-(3-{1-[5-(4-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(4-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 427.1 (M+H)+.
Example 562N-(3-{1-[5-(3-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 427.1 (M+H)+.
Example 563N-(3-{1-[5-(2-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(2-fluorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 423.1 (M+H)+.
Example 564N-(3-{1-[5-(3-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(3-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 439.1 (M+H)+.
Example 565N-[3-(1-{5-OXO-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[4-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 473.2 (M+H)+.
Example 566N-(3-{1-[5-(2-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(2-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 427.1 (M+H)+.
Example 567N-(3-{1-[5-(2-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-(2-chlorophenyl)-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 439.1 (M+H)+.
Example 568N-[3-(1-{5-OXO-5-[3-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]CYCLOPROPANECARBOXAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[3-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 473.2 (M+H)+.
Example 569N-(3-{1-[4-(3,4-DIMETHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-N,2-DIMETHYLPROPANAMIDE: Prepared by Procedure T and Scheme AD using N-(3-{1-[4-(3,4-dimethylphenyl)-4-oxobutyl]-4-piperidinyl)phenyl)-2-methylpropanamide and methyl iodide: 1H NMR (400 MHz, CDCl3) δ 7.76 (s, 1H), 7.72 (dd, 1H, J=1.8, 7.7 Hz), 7.33 (t, 1H, J=8.8 Hz), 7.22 (d, 1H, J=7.8 Hz), 7.18 (d, 1H, J=8.8 Hz), 7.01 (m, 2H), 3.24 (s, 3H), 3.10 (d, 1H, J=10.6 Hz), 3.00 (t, 1H, J=7.6 Hz), 2.49 (m, 4H), 2.33 (s, 6H), 2.11 (m, 3H), 1.99 (m, 1H), 1.79 (m, 4H), 1.26 (t, 2H, J=7.6 Hz), 1.02 (d, 6H, J=7.6 Hz); ESMS m/e: 435.2 (M+H)+.
Example 5702-METHYL-N-{3-[1-(1-METHYL-4-OXO-4-PHENYLBUTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 4-chloro-1-phenyl-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 407.2 (M+H)+.
Example 571N-[3-(1-{5-OXO-5-[(3-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 using 5-chloro-1-[3-(trifluoromethyl)phenyl]-1-pentanone and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 461.2 (M+H)+.
3-(5-CHLOROPENTANOYL)-4-(3,4-DIFLUOROPHENYL)-1,3-OXAZOLIDIN-2-ONE: Prepared by Procedure AF and Scheme H using 4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 5-chloropentanoyl chloride.
3-(5-CHLOROPENTYL)-4-(3,4-DIFLUOROPHENYL)-1,3-OXAZOLIDIN-2-ONE: Prepared by Procedure G and Scheme Cl using 4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 1-bromo-5-chloropentane.
Example 572N-[3-(1-{5-[(4R)-4-(3,4-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDIN-3-YL]-5-OXOPENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (4R)-3-(5-chloropentanoyl)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 528.2 (M+H)+.
Example 573(4R)-4-(3,4-DIFLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: Prepared by Procedure AF and Scheme H using 4-nitrophenyl(4R)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 8.08 (t, 1H, J=5.5 Hz), 7.45 (S, 2H), 7.38 (d, 1H, J=8.6 Hz), 7.24-7.12 (m, 3H), 7.06 (m, 1H), 6.97 (d, 1H, J=8.6 Hz), 5.40 (dd, 1H, J=3.9, 8.8 Hz), 4.71 (t, 1H, J=8.8 Hz), 4.23 (dd, 1H, J=4.4, 9.1 Hz), 3.32 (qt, 2H, J=6.1 Hz), 2.99 (d, 2H, J=11.0 Hz), 2.49 (qt, 2H, J=7.0 Hz), 2.41 (t, 2H, J=7.0 Hz), 1.99 (m, 2H), 1.82-1.68 (m, 6H), 1.23 (d, 6H, J=7.3 Hz); ESMS m/e: 529.1 (M+H)+.
(4S)-3-(5-CHLOROPENTYL)-4-(3,4-DIFLUOROPHENYL)-1,3-OXAZOLIDIN-2-ONE: Prepared by Procedure G and Scheme Cl using (4S)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 1-bromo-5-chloropentane.
Example 574N-[3-(1-{5-[(4S)-4-(3,4-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDIN-3-YL]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (4S)-3-(5-chloropentyl)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H), 7.32 (d, 1H, J=8.6 Hz), 7.26-7.21 (m, 2H), 7.20-7.12 (m, 2H), 7.06 (m, 1H), 6.97 (d, 1H, J=6.96 Hz), 4.76 (dd, 1H, J=6.3, 8.3 Hz), 4.62 (t, 1H, J=9.0 Hz), 4.06 (dd, 1H, J=6.4, 8.7 Hz), 3.46 (m, 1H), 3.0 (d, 2H, J=9.0 Hz), 2.77 (q, 1H, J=6.8 Hz), 2.50 (q, 2H, J=6.8 Hz), 2.31 (t, 2H, J=6.8 Hz), 2.01 (m, 4H), 1.81 (m, 4H), 1.48 (m, 4H), 1.26 (d, 6H, J=7.3 Hz); Anal. Calcd for C28H37F2N3O3+HCl+0.25CHCl3: C, 60.6; H, 6.65; N, 7.25. Found: C, 60.7; H, 6.91; N, 7.05; ESMS m/e: 514.2 (M+H)+.
Example 575N-[3-(1-{5-[(4S)-4-(3,4-DIFLUOROPHENYL)-2-OXO-1,3-OXAZOLIDIN-3-YL]-5-OXOPENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using (4S)-3-(5-chloropentanoyl)-4-(3,4-difluorophenyl)-1,3-oxazolidin-2-one and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 528.1 (M+H)+.
Example 576(4S)-4-(3,4-DIFLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: Prepared by Procedure AF and Scheme H using 4-nitrophenyl(4S)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate and N-}3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 529.1 (M+H)+.
Example 577(4S)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-4-(3,4,5-TRIFLUOROPHENYL)-1,3-OXAZOLIDINE-3-CARBOXAMIDE: Prepared by Procedure AF and Scheme H using 4-nitrophenyl(4S)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 547.1 (M+H)+.
Example 578(4S)-4-(3,5-DIFLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-OXO-1,3-OXAZOLIDINE-3-CARBOXAMIDE: Prepared by Procedure AF and Scheme H using 4-nitrophenyl(4S)-4-(3,4-difluorophenyl)-2-oxo-1,3-oxazolidine-3-carboxylate and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 529.2 (M+H)+.
Example 579N-(3-{1-[3-(PHENYLSULFANYL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(3-chloropropyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 382.9 (M+H)+.
Example 580N-(3-{1-[3-(PHENYLSULFANYL)PROPYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using [(3-chloropropyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 395.1 (M+H)+.
Example 5812-METHYL-N-(3-{1-[3-(PHENYLSULFANYL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(3-chloropropyl)sulfanyl]benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.48 (s, 1H), 7.33 (m, 3H), 7.27 (t, 2H, J=7.5 Hz), 7.20 (t, 1H, J=7.9 Hz), 7.15 (tt, 1H, J=7.2, 1.4 Hz), 6.95 (d, 1H, J=7.6 Hz), 2.97 (t, 4H, J=7.3 Hz), 2.46 (m, 4H), 1.99 (dt, 2H, J=11.4, 3.0 Hz), 1.84 (qt, 2H, J=7.3 Hz), 1.77 (m, 4H), 1.21 (d, 6H, J=6.8 Hz); ESMS m/e: 396.8 (M+H)+.
Example 582N-(3-{1-[6-(PHENYLSULFANYL)HEXYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using [(6-chlorohexyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 437.4 (M+H)+.
Example 583N-(3-{1-[4-(PHENYLSULFANYL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(4-chlorobutyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 396.8 (M+H)+.
Example 584N-(3-{1-[4-(PHENYLSULFANYL)BUTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using [(4-chlorobutyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 409.5 (M+H)+.
Example 5852-METHYL-N-(3-{1-[4-(PHENYLSULFANYL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(4-chlorobutyl)sulfanyl]benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 410.6 (M+H)+.
Example 5862-METHYL-N-(3-{1-[5-(PHENYLSULFANYL)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(5-chloropentyl)sulfanyl]benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.1 (M+H)+.
Example 587N-(3-{1-[5-(PHENYLSULFANYL)PENTYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure G and Scheme B1 using [(5-chloropentyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 423.1 (M+H)+.
[(6-CHLOROHEXYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using benzenethiol and 1-bromo-6-chlorohexane.
[(4-CHLOROBUTYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using benzenethiol and 1-bromo-4-chlorobutane.
Example 588N-(3-{1-[6-(PHENYLSULFANYL)HEXYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(6-chlorohexyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.4 (M+H)+.
[(5-CHLOROPENTYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using benzenethiol and 1-bromo-5-chloropentane.
[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using benzenethiol and 1-bromo-3-chloropropane: 1H NMR (400 MHz, CDCl3) δ 7.37-7.34 (m, 2H), 7.32-7.26 (m, 2H), 7.19 (tt, 1H, J=1.4, 7.3 Hz), 3.67 (t, 2H, J=6.6 Hz), 3.08 (t, 2H, J=6.6 Hz), 2.06 (qt, 2H, J=6.6 Hz).
Example 589N-(3-{1-[5-(PHENYLSULFANYL)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure G and Scheme B1 using [(5-chloropentyl)sulfanyl]benzene and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 411.1 (M+H)+.
3-CHLOROPROPYL 4-FLUOROPHENYL SULFIDE: Prepared by Procedure R and Scheme Z using 4-fluorobenzenethiol and 1-bromo-3-chloropropane.
1-BROMO-2-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 2-bromobenzenethiol and 1-bromo-3-chloropropane.
3-CHLOROPROPYL 4-FLUOROPHENYL SULFOXIDE: Prepared by Procedure S and Scheme AA using 3-chloropropyl 4-fluorophenyl sulfide and 1 eq m-CPBA: 1H NMR (400 MHz, CDCl3) δ 7.65-7.62 (m, 2H), 7.28-7.21 (m, 2H), 3.65 (m, 2H), 2.94 (m, 2H), 2.28 (m, 1H), 2.06 (m, 1H); ESMS m/e: 220.9 (M+H)+.
3-CHLOROPROPYL 3-FLUOROPHENYL SULFIDE: Prepared by Procedure R and Scheme Z using 3-fluorobenzenethiol and 1-bromo-3-chloropropane.
3-CHLOROPROPYL 2-FLUOROPHENYL SULFIDE: Prepared by Procedure R and Scheme Z using 2-fluorobenzenethiol and 1-bromo-3-chloropropane.
1-BROMO-2-[(3-CHLOROPROPYL)SULFINYL]BENZENE: Prepared by Procedure S and Scheme AA using 1-bromo-2-[(3-chloropropyl)sulfanyl]benzene and 1 eq m-CPBA: ESMS m/e: 282.8 (M+H)+.
1-CHLORO-2-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 2-chlorobenzenethiol and 1-bromo-3-chloropropane.
1-CHLORO-3-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 3-chlorobenzenethiol and 1-bromo-3-chloropropane.
1-CHLORO-4-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 4-chlorobenzenethiol and 1-bromo-3-chloropropane.
1-BROMO-3-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 3-bromobenzenethiol and 1-bromo-3-chloropropane.
1-BROMO-4-[(3-CHLOROPROPYL)SULFANYL]BENZENE: Prepared by Procedure R and Scheme Z using 4-bromobenzenethiol and 1-bromo-3-chloropropane.
3-CHLOROPROPYL 3,4-DIMETHYLPHENYL SULFIDE: Prepared by Procedure R and Scheme Z using 3,4-dimethylbenzenethiol and 1-bromo-3-chloropropane.
Example 590N-[3-(1-{3-[(4-FLUOROPHENYL)SULFINYL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 3-chloropropyl 4-fluorophenyl sulfoxide and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 7.64 (m, 2H), 7.53 (s, 1H), 7.24 (m, 5H), 6.94 (d, 1H, J=7.7 Hz), 2.89 (m, 4H), 2.45 (m, 4H), 1.99 (m, 3H), 1.77 (m, 5H), 1.24 (d, 6H, J=6.8 Hz); Anal. Calcd for C24H31FN2O2S+0.6EtOAc: C, 65.5; H, 7.45; N, 5.79. Found: C, 65.4; H, 7.30; N, 5.73; ESMS m/e: 431.1 (M+H)+.
Example 591N-[3-(1-{3-[(2-BROMOPHENYL)SULFINYL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure G and Scheme B1 using 1-bromo-2-[(3-chloropropyl)sulfinyl]benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: Anal. Calcd for C24H31BrN2O2S+0.3CHCl3: ESMS m/e: 491.0 (M+H)+.
Example 592N-{3-[1-((3S)-3-{[(3,4-DIFLUOROPHENYL) SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 3,4-difluorobenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 556.2 (M+H)+.
Example 5933-CHLORO-N-((1S)-3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}-1-PHENYLPROPYL)-2-THIOPHENECARBOXAMIDE: Prepared by Procedure Q1 and Scheme AC using 3-chloro-2-thiophenecarbonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 524.2 (M+H)+.
Example 594N-(3-{1-[(3S)-3-({[5-(DIMETHYLAMINO)-1-NAPHTHYL]SULFONYL}AMINO)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 5-(dimethylamino)-1-naphthalenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 613.3 (M+H)+.
Example 5952-METHYL-N-{3-[1-[(3S)-3-{[(4-METHYLPHENYL)SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 4-methylbenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl]phenyl)-2-methylpropanamide: ESMS m/e: 534.2 (M+H)+.
Example 596N-{3-[1-((3S)-3-{[(3,5-DICHLORO-2-HYDROXYPHENYL)SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared Procedure Q1 and Scheme AC using 3,5-dichloro-2-hydroxybenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 605.4 (M+H)+.
Example 5972-METHYL-N-[3-(1-{(3S)-3-[(METHYLSULFONYL)AMINO]-3-PHENYLPROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using methanesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 458.6 (M+H)+.
Example 598N-{3-[1-((3S)-3-{[(4-FLUOROPHENYL)SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 4-fluorobenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 538.1 (M+H)+.
Example 599N-{3-[1-((3S)-3-{[(4-TERT-BUTYLPHENYL)SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 4-tert-butylbenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 576.2 (M+H)+.
Example 600N-{3-[1-((3S)-3-{[(2,5-DICHLOROPHENYL)SULFONYL]AMINO)-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 2,5-dichlorobenzenesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 588.0 (M+H)+.
Example 6012-METHYL-N-[3-(1-{(3S)-3-PHENYL-3-[(PROPYLSULFONYL)AMINO]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 1-propanesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 486.2 (M+H)+.
Example 602N-{3-[1-((3S)-3-{[(3,5-DIMETHYL-4-ISOXAZOLYL)SULFONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 3,5-dimethyl-4-isoxazolesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide:
1H NMR (400 MHz, CDCl3) δ 7.53 (s, 2H), 7.3-7.1 (m, 5H), 7.05 (t, 2H, J=6.5 Hz), 6.81 (d, 1H, J=7.1 Hz), 4.65 (dd, 1H, J=6.3, 2.2 Hz), 3.11 (t, 2H, J=7.2 Hz), 2.4 (m, 4H), 2.2 (s, 3H), 2.05 (m, 2H), 2.01 (s, 3H), 2.0-1.8 (m, 7H), 1.21 (d, 6H, J=7.1 Hz); ESMS m/e: 539.5 (M+H)+.
Example 603METHYL 3-{[(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)AMINO]SULFONYL)-2-THIOPHENECARBOXYLATE: Prepared Procedure Q1 and Scheme AC using methyl 3-(chlorosulfonyl)-2-thiophenecarboxylate and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: Anal. Calcd for C24H33N3O5S.HCl: C, 6.00; H, 5.30; N, 7.72. Found: C, 52.9; H, 6.04; N, 7.59; ESMS m/e: 508.2 (M+H)+.
Example 6042-METHYL-N-{3-[1-((3S)-3-{[(4-PHENOXYANILINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-4-phenoxybenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 591.3 (M+H)+.
PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 and Scheme AC using 3,5-dimethyl-4-isoxazolesulfonyl chloride and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 7.53 (s, 2H), 7.3-7.1 (m, 5H), 7.05 (t, 2H, J=6.5 Hz), 6.81 (d, 1H, J=7.1 Hz), 4.65 (dd, 1H, J=6.3, 2.2 Hz), 3.11 (t, 2H, J=7.2 Hz), 2.4 (m, 4H), 2.2 (s, 3H), 2.05 (m, 2H), 2.01 (s, 3H), 2.0-1.8 (m, 7H), 1.21 (d, 6H, J=7.1 Hz); ESMS m/e: 539.5 (M+H)+.
Example 603METHYL 3-{[(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)AMINO]SULFONYL}-2-THIOPHENECARBOXYLATE: Prepared Procedure Q1 and Scheme AC using methyl 3-(chlorosulfonyl)-2-thiophenecarboxylate and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: Anal. Calcd for C24H33N3O5S.HCl: C, 6.00; H, 5.30; N, 7.72. Found: C, 52.9; H, 6.04; N, 7.59; ESMS m/e: 508.2 (M+H)+.
Example 6042-METHYL-N-{3-[1-((3S)-3-{[(4-PHENOXYANILINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-4-phenoxybenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 591.3 (M+H)+.
Example 605N-[3-(1-{(3S)-3-[(ANILINOCARBONYL)AMINO]-3-PHENYLPROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using isocyanatobenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 499.2 (M+H)+.
Example 606N-{3-[1-((3S)-3-{[(TERT-BUTYLAMINO)CARBOTHIOYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 2-isothiocyanato-2-methylpropane and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 495.1 (M+H)+.
Example 607N-{3-[1-((3S)-3-{[(2-FLUOROANILINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-fluoro-2-isocyanatobenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 517.0 (M+H)+.
Example 6082-METHYL-N-[3-(1-{(3S)-3-PHENYL-3-[(2-TOLUIDINOCARBOTHIOYL)AMINO]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isothiocyanato-2-methylbenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 529.1 (M+H)+.
Example 609N-{3-[1-((3S)-3-{[(BENZYLAMINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.67 (d, 1H, J=7.9 Hz), 7.31-7.13 (m, 13H), 6.38 (s, 1H), 6.80 (d, 1H, J=7.9 Hz), 5.54 (m, 1H), 4.81 (m, 1H), 4.41 (dd, 1H, J=14.8, 6.2 Hz), 4.29 (dd, 1H, J=14.9, 5.4 Hz), 2.99 (d, 1H, J=11.2 Hz), 2.87 (d, 1H, J=11.2 Hz), 2.67 (q, 1H, J=6.2 Hz), 2.3 (m, 3H), 2.0-1.5 (m, 7H), 1.23 (d, 6H, J=6.7 Hz); ESMS m/e: 513.2 (M+H)+.
Example 6102-METHYL-N-{3-[1-((3S)-3-{[(2-NITROANILINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-2-nitrobenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 543.6 (M+H)+.
Example 611N-{3-[1-((3S)-3-{[(3,4-DICHLOROANILINO)CARBONYL]AMINO}-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 1,2-dichloro-4-isocyanatobenzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 567.1 (M+H)+.
Example 6122-METHYL-N-(3-{1-[(3S)-3-({[2-(METHYLSULFANYL)ANILINO]CARBONYL}AMINO)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-2-(methylsulfanyl)benzene and N-(3-{1-[(3S)-3-amino-3-phenylpropyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 545.0 (M+H)+.
Example 613N-{3-[1-(3-{[(4-FLUOROANILINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-fluoro-4-isocyanatobenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 7.45 (q, 2H, J=4.7 Hz), 7.23 (m, 4H), 7.05 (t, 4H, J=7.8 Hz), 6.75 (m, 1H), 4.05 (m, 1H), 3.19 (s, 1H), 2.71 (m, 1H), 2.53 (m, 1H), 2.25 (m, 3H), 1.8 (m, 9H), 1.25 (d, 6H, J=6.4 Hz); ESMS m/e: 441.1 (M+H)+.
Example 614N-{3-[1-(3-{[(3,4-DICHLOROANILINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 1,2-dichloro-4-isocyanatobenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 493.2 (M+H)+.
Example 6152-METHYL-N-[3-(1-{3-[(2-TOLUIDINOCARBOTHIOYL)AMINO]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isothiocyanato-2-methylbenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 453.2 (M+H)+.
Example 616N-{3-[1-(3-{[(BENZYLAMINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using (isocyanatomethyl)benzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 437.2 (M+H)+.
Example 617N-{3-[1-(3-{[(4-ETHOXYANILINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-ethoxy-4-isocyanatobenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 467.2 (M+H)+.
Example 618N-[3-(1-{3-[(ANILINOCARBONYL)AMINO]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using isocyanatobenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 422.9 (M+H)+.
Example 6192-METHYL-N-(3-{1-[3-({[2-(METHYLSULFANYL)ANILINO]CARBONYL}AMINO)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-2-(methylsulfanyl)benzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 469.1 (M+H)+.
Example 620N-{3-[1-(3-{[(TERT-BUTYLAMINO)CARBOTHIOYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure P and Scheme AB using 2-isothiocyanato-2-methylpropane and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 419.0 (M+H)+.
Example 6212-METHYL-N-{3-[1-(3-{[(4-PHENOXYANILINO)CARBONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure P and Scheme AB using 1-isocyanato-4-phenoxybenzene and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 515.5 (M+H)+.
Example 622N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(2,4-DIFLUOROPHENYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXAMIDE: Prepared by Procedure AC and Scheme AM using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl)acetamide and 4-(2,4-difluorophenyl)-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-pyridinecarboxylic acid: ESMS m/e: 525.2 (M+H)+.
Example 623N-(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-4-(3,4-DIFLUOROPHENYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXAMIDE: Prepared by Procedure AC and Scheme AM using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}acetamide and 4-(3,4 difluorophenyl)-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-pyridinecarboxylic acid: ESMS m/e: 525.2 (M+H)+.
Example 624N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-1-(4-NITROPHENYL)-5-(TRIFLUOROMETHYL)-1H-PYRAZOLE-4-CARBOXAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 1-(4-nitrophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carbonyl chloride: ESMS m/e: 629.2 (M+H)+.
Example 625N-[3-(1-{6-[(DIPHENYLACETYL)AMINO]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and diphenylacetyl chloride: ESMS m/e: 540.3 (M+H)+.
Example 6265-(3,5-DICHLOROPHENOXY)-N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-2-FURAMIDE:
Prepared by Procedure Q1 (THF) and Scheme AT using N-(3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-(3,5-dichlorophenoxy)-2-furoyl chloride: ESMS m/e: 600.2 (M+H)+.
Example 627N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-2-PHENOXYNICOTINAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-phenoxynicotinoyl chloride: ESMS m/e: 543.3 (M+H)+.
Example 628N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-2-NAPHTHAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-naphthoyl chloride: ESMS m/e: 500.3 (M+H)+.
Example 6291-BENZYL-3-TERT-BUTYL-N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-1H-PYRAZOLE-5-CARBOXAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 1-benzyl-3-tert-butyl-1H-pyrazole-5-carbonyl chloride: ESMS m/e: 586.3 (M+H)+.
Example 6303-CHLORO-N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-4-(ISOPROPYLSULFONYL)-2-THIOPHENECARBOXAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-chloro-4-(isopropylsulfonyl)-2-thiophenecarbonyl chloride: ESMS m/e: 596.2 (M+H)+.
Example 631N-[3-(1-{6-[(ANILINOCARBONYL)AMINO]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and phenyl isocyanate: ESMS m/e: 465.2 (M+H)+.
Example 632N-{3-[1-(6-{[(2,4-DICHLOROANILINO)CARBONYL]AMINO}HEXYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2,4-dichlorophenyl isocyanate: ESMS m/e: 533.2 (M+H)+.
Example 633N-(6-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}HEXYL)-1-PHENYL-5-PROPYL-1H-PYRAZOLE-4-CARBOXAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 1-phenyl-5-propyl-1H-pyrazole-4-carbonyl chloride: ESMS m/e: 558.3 (M+H)+.
Example 6342-METHYL-N-{3-[1-(6-{[(1-NAPHTHYLAMINO)CARBONYL]AMINO}HEXYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-(3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 1-naphthyl isocyanate: ESMS m/e: 515.3 (M+H)+.
Example 635N-{3-[1-(6-{[([1,1′-BIPHENYL]-4-YLAMINO)CARBONYL]AMINO}HEXYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 4-biphenyl isocyanate: ESMS m/e: 541.3 (M+H)+.
Example 6362-METHYL-N-{3-[1-(6-{[(2-NAPHTHYLAMINO)CARBONYL]AMINO}HEXYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(6-aminohexyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-naphthyl isocyanate: ESMS m/e: 515.3 (M+H)+.
Example 637N-{3-[1-(3-{[(3,4-DIMETHOXYPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3,4-dimethoxybenzenesulfonyl chloride: ESMS m/e: 504.2 (M+H)+.
Example 638N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-5-METHYL-3-PHENYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-methyl-3-phenyl-4-isoxazolecarbonyl chloride: ESMS m/e: 489.3 (M+H)+.
Example 639N-{3-[1-(3-{[(4-FLUOROPHENYL)ACETYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and (4-fluorophenyl)acetyl chloride: ESMS m/e: 440.3 (M+H)+.
Example 640N-{3-[1-(3-{[(4-CHLORO-3-NITROPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-(3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 4-chloro-3-nitrobenzenesulfonyl chloride: ESMS m/e: 523.1 (M+H)+.
Example 6412-(4-CHLOROPHENOXY)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)NICOTINAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-(4-chlorophenoxy)nicotinoyl chloride: ESMS m/e: 535.2 (M+H)+.
Example 6425-(3,5-DICHLOROPHENOXY)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-FURAMIDE:
Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-(3,5-dichlorophenoxy)-2-furoyl chloride: ESMS m/e: 558.2 (M+H)+.
Example 643N-{3-[1-(3-{[(2-FLUOROPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-fluorobenzenesulfonyl chloride: ESMS m/e: 462.2 (M+H)+.
Example 644N-{3-[1-(3-{[(3,5-DIMETHYL-4-ISOXAZOLYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3,5-dimethyl-4-isoxazolesulfonyl chloride: ESMS m/e: 463.2 (M+H)+.
Example 644N-{3-[1-(3-{[(4-TERT-BUTYLPHENYL)SULFONYL]AMINO}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 4-tert-butylbenzenesulfonyl chloride: ESMS m/e: 500.3 (M+H)+.
Example 646N-{3-[1-(6-AMINOHEXYL)-4-PIPERIDINYL]PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AE and Scheme Y using N-(3-{1-[6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)hexyl]-4-piperidinyl}phenyl)-2-methylpropanamide and hydrazine hydrate: ESMS m/e: 346.2 (M+H)+.
Example 647N-{3-[1-(2-{[([1,1′-BIPHENYL]-4-YLAMINO)CARBONYL]AMINO}ETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(2-aminoethyl)-4-piperidinyl]phenyl)-2-methylpropanamide and 4-biphenyl isocyanate: ESMS m/e: 485.2 (M+H)+.
Example 6485-(3,5-DICHLOROPHENOXY)-N-(2-[{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}ETHYL)-3-FURAMIDE:
Prepared by Procedure Q1 (THF) and Scheme AT using N-{(3-[1-(2-aminoethyl)-4-pipetidinyl]phenyl}-2-methylpropanamide and 5-(3,5-dichlorophenoxy)-3-furoyl chloride: ESMS m/e: 544.1 (M+H)+.
Example 649N-[3-(1-{2-[(DIPHENYLACETYL)AMINO]ETHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(2-aminoethyl)-4-piperidinyl]phenyl}-2-methylpropanamide and diphenylacetyl chloride: ESMS m/e: 484.2 (M+H)+.
Example 650N-(2-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}ETHYL)-2-NAPHTHAMIDE: Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(2-aminoethyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-naphthoyl chloride: ESMS m/e: 444.2 (M+H)+.
Example 6513-(2,6-DICHLOROPHENYL)-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE:
Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 571.2 (M+H)+.
Example 6523-(2,6-DICHLOROPHENYL)-N-(5-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PENTYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE:
Prepared by Procedure Q1 (THF) and Scheme AT using N-{3-[1-(5-aminopentyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride. ESMS m/e: 585.2 (M+H)+.
Example 653N-[3-(1-{4-[(DIPHENYLACETYL)AMINO]BUTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3)) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and diphenylacetyl chloride: ESMS m/e: 512.0 (M+H)+.
Example 654N-[3-(1-{5-[(DIPHENYLACETYL)AMINO]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3)) and Scheme AT using N-{3-[1-(5-aminopentyl)-4-piperidinyl]phenyl}-2-methylpropanamide and diphenylacetyl chloride: ESMS m/e: 526.0 (M+H)+.
Example 6553,5-DICHLORO-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)BENZAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3,5-dichlorobenzoyl chloride: ESMS m/e: 490.0 (M+H)+.
Example 6565-(3,5-DICHLOROPHENOXY)-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)-2-FURAMIDE:
Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 5-(3,5-dichlorophenoxy)-2-furoyl chloride: ESMS m/e: 572.0 (M+H)+.
Example 6573-CHLORO-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)BENZAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-chlorobenzoyl chloride: ESMS m/e: 456.0 (M+H)+.
Example 6583,4-DIFLUORO-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)BENZAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3,4-difluorobenzoyl chloride: ESMS m/e: 458.0 (M+H)+.
Example 659N-{3-[1-(4-{[(3,5-DICHLOROANILINO)CARBONYL]AMINO}BUTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-(3-{1-[4-(formylamino)butyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 3,5-dichlorophenyl isocyanate: ESMS m/e: 505.0 (M+H)+.
Example 660N-{3-[1-(4{[([1,1′-BIPHENYL]-4-YLAMINO)CARBONYL]AMINO}BUTYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl)-2-methylpropanamide and 4-biphenyl isocyanate: ESMS m/e: 513.0 (M+H)+.
Example 6612-METHYL-N-(3-{1-[5-(4-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 5-chloro-1-(4-nitrophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 452.2 (M+H)+.
Example 662N-(3-{1-[5-(4-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 5-chloro-1-(4-fluorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 6632-METHYL-N-[3-(1-{5-OXO-5-[2-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 5-chloro-1-[2-(trifluoromethyl)phenyl]-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 475.2 (M+H)+.
Example 664N-(3-{1-[5-(3-BROMOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(3-bromophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 485.1 (M+H)+.
Example 6652-METHYL-N-(3-{1-[5-(3-NITROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 5-chloro-1-(3-nitrophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 452.2 (M+H)+.
Example 666N-(3-{1-[5-(3-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(3-chlorophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.1 (M+H)+.
Example 667N-(3-{1-[5-(4-BROMOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(4-bromophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 485.1 (M+H)+.
Example 668N-(3-{1-[5-(2-IODOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(2-iodophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 533.0 (M+H)+.
Example 669N-(3-{1-[5-(3-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(3-fluorophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 6702-METHYL-N-[3-(1-{5-OXO-5-[3-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-[3-(trifluoromethyl)phenyl]-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 475.2 (M+H)+.
Example 671N-(3-{1-[5-(2-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(2-fluorophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 672N-(3-{1-[5-(3-IODOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(3-iodophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 533.0 (M+H)+.
Example 673N-(3-{1-[5-(2-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(2-chlorophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.1 (M+H)+.
Example 6742-METHYL-N-[3-(1-(5-OXO-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-[4-(trifluoromethyl)phenyl]-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 475.2 (M+H)+.
Example 675N-(3-{1-[5-[(4-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(4-chlorophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.1 (M+H)+.
Example 676N-(3-{1-[5-(4-IODOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(4-iodophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 533 (M+H)+.
Example 677N-(3-{1-[5-(2-BROMOPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme B1 (K2CO3) using 1-(2-bromophenyl)-5-chloro-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 485.1 (M+H)+.
Example 6782-(4-CHLOROPHENOXY)-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)NICOTINAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 2-(4-chlorophenoxy)nicotinoyl chloride: ESMS m/e: 549.0 (M+H)+.
Example 679N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)-3,4-DIMETHOXYBENZAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-(3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3,4-dimethoxybenzoyl chloride: ESMS m/e: 482.0 (M+H)+.
Example 6803-(2-CHLOROPHENYL)-N-(4-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}BUTYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(4-aminobutyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 537.0 (M+H)+.
Example 6813-(2-CHLOROPHENYL)-N-(5-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PENTYL)-5-METHYL-4-ISOXAZOLECARBOXAMIDE: Prepared by Procedure Q2 (THF/DCM, 1:3) and Scheme AT using N-{3-[1-(5-aminopentyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 3-(2-chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride: ESMS m/e: 551.0 (M+H)+.
Example 6822-METHYL-N-{3-[1-(3-{1-METHYL-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 562.2 (M+H)+.
Example 6832-METHYL-N-{3-[1-(3-{1-METHYL-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-(5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 632.2 (M+H)+.
Example 6842-METHYL-N-{3-[1-(3-{2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and phenylhydrazine: ESMS m/e: 548.2 (M+H)+.
Example 6852-METHYL-N-{3-[1-(3-{1-PHENYL-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 624.2 (M+H)+.
Example 6862-METHYL-N-{3-[1-(3-{2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-BENZO[G]INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl)-4-piperidinyl)phenyl]propanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 598.2 (M+H)+.
Example 6872-METHYL-N-{3-[1-(3-{7-METHYL-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 562.2 (M+H)+.
Example 6882-METHYL-N-{3-[1-(3-{5-METHYL-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 562.2(M+H)+.
Example 689N-{3-[1-(3-{5-METHOXY-2-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-3-YL}PROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 578.2 (M+H)+.
Example 690N-[3-(1-{3-[2-(3-FLUOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 512.2 (M+H)+.
Example 691N-[3-(1-{3-[2-(4-CHLOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 528.2 (M+H)+.
Example 692N-[3-(1-{3-[2-(4-FLUOROPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 528.2(M+H)+.
Example 693N-[3-(1-{3-[2-(2-FLUOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 498.2 (M+H)+.
Example 694N-[3-(1-{3-[2-(3-FLUOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl]phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 582.2 (M+H)+.
Example 695N-[3-(1-{3-[2-(2-FLUOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 582.2 (M+H)+.
Example 696N-[3-(1-{3-[2-(4-FLUOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 548.2 (M+H)+.
Example 697N-[3-(1-{3-[2-(2-FLUOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 547.7 (M+H)+.
Example 698N-[3-(1-{3-[2-(2-FLUOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 512.2(M+H)+.
Example 699N-[3-(1-{3-[2-(3-FLUOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 548.2 (M+H)+.
Example 700N-[3-(1-{3-[2-(4-FLUOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 512.2 (M+H)+.
Example 701N-[3-(1-{3-[2-(3-FLUOROPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 702N-[3-(1-{3-[2-(3-FLUOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 574.2 (M+H)+.
Example 703N-[3-(1-{3-[2-(4-CHLOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 598.2 (M+H)+.
Example 704N-[3-(1-{3-[2-(3-FLUOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 498.2 (M+H)+.
Example 705N-[3-(1-{3-[2-(3-FLUOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 512.2 (M+H)+.
Example 706N-[3-(1-{3-[2-(3-FLUOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 512.2 (M+H)+.
Example 707N-[3-(1-{3-[2-(4-CHLOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 564.2 (M+H)+.
Example 708N-[3-(1-{3-[2-(4-CHLOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-phenylhydrazine hydrochloride: ESMS m/e: 514.2 (M+H)+.
Example 709N-[3-(1-{3-[2-(2-FLUOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1′-methyl-1-phenylhydrazine: ESMS m/e: 512.2 (M+H)+.
Example 710N-[3-(1-{3-[2-(2-FLUOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-(5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 512.2 (M+H)+.
Example 711N-[3-(1-{3-[2-(2-FLUOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 574.2 (M+H)+.
Example 712N-[3-(1-{3-[2-(2-FLUOROPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL)-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 713N-[3-(1-{3-[2-(4-CHLOROPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 544.2 (M+H)+.
Example 714N-[3-(1-{3-[2-(4-FLUOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 548.2 (M+H)+.
Example 715N-[3-(1-{3-[2-(4-FLUOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 582.9 (M+H)+.
Example 716N-[3-(1-{3-[2-(4-FLUOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 512.2 (M+H)+.
Example 717N-[3-(1-{3-[2-(4-FLUOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 498.2 (M+H)+.
Example 718N-[3-(1-{3-[2-(4-FLUOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 512.2 (M+H)+.
Example 719N-[3-(1-{3-[2-(4-CHLOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 720N-[3-(1-{3-[2-(4-CHLOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 721N-[3-(1-{3-[2-(4-CHLOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 590.2 (M+H)+.
Example 722N-[3-(1-{3-[2-(3-CHLOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 528.1 (M+H)+.
Example 723N-[3-(1-{3-[2-(3-CHLOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-(5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 598.2 (M+H)+.
Example 724N-[3-(1-{3-[2-(3-CHLOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 528.2 (M+H)+.
Example 725N-[3-(1-{3-[2-(3-CHLOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 590.3 (M+H)+.
Example 726N-[3-(1-{3-[2-(3-CHLOROPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 544.3 (M+H)+.
Example 727N-[3-(1-{3-[2-(3-CHLOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 728N-[3-(1-{3-[2-(3-CHLOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 564.2 (M+H)+.
Example 729N-[3-(1-{3-[2-(3-CHLOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4 PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 514.2 (M+H)+.
Example 730N-[3-(1-{3-[2-(2-CHLOROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 514.2 (M+H)+.
Example 731N-[3-(1-{3-[2-(2-CHLOROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 598.2 (M+H)+.
Example 732N-[3-(1-{3-[2-(2-CHLOROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 564.2 (M+H)+.
Example 733N-[3-(1-{3-[2-(2-CHLOROPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 734N-[3-(1-{3-[2-(2-CHLOROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinylphenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 590.2 (M+H)+.
Example 735N-[3-(1-{3-[2-(2-CHLOROPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 528.2 (M+H)+.
Example 736N-[3-(1-{3-[2-(2-CHLOROPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 528.2 (M+H)+.
Example 737N-[3-(1-{3-[2-(3-IODOPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 606.2 (M+H)+.
Example 738N-[3-(1-{3-[2-(3-IODOPHENYL)-1-M ETHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 620.2 (M+H)+.
Example 739N-[3-(1-{3-[2-(3-IODOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 682.2 (M+H)+.
Example 740N-[3-(1-{3-[2-(3-IODOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 656.2 (M+H)+.
Example 741N-[3-(1-{3-[2-(3-IODOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 690.2 (M+H)+.
Example 742N-[3-(1-{3-[2-(3-IODOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 620.2 (M+H)+.
Example 743N-[3-(1-{3-[2-(3-IODOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 620.2 (M+H)+.
Example 744N-[3-(1-{3-[2-(4-IODOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 690.1 (M+H)+.
Example 745N-[3-(1-{3-[2-(4-IODOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 620.1 (M+H)+.
Example 746N-[3-(1-{3-[2-(4-IODOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-(1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 620.1 (M+H)+.
Example 747N-[3-(1-{3-[2-(4-IODOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 682.1 (M+H)+.
Example 748N-[3-(1-{3-[2-(4-IODOPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 620.1 (M+H)+.
Example 749N-[3-(1-{3-[2-(4-IODOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 656.1 (M+H)+.
Example 750N-[3-(1-{3-[2-(4-IODOPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-(1-(5-(4-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 606.1 (M+H)+.
Example 751N-[3-(1-{3-[2-(3-BROMOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 642.0 (M+H)+.
Example 752N-[3-(1-{3-[2-(4-BROMOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 608.0 (M+H)+.
Example 753N-[3-(1-{3-[2-(4-BROMOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 572 (M+H)+.
Example 754N-[3-(1-{3-[2-(4-BROMOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 642 (M+H)+.
Example 755N-[3-(1-{3-[2-(3-BROMOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 608.0 (M+H)+.
Example 756N-[3-(1-{3-[2-(4-BROMOPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure. E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 558.1 (M+H)+.
Example 757N-[3-(1-{3-[2-(3-BROMOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 634.0 (M+H)+.
Example 758N-[3-(1-{3-[2-(3-BROMOPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 572.0 (M+H)+.
Example 759N-[3-(1-{3-[2-(4-BROMOPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 572.0 (M+H)+.
Example 760N-[3-(1-{3-[2-(4-BROMOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 634.0 (M+H)+.
Example 761N-[3-(1-{3-[2-(4-BROMOPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 588.1 (M+H)+.
Example 762N-[3-(1-{3-[2-(3-BROMOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 572 (M+H)+.
Example 763N-[3-(1-{3-[2-(3-BROMOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 572 (M+H)+.
Example 764N-[3-(1-{3-[2-(4-BROMOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(4-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 572.0 (M+H)+.
Example 765N-[3-(1-{3-[2-(3-BROMOPHENYL)-5-METHOXY-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(3-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 588.0 (M+H)+.
Example 7662-METHYL-N-[3-(1-{3-[2-(3-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE:
Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and phenylhydrazine: ESMS m/e: 525.2 (M+H)+.
Example 7672-METHYL-N-(3-(1-{3-[2-(3-NITROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE:
Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 575.1 (M+H)+.
Example 7682-METHYL-N-[3-(1-{3-[2-(3-NITROPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 609.1 (M+H)+.
Example 7692-METHYL-N-[3-(1-{3-[5-METHYL-2-(3-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 539.2 (M+H)+.
Example 770N-[3-(1-{3-[5-METHOXY-2-(3-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl)phenyl)propanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 555.2 (M+H)+.
Example 7712-METHYL-N-[3-(1-{3-[2-(3-NITROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 601.1 (M+H)+.
Example 7722-METHYL-N-[3-(1-{3-[1-METHYL-2-(3-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 539.2 (M+H)+.
Example 7732-METHYL-N-[3-(1-{3-[7-METHYL-2-(3-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(3-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 539.2 (M+H)+.
Example 774N-[3-(1-{3-[5-METHOXY-2-(4-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 4-methoxyphenylhydrazine hydrochloride: ESMS m/e: 555.6 (M+H)+.
Example 775N-[3-(1-{3-[2-(2-BROMOPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 557.9 (M+H)+.
Example 7762-METHYL-N-[3-(1-{3-[5-METHYL-2-(4-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 539.1 (M+H)+.
Example 7772-METHYL-N-[3-(1-{3-[2-(4-NITROPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 574.7 (M+H)+.
Example 7782-METHYL-N-(3-{1-[(5E)-5-(4-NITROPHENYL)-5-(PHENYLHYDRAZONO)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE:
Prepared by Procedure E and Scheme AX using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and phenylhydrazine: ESMS m/e: 542.4 (M+H)+.
Example 7792-METHYL-N-[3-(1-{3-[7-METHYL-2-(4-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 538.8 (M+H)+.
Example 7802-METHYL-N-{3-[1-((5E)-5-(4-NITROPHENYL)-5-{[4-(TRIFLUOROMETHOXY)PHENYL]HYDRAZONO}PENTYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 626.2 (M+H)+.
Example 781N-[3-(1-{3-[2-(2-BROMOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 608.0 (M+H)+.
Example 782N-[3-(1-{3-[2-(2-BROMOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 641.9 (M+H)+.
Example 783N-[3-(1-{3-[2-(2-BROMOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 572.0 (M+H)+.
Example 784N-[3-(1-{3-[2-(2-BROMOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 634 (M+H)+.
Example 785N-[3-(1-{3-[2-(2-BROMOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 572.0 (M+H)+.
Example 786N-[3-(1-{3-[2-(2-IODOPHENYL)-5-(TRIFLUOROMETHOXY)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-(trifluoromethoxy)phenylhydrazine hydrochloride: ESMS m/e: 690.0 (M+H)+.
Example 787N-[3-(1-{3-[2-(2-IODOPHENYL)-5-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 4-methylphenylhydrazine hydrochloride: ESMS m/e: 620.2 (M+H)+.
Example 7882-METHYL-N-[3-(1-{3-[1-METHYL-2-(4-NITROPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 539.6 (M+H)+.
Example 7892-METHYL-N-[3-(1-{3-[2-(4-NITROPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure E and Scheme M using 2-methyl-N-(3-{1-[5-(4-nitrophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)propanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 601.6 (M+H)+.
Example 790N-[3-(1-{3-[2-(2-IODOPHENYL)-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE:
Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and phenylhydrazine: ESMS m/e: 606.1 (M+H)+.
Example 791N-[3-(1-{3-[2-(2-IODOPHENYL)-1H-BENZO[G]INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-naphthylhydrazine hydrochloride: ESMS m/e: 656.1 (M+H)+.
Example 792N-[3-(1-{3-[2-(2-IODOPHENYL)-1-PHENYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1,1-diphenylhydrazine hydrochloride: ESMS m/e: 682.1 (M+H)+.
Example 793N-[3-(1-{3-[2-(2-IODOPHENYL)-7-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-iodophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-(2-methylphenyl)hydrazine hydrochloride: ESMS m/e: 619.6 (M+H)+.
Example 794N-[3-(1-{3-[2-(2-BROMOPHENYL)-1-METHYL-1H-INDOL-3-YL]PROPYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure E and Scheme M using N-(3-{1-[5-(2-bromophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide and 1-methyl-1-phenylhydrazine: ESMS m/e: 572 (M+H)+.
Example 7954-(3,4-DIFLUOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXAMIDE:
Prepared by Procedure AC and Scheme AM using 4-(3,4-difluorophenyl)-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-pyridinecarboxylic acid and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 553.0 (M+H)+.
Example 7964-(2,4-DIFL UOROPHENYL)-N-(3-{4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)-2-METHYL-6-OXO-1,4,5,6-TETRAHYDRO-3-PYRIDINECARBOXAMIDE: Prepared by Procedure AC and Scheme AM using 4-(2,4-difluorophenyl)-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-pyridinecarboxylic acid and N-{3-[1-(3-aminopropyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 553.0 (M+H)+.
Example 797N-(3-{1-[4-(4-METHOXYPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure O and Scheme W using 4-(4-methoxyphenyl)-1-butanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 409 (M+H)+.
Example 798N-(4-{1-[3-(1,2-DIPHENYL-1H-INDOL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure O and Scheme W using 3-(1,2-diphenyl-1H-indol-3-yl)-1-propanol and N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 542.0 (M+H)+.
Example 799N-{4-[1-(3,3-DIPHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure O and Scheme W using 3,3-diphenyl-1-propanol and N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 427.0 (M+H)+.
Example 8002-METHYL-N-(3-{1-[4-(4-NITROPHENYL)BUTYL]-4-PIPERIDINYL}PHENYL): Prepared by Procedure O and Scheme W using 4-(4-nitrophenyl)-1-butanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 424.2 (M+H)+.
Example 8012-METHYL-N-(3-{1-[2-(1-NAPHTHYL)ETHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE Prepared by Procedure O and Scheme W using 2-(1-naphthyl)ethanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 401.2 (M+H)+.
Example 802N-{3-[1-(3,3-DIPHENYLPROPYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure O and Scheme W using 3,3-diphenyl-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.2 (M+H)+.
Example 803N-(3-{1-[3-(3,4-DIMETHOXYPHENYL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure O and Scheme W using 3-(3,4-dimethoxyphenyl)-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 8042-METHYL-N-{3-[1-(3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure O and Scheme W using 3-phenyl-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 365.2 (M+H)+.
Example 8052-METHYL-N-(3-{1-[3-(4-PYRIDINYL)PROPYL]-4-PIPERIDINYL}PHENYL) PROPANAMIDE: Prepared by Procedure O and Scheme W using 3-(4-pyridinyl)-1-propanol and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 366.2 (M+H)+.
Example 806N-{3-[1-(4-TERT-BUTYLBENZYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure AJ and Scheme AV using 1-bromomethyl)-4-tert-butylbenzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 393.0 (M+H)+.
Example 807N-{3-[1-(4-BENZOYLBENZYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure AJ and Scheme AV using [4-(bromomethyl)phenyl](phenyl)methanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.0 (M+H)+.
1,2-DICHLORO-4-{[(1S)-3-CHLORO-1-PHENYLPROPYL]OXY}BENZENE: Prepared by Procedure A using 3,4-dichlorophenol and (1R)-3-chloro-1-phenyl-1-propanol.
Example 808N-(3-{1-[(3S)-3-(3,4-DICHLOROPHENOXY)-3-PHENYLPROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A using 1,2-dichloro-4-{[(1S)-3-chloro-1-phenylpropyl]oxy}benzene and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 525.3 (M+H)+.
Example 809N-(3-{1-[6-(2-FLUOROPHENYL)-6-HYDROXYHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[6-(2-fluorophenyl)-6-oxohexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 441.3 (M+H)+.
Example 810N-[3-(1-{5-HYDROXY-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using 2-methyl-N-[3-(1-{5-oxo-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]propanamide: ESMS m/e: 477.2 (M+H)+.
Example 811N-(3-{1-[5-(4-FLUOROPHENYL)-5-HYDROXYPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[5-(4-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 427.2 (M+H)+.
Example 812N-(3-{1-[7-(2-FLUOROPHENYL)-7-HYDROXYHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[7-(2-fluorophenyl)-7-oxoheptyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 455.2 (M+H)+.
Example 813N-(3-{1-[6-(3-FLUOROPHENYL)-6-HYDROXYHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[6-(3-fluorophenyl)-6-oxohexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 441.2 (M+H)+.
Example 814N-(3-{1-[5-(2-FLUOROPHENYL)-5-HYDROXYPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[5-(2-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 427.2 (M+H)+.
Example 815N-(3-{1-[5-(3-FLUOROPHENYL)-5-HYDROXYPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[5-(3-fluorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 427.2 (M+H)+.
Example 816N-(3-{1-[5-(3-CHLOROPHENYL)-5-HYDROXYPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[5-(3-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 443.1 (M+H)+.
Example 817N-(3-{1-[6-(4-FLUOROPHENYL)-6-HYDROXYHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[6-(4-fluorophenyl)-6-oxohexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 441.2 (M+H)+.
Example 818N-(3-{1-[6-(4-CHLOROPHENYL)-6-HYDROXYHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[6-(4-chlorophenyl)-6-oxohexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 456.9 (M+H)+.
Example 819N-(3-{1-[5-(4-CHLOROPHENYL)-5-HYDROXYPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure L and Scheme AN using N-(3-{1-[5-(4-chlorophenyl)-5-oxopentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 443.0 (M+H)+.
Example 820N-(4-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)BUTANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 9-ethyl-9H-carbazole-3-carbaldehyde and N-[4-(4-piperidinyl)phenyl]butanamide: ESMS m/e: 454.2 (M+H)+.
Example 821N-(3-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 9-ethyl-9H-carbazole-3-carbaldehyde and N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 440.5 (M+H)+.
Example 822N-(3-{1-[(1,9-DIMETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 1,9-dimethyl-9H-carbazole-3-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3) δ 8.05-6.77 (m, 10H), 5.20-5.12 (m, 1H), 4.04 (s, 3H), 3.93 (s, 2H), 3.34-3.24 (m, 2H), 2.79 (s, 3H), 2.56-2.38 (m, 2H), 2.38-2.26 (m, 2H), 2.08-1.88 (m, 2H), 1.82-1.70 (m, 2H), 1.16 (d, 6H, J=6.8 Hz); ESMS m/e: 454.2 (M+H)+.
Example 823N-(3-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)CYCLOPROPANECARBOXAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 9-ethyl-9H-carbazole-3-carbaldehyde and N-[3-(4-piperidinyl)phenyl]cyclopropanecarboxamide: ESMS m/e: 452.6 (M+H)+.
Example 8241-(3-{1-[(9-ETHYL-9H-CARBAZOL-3-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-PYRROLIDINONE: Prepared by Scheme R and Procedure F. A solution of 1-(9-ethyl-9H-carbazol-3-yl)ethanone (22.3 mg, 0.100 mmol) and 1-[3-(4-piperidinyl)phenyl]-2-pyrrolidinone (27.2 mg, 0.100 mmol) in 1,2-dichloroethane (1.00 mL) was treated with sodium triacetoxyborohydride (63.6 mg, 0.300 mmol) and HOAc (5.70 uL, 0.100 mmol). The mixture was stirred overnight at room temperature. The reaction mixture was treated with a saturated aqueous NaHCO3 solution (10 mL). The aqueous layer was extracted with CH2Cl2 (3×10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO4 and concentrated in vacuo. The residue was purified by preparative TLC using 5% of NH3 (2.0 M in methanol) in CH2Cl2 to give the desired product 1-(3-{1-[(9-ethyl-9H-carbazol-3-yl)methyl]-4-piperidinyl}phenyl)-2-pyrrolidinone (4.60 mg, 9.43%): 1H NMR (400 MHz, CDCl3) δ 8.04 (d, 1H, J=7.4 Hz), 7.99 (s, 1H), 7.43-7.28 (m, 5H), 6.96 (d, 1H, J=7.4 Hz), 4.31 (q, 2H, J=6.8 Hz), 3.77 (t, 2H, J=7.3 Hz), 3.70 (s, 2H), 3.06 (d, 2H, J=10.6 Hz), 2.56-2.42 (m, 3H), 2.07 (m, 4H), 1.77 (m, 4H), 1.36 (m, 3H); ESMS m/e: 452.5 (M+H)+.
N-{3-[1-(1H-INDOL-5-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 1H-indole-5-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 376.2 (M+H)+.
1-(4-CHLOROBUTYL)-1H-INDOLE: Prepared by Procedure AH, and Scheme P using 1H-indole and 1-bromo-4-chlorobutane: 1NMR (400 MHz, CDCl3) δ 7.72-7.02 (m, 5H), 6.49 (d, 1H, J=2.8 Hz), 4.13 (t, 2H, J=6.8 Hz), 3.48 (t, 2H, J=6.8 Hz), 2.06-1.92 (m, 2H), 1.80-1.70 (m, 2H).
1-(3-CHLOROPROPYL)-1H-INDOLE: Prepared by Procedure AH, and Scheme P using 1H-indole and 1-bromo-3-chloropropane: 1H NMR (400 MHz, CDCl3) δ 7.70-7.04 (m, 5H), 6.50 (d, 1H, J=2.8 Hz), 4.31 (t, 2H, J=6.8 Hz), 3.42 (t, 2H, J=6.4 Hz), 2.28-2.20 (m, 2H).
Example 825N-(4-{1-[5-(1H-INDOL-1-YL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(5-chloropentyl)-1H-indole and 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 432.3 (M+H)+.
Example 826N-(4-{1-[5-(1H-INDOL-1-YL)PENTYL]-4-PIPERIDINYL}PHENYL)BUTANAMIDE: Prepared by Procedure AH and Scheme P using 1-(5-chloropentyl)-1H-indole and N-[4-(4-piperidinyl)phenyl]butanamide: ESMS m/e: 432.3 (M+H)+.
Example 827N-(4-{1-[5-(1H-INDOL-1-YL)PENTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(5-chloropentyl)-1H-indole and N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 418.2 (M+H)+.
Example 828N-(4-{1-[6-(1H-INDOL-1-YL)HEXYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(6-chlorohexyl)-1H-indole and N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 432.3 (M+H)+.
Example 8292-METHYL-N-(3-{1-[(1-METHYL-1H-INDOL-2-YL)METHYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 1-methyl-1H-indole-2-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 390.3 (M+H)+.
Example 830N-{3-[1-(1H-INDOL-4-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 1H-indole-4-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 376.2 (M+H)+.
Example 831N-(4-{1-[6-(1H-INDOL-1-YL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(6-chlorohexyl)-1H-indole and 2-methyl-N-[4-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 446.3 (M+H)+.
Example 832N-{3-[1-(1H-INDOL-7-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R, without HOAc, using 1H-indole-7-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 376.2 (M+H)+.
Example 833N-[3-(1-{[1-(4-METHOXYPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-4-methoxybenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 482.0(M+H)+.
Example 834METHYL 4-[4-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-1H-INDOL-1-YL]BENZOATE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using methyl 4-iodobenzoate and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 510.3 (M+H)+.
Example 8352-METHYL-N-[3-(1-{[1-(3-METHYLPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-methylbenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 466.3 (M+H)+.
Example 836N-[3-(1-{[1-(4-FLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-fluoro-4-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 7.66-6.92 (m, 12H), 6.65 (d, 1H, J=3.2 Hz), 3.69 (s, 2H), 3.15-3.02 (m, 2H), 2.58-2.40 (m, 2H), 2.20-2.04 (m, 2H), 1.94-1.76 (m, 4H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 470.6 (M+H)+.
Example 837N-(3-{1-[4-(1H-INDOL-1-YL)BUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(4-chlorobutyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 418.3 (M+H)+.
Example 838N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-4-iodobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.2 (M+H)+.
Example 839N-[3-(1-{[1-(3-METHOXYPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-methoxybenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 482.2 (M+H)+.
Example 840N-(4-{1-[4-(1H-INDOL-1-YL)BUTYL]-4-PIPERIDINYL}PHENYL)BUTANAMIDE: Prepared by Procedure AH and Scheme P using 1-(4-chlorobutyl)-1H-indole and N-[4-(4-piperidinyl)phenyl]butanamide: ESMS m/e: 418.2 (M+H)+.
Example 841N-[3-(1-{[1-(2-METHOXYPHENYL)-1-H-INDOL-5-YL]METHYL}-4-PIPERIDINYL}PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2-methoxybenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 482.2 (M+H)+.
Example 842N-[3-(1-{[1-(3-CHLOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-3-iodobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.2 (M+H)+.
Example 843METHYL 2-[5-({4-[3-(ISOBUTYRYLAMINO)PHENYL]-1-PIPERIDINYL}METHYL)-1H-INDOL-1-YL]BENZOATE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using methyl 2-iodobenzoate and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 510.2 (M+H)+.
Example 844N-(3-{1-[3-(1H-INDOL-1-YL)PROPYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure AH and Scheme P using 1-(3-chloropropyl)-1H-indole and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 404.2 (M+H)+.
Example 8452-METHYL-N-{3-[1-({1-[4-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-5-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-4-(trifluoromethyl)benzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.2 (M+H)+.
Example 846N-(3-{1-[(1-[1,1′-BIPHENYL]-2-YL-1H-INDOL-5-YL)METHYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 2-iodo-1,1′-biphenyl and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 528.3 (M+H)+.
Example 8472-METHYL-N-[3-(1-{[1-(2-METHYLPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2-methylbenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl)-2-methylpropanamide: ESMS m/e: 466.2 (M+H)+.
Example 8482-METHYL-N-[3-(1-{[1-(4-METHYLPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-4-methylbenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 466.3 (M+H)+.
Example 849N-[3-(1-([1-(2-CHLOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-2-iodobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.2 (M+H)+.
Example 8502-METHYL-N-{3-[1-({1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-5-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-(trifluoromethyl)benzene and N-{3-[[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 7.80-6.94 (m, 12H), 6.69 (d, 1H, J=3.6 Hz), 3.36 (s, 2H), 3.10-3.00 (m, 2H), 2.58-2.42 (m, 2H), 2.16-2.02 (m, 2H), 1.85-1.75 (m, 4H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 520.2 (M+H)+.
Example 8512-METHYL-N-[3-(1-{[1-(2-NITROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2-nitrobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 497.2 (M+H)+.
Example 852N-[3-(1-{[1-(2-FLUOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-fluoro-2-iodobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 470.2 (M+H)+.
Example 8532-METHYL-N-[3-(1-{[1-(1-NAPHTHYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodonaphthalene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 502.2 (M+H)+.
Example 854N-[3-(1-{[1-(2,3-DICHLOROPHENYL)-1H-INDOL-5-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1,2-dichloro-3-iodobenzene and N-{3-[1-(1H-indol-5-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3) δ 7.68-6.94 (m, 12H), 6.68 (d, 1H, J=2.8 Hz), 3.69 (s, 2H), 3.15-3.02 (m, 2H), 2.54-2.42 (m, 2H), 2.18-2.02 (m, 2H), 1.88-1.76 (m, 4H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 520.1 (M+H)+.
Example 855N-[3-(1-{[1-(2,3-DICHLOROPHENYL)-1H-INDOL-7-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1,2-dichloro-3-iodobenzene and N-{3-[1-(1H-indol-7-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.2 (M+H)+.
Example 856N-[3-(1-{[1-(3-METHOXYPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-methoxybenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 482.3 (M+H)+.
Example 857N-[3-(1-{[1-(2,3-DICHLOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1,2-dichloro-3-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.2 (M+H)+.
Example 858N-[3-(1-{[1-(3-CHLOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-3-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.2 (M+H)+.
Example 8592-METHYL-N-[3-(1-{[1-(3-METHYLPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-methylbenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 466.3 (M+H)+.
Example 860N-[3-(1-{[1-(3-METHOXYPHENYL)-1H-INDOL-7-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-methoxybenzene and N-{3-[1-(1H-indol-7-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 482.3 (M+H)+.
Example 8612-METHYL-N-{3-[1-({1-[3-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-4-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-3-(trifluoromethyl)benzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.2 (M+H)+.
Example 862N-[3-(1-{[1-(3,4-DIMETHYLPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide and 4-iodo-1,2-dimethylbenzene: ESMS m/e: 480.0 (M+H)+.
Example 863N-[3-(1-{[1-(3,4-DIFLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1,3-dichloro-5-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.0 (M+H)+.
Example 864N-[3-(1-{[1-(3,4-DICHLOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1,2-dichloro-4-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.0 (M+H)+.
Example 865N-[3-(1-{[1-(2-CHLORO-4-FLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 2-chloro-4-fluoro-1-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 504.0 (M+H)+.
Example 866N-[3-(1-{[1-(2,4-DIFLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 2,4-difluoro-1-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 488.0 (M+H)+.
Example 8672-METHYL-N-[3-(1-{[1-(3-PYRIDINYL)-1H-INDOL-7-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 3-iodopyridine and N-{3-[1-(1H-indol-7-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 453.1 (M+H)+.
Example 868N-{3-[1-(1H-INDOL-6-YLMETHYL)-4-PIPERIDINYL]PHENYL}-2-METHYLPROPANAMIDE: Prepared by Procedure F and Scheme R using 1H-indole-6-carbaldehyde and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 376.2 (M+H)+.
Example 8692-METHYL-N-[3-(1-{[1-(4-PYRIDINYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 4-iodopyridine and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 453.2 (M+H)+.
Example 8702-METHYL-N-[3-(1-{[1-(2-PYRIDINYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 2-iodopyridine and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 453.2 (M+H)+.
Example 871N-[3-(1-{[1-(2-FLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-fluoro-2-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 470.1 (M+H)+.
Example 872N-[3-(1-{[1-(4-CHLOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-4-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.1 (M+H)+.
Example 8732-METHYL-N-[3-(1-{[1-(3-PYRIDINYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 3-iodopyridine and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 453.2 (M+H)+.
Example 874N-[3-(1-{[1-(2,3-DIMETHYLPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2,3-dimethylbenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 480.1 (M+H)+.
Example 875N-[3-(1-{[1-(3-FLUOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-fluoro-3-iodobenzene and N-(3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 470.1 (M+H)+.
Example 8762-METHYL-N-(3-[1-({1-[2-(TRIFLUOROMETHYL)PHENYL]-1H-INDOL-4-YL}METHYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2-(trifluoromethyl)benzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 520.1 (M+H)+.
Example 877N-[3-(1-{[1-(2-CHLOROPHENYL)-1H-INDOL-4-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-chloro-2-iodobenzene and N-{3-[1-(1H-indol-4-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 486.1 (M+H)+.
Example 878N-[3-(1-{[1-(2,3-DIMETHYLPHENYL)-1H-INDOL-7-YL]METHYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure C and Scheme Q1, with CuBr in place of Cu, using 1-iodo-2,3-dimethylbenzene and N-{3-[1-(1H-indol-7-ylmethyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 480.0 (M+H)+.
2-METHYL-N-[3-(1-{5-OXO-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]PROPANAMIDE: Prepared by Procedure K and Scheme E using 5-chloro-1-[4-(trifluoromethyl)phenyl]-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 475.1 (M+H)+.
N-(3-{1-[5-(4-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using 5-chloro-1-(4-fluorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
N-(3-{1-[5-(3-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using 5-chloro-1-(3-fluorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
N-(3-{1-[5-(3-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using S-chloro-1-(3-chlorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.1 (M+H)+.
N-(3-{1-[5-(4-CHLOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using 5-chloro-1-(4-chlorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 441.1 (M+H)+.
Example 8792-METHYL-N-{3-[1-(3-OXO-3-PHENYLPROPYL)-4-PIPERIDINYL]PHENYL}PROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 3-chloro-1-phenyl-1-propanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 379.3 (M+H)+.
Example 880N-(3-{1-[7-(2-FLUOROPHENYL)-7-OXOHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 7-chloro-1-(2-fluorophenyl)-1-heptanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: 1H NMR (400 MHz, CDCl3), δ 8.17 (s, br, 1H), 8.06-6.88 (m, 8H), 3.08-2.94 (m, 4H), 2.62-2.48 (m, 1H), 2.48-2.38 (m, 1H), 2.38-2.15 (m, 2H), 2.02-1.92 (m, 2H), 1.84-1.77 (m, 4H), 1.77-1.66 (m, 2H), 1.62-1.46 (m, 2H), 1.46-1.29 (M, 4H), 1.21 (d, 6H, J=6.8 Hz); ESMS m/e: 453.2 (M+H)+.
Example 881N-(3-{1-[5-(2-FLUOROPHENYL)-5-OXOPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 5-chloro-1-(2-fluorophenyl)-1-pentanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 425.2 (M+H)+.
Example 882N-(3-{1-[6-(3-FLUOROPHENYL)-6-OXOHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 6-chloro-1-(3-fluorophenyl)-1-hexanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 439.2 (M+H)+.
Example 883N-(3-{1-[6-(2-FLUOROPHENYL)-6-OXOHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 6-chloro-1-(2-fluorophenyl)-1-hexanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 439.2 (M+H)+.
Example 884N-(3-{1-[7-(4-FLUOROPHENYL)-7-OXOHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 7-chloro-1-(4-fluorophenyl)-1-heptanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 453.2 (M+H)+.
Example 885N-(3-{1-[6-(4-CHLOROPHENYL)-6-OXOHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 6-chloro-1-(4-chlorophenyl)-1-hexanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 455.1 (M+H)+.
Example 886N-(3-{1-[7-(4-CHLOROPHENYL)-7-OXOHEPTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 7-chloro-1-(4-chlorophenyl)-1-heptanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 469.1 (M+H)+.
Example 887N-(3-{1-[6-(4-FLUOROPHENYL)-6-OXOHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K and Scheme E using K2CO3 instead of Na2CO3 and NaI instead of KI and 6-chloro-1-(4-fluorophenyl)-1-hexanone and 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide: ESMS m/e: 439.1 (M+H)+.
Example 888N-(3-{1-[6-(3-ACETYLPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 559.5 (M+H)+.
Example 889N-(3-{1-[6-(2-FLUOROPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluorophenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 535.1 (M+H)+.
Example 890N-(3-{1-[6-(4-FLUOROPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.72-6.72 (m, 12H), 5.42-5.34 (m, 1H), 3.68-3.58 (m, br, 2H), 3.02-2.92 (m, 2H), 2.80-2.46 (m, 6H), 2.05-1.78 (m, 6H), 1.68-1.56 (m, 1H), 1.56-1.38 (m, 3H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 535.1 (M+H)+.
Example 891N-(3-{1-[6-(2-FLUOROPHENYL)-6-(2-METHOXYPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-methoxyphenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 547.0 (M+H)+.
Example 892N-(3-{1-[6-(2-FLUOROPHENYL)-6-(4-METHOXYPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 547.1 (M+H)+.
Example 893N-(3-{1-[6-(4-ACETYLPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(4-hydroxyphenyl)ethanone and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 559.2 (M+H)+.
Example 894N-(3-{1-[6-(3,4-DIMETHOXYPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 3,4-dimethoxyphenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 577.6 (M+H)+.
Example 895N-(3-{1-[6-(2-ETHOXYPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-ethoxyphenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 561.1 (M+H)+.
Example 896N-(3-{1-[6-(4-BROMOPHENOXY)-6-PHENYLHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 577.0 (M+H)+.
Example 897N-(3-{1-[6-(4-FLUOROPHENOXY)-6-(4-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.22 (s, br, 1H), 7.74-6.70 (m, 12H), 5.05-4.94 (m, 1H), 3.66-3.52 (m, br, 2H), 3.02-2.83 (m, br, 2H), 2.81-2.58 (m, br, 4H), 2.58-2.36 (m, br, 2H), 2.02-1.66 (m, br, 6H), 1.66-1.46 (m, br, 1H), 1.46-1.35 (m, br, 3H), 1.26 (d, 6H, J=6.0 Hz); ESMS m/e: 535.1 (M+H)+.
Example 898N-(3-{1-[6-(4-METHOXYPHENOXY)-6-PHENYLHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 529.6 (M+H)+.
Example 899N-(3-{1-[6-(4-CHLOROPHENOXY)-6-(4-CHLOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-(3-{1-[6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 566.9 (M+H)+.
Example 900N-(3-{1-[6-(4-BROMOPHENOXY)-6-(4-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 595.0 (M+H)+.
Example 901N-(3-{1-[6-(4-CHLOROPHENOXY)-6-(4-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.93 (s, 1H), 7.72-6.68 (m, 12H), 5.06-4.98 (m, 1H), 3.66-3.50 (m, br, 2H), 3.02-2.82 (m, br, 2H), 2.80-2.57 (m, br, 4H), 2.57-2.38 (m, br, 2H), 2.02-1.76 (m, br, 6H), 1.64-1.48 (m, br, 1H), 1.48-1.36 (m, br, 3H), 1.25 (d, 6H, J=6.8 Hz); Anal. Calc. for C33H41Cl2FN2O2.0.5EtOAc: C, 66.55; H, 7.18; N, 4.43; Found: C, 66.35; H, 6.86; N, 4.46. ESMS m/e: 550.8 (M+H)+.
Example 902N-(3-{1-[6-(4-CHLOROPHENYL)-6-(4-FLUOROPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-(3-{1-[6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.22 (s, br, 1H), 7.74-6.68 (m, 12H), 5.04-4.92 (m, 1H), 3.66-3.50 (m, br, 2H), 3.00-2.82 (br, 2H), 2.80-2.58 (m, br, 4H), 2.58-2.40 (m, br, 2H), 2.00-1.68 (m, br, 6H), 1.66-1.46 (m, br, 1H), 1.46-1.36 (br, 3H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 551.1 (M+H)+.
Example 903N-(3-{1-[6-(3-ACETYLPHENOXY)-6-PHENYLHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 541.2 (M+H)+.
Example 904N-(3-{1-[6-(4-CHLOROPHENOXY)-6-PHENYLHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.28 (s, 1H), 7.78-6.70 (m, 13H), 5.08-4.98 (m, 1H), 3.64-3.46 (m, br, 2H), 3.02-2.82 (br, 2H), 2.82-2.56 (m, br, 4H), 2.56-2.34 (m, br, 2H), 2.05-1.75 (m, br, 6H), 1.64-1.48 (m, br, 1H), 1.48-1.34 (br, 3H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 533.1 (M+H)+.
Example 905N-(3-{1-[6-(4-BROMOPHENOXY)-6-(4-CHLOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-(3-{1-[6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 611.0 (M+H)+.
Example 906N-(3-{1-[6-(4-CHLOROPHENYL)-6-(4-METHOXYPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-(3-{1-[6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 563.1 (M+H)+.
Example 907N-(3-{1-[6-(4-FLUOROPHENYL)-6-(4-METHOXYPHENOXY)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.11 (s, 1H), 7.65-6.84 (m, 12H) 5.21-5.10 (m, 1H), 3.66-3.56 (m, br, 2H), 3.02-2.82 (br, 2H), 2.82-2.56 (m, br, 4H), 2.54 (s, 3H), 2.53-2.32 (m, br, 2H), 2.02-1.70 (m, br, 6H), 1.64-1.48 (m, br, 1H), 1.48-1.34 (br, 3H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 547.1 (M+H)+.
Example 908N-(3-{1-[6-(3-ACETYLPHENOXY)-6-(4-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 559.1 (M+H)+.
Example 909N-(3-{1-[6-(4-FLUOROPHENOXY)-6-PHENYLHEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.05 (s, br, 1H), 7.72-6.70 (m, 13H), 5.06-4.96 (m, 1H), 3.66-3.51 (m, 2H), 3.01-2.82 (m, br, 2H), 2.82-2.57 (m, br, 4H), 2.57-2.34 (m, br, 2H), 2.05-1.78 (m, br, 6H), 1.64-1.52 (m, br, 1H), 1.52-1.16 (m, br, 3H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 517.0 (M+H)+.
Example 910N-(3-{1-[6-(2-ACETYLPHENOXY)-6-(2-FLUOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(2-hydroxyphenyl)ethanone and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 559.0 (M+H)+.
Example 911N-[3-(1-{6-(4-FLUOROPHENYL)-6-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[6-(4-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.23 (s, br, 1H), 7.74-6.88 (m, 11H), 5.20-5.12 (m, 1H), 3.68-3.52 (m, br, 2H), 3.02-2.82 (m, br, 2H), 2.82-2.60 (m, 4H), 2.58-2.38 (m, br, 2H), 2.12-2.02 (m, br, 1H), 2.02-1.80 (m, br, 5H), 1.68-1.52 (m, br, 1H), 1.52-1.36 (br, 3H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 603.3 (M+H)+.
Example 912N-(3-{1-[6-(3-ACETYLPHENOXY)-6-(4-CHLOROPHENYL)HEXYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.41 (s, 1H), 7.72-6.84 (m, 12H), 5.18-5.10 (m, 1H), 3.62-3.50 (m, br, 2H), 3.00-2.92 (m, 2H), 2.90-2.58 (m, 4H), 2.54 (s, 3H), 2.50-2.12 (m, 2H), 2.02-1.70 (m, br, 6H), 1.64-1.50 (m, br, 1H), 1.50-1.14 (m, br, 3H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 575.3 (M+H)+.
Example 913N-[3-(1-{6-(2-FLUOROPHENYL)-6-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[6-(2-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.35 (s, 1H), 7.68-6.82 (m, 11H), 5.58-5.48 (m, 1H), 3.64-3.50 (m, 2H), 3.01-2.94 (m, br, 2H), 2.92-2.54 (m, 4H), 2.48-2.32 (m, br, 2H), 2.20-2.04 (m, 1H), 2.01-1.80 (m, 5H), 1.70-1.54 (m, 1H), 1.54-1.36 (m, 3H), 1.25 (d, 6H, J=7.2 Hz). Anal. Calc. for C34H40ClF5N2O2.0.6MeOH: C, 63.12; H, 6.49; N, 4.25; Found: C, 63.38; H, 6.61; N, 3.95. ESMS m/e: 603.3 (M+H)+.
Example 914N-[3-(1-{6-(4-CHLOROPHENYL)-6-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-(6-(4-chlorophenyl)-6-hydroxyhexyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 619.2 (M+H)+.
Example 915N-[3-(1-{6-(3-FLUOROPHENYL)-6-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]HEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[6-(3-fluorophenyl)-6-hydroxyhexyl]-4-piperidinyl)phenyl)-2-methylpropanamide: ESMS m/e: 603.3 (M+H)+.
Example 916N-[3-(1-{6-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]-6-PHENYLHEXYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-{3-[1-(6-hydroxy-6-phenylhexyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 585.3 (M+H)+.
Example 917N-[3-(1-{7-(2-FLUOROPHENYL)-7-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]HEPTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[7-(2-fluorophenyl)-7-hydroxyheptyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 617.3 (M+H)+.
Example 918N-(3-{1-[5-(4-FLUOROPHENYL)-5-(4-METHOXYPHENOXY)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-(3-{1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 533.1 (M+H)+.
Example 919N-(3-{1-[S-(4-BROMOPHENOXY)-5-(4-FLUOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-(3-{1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.94 (s, br, 1H), 7.68-6.64 (m, 12H), 5.12-5.04 (m, 1H), 3.68-3.52 (m, br, 2H), 3.01-2.82 (br, 2H), 2.78-2.58 (m, br, 4H), 2.57-2.38 (m, br, 2H), 2.05-1.80 (m, br, 6H), 1.64-1.38 (m, br, 2H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 581.0 (M+H)+.
Example 920N-(3-{1-[S-(4-CHLOROPHENOXY)-5-(4-CHLOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.86 (s, br, 1H), 7.62-6.72 (m, 12H), 5.12-5.02 (m, 1H), 3.68-3.52 (m, br, 2H), 3.02-2.82 (br, 2H), 2.82-2.56 (m, br, 4H), 2.56-2.40 (m, br, 2H), 2.06-1.80 (m, br, 6H), 1.64-1.40 (m, br, 2H), 1.25 (d, 6H, J=6.8 Hz). Anal. Calc. for C32H39Cl3N2O2.1.3MeOH: C, 63.25; H, 7.07; N, 4.42; Found: C, 63.41; H, 6.99; N, 4.17. ESMS m/e: 553.0 (M+H)+.
Example 921N-(3-{1-[5-(4-CHLOROPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.72-6.72 (m, 13H), 5.12-5.04 (m, 1H), 3.66-3.52 (m, br, 2H), 3.01-2.83 (br, 2H), 2.68-2.62 (m, br, 2H), 2.62-2.48 (m, br, 4H), 2.04-1.82 (m, br, 6H), 1.62-1.40 (m, br, 2H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 519.1 (M+H)+.
Example 922N-(3-{1-[5-(3-ACETYLPHENOXY)-5-(4-FLUOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-(3-(1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 545.1 (M+H)+.
Example 923N-(3-{1-[5-(4-CHLOROPHENYL)-5-(4-FLUOROPHENOXY)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.05 (s, br, 1H), 7.74-6.68 (m, 12H), 5.08-4.99 (m, 1H), 3.67-3.56 (m, br, 2H), 3.02-2.82 (br, 2H), 2.80-2.57 (m, br, 4H), 2.57-2.38 (m, br, 2H), 2.05-1.80 (m, br, 6H), 1.64-1.40 (m, br, 2H), 1.25 (d, 6H, J=7.2 Hz). Anal. Calc. for C32H39Cl2FN2O2.1.3EtOAc: C, 64.93; H, 7.24; N, 4.07. Found: C, 65.01; H, 6.97; N, 3.85. ESMS m/e: 537.1 (M+H)+.
Example 924N-(3-{1-[5-(4-BROMOPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.74-6.66 (m, 13H), 5.13-5.02 (m, 1H), 3.73-3.51 (m, br, 2H), 3.05-2.83 (br, 2H), 2.83-2.62 (br, 4H), 2.62-2.42 (m, br, 2H), 2.10-1.80 (m, br, 6H), 1.65-1.37 (m, br, 2H), 1.25 (d, 6H, J=6.8 Hz); ESMS m/e: 562.9 (M+H)+.
Example 925N-(3-{1-[5-(4-CHLOROPHENYL)-5-(4-METHOXYPHENOXY)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.13 (s, br, 1H), 7.72-6.70 (m, 12H), 5.08-4.97 (m, 1H), 3.72 (s, 3H), 3.66-3.50 (m, br, 2H), 3.03-2.82 (br, 2H), 2.80-2.54 (m, br, 4H), 2.53-2.17 (m, br, 2H), 2.08-1.78 (m, br, 6H), 1.65-1.38 (m, br, 2H), 1.25 (d, 6H, J=6.8 Hz). Anal. Calc. for C33H42Cl2N2O3 0.54CH2Cl2: C, 63.80; H, 6.88; N, 4.44. Found: C, 63.84; H, 7.18; N, 4.00. ESMS m/e: 549.1 (M+H)+.
Example 926N-(3-{1-[5-(4-FLUOROPHENOXY)-5-(4-FLUOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-(3-{1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.62-6.70 (m, 12H), 5.10-5.00 (m, 1H), 3.71-3.56 (m, br, 2H), 3.04-2.82 (br, 2H), 2.78-2.64 (m, br, 3H), 2.64-2.48 (m, br, 3H), 2.05-1.82 (m, br, 6H), 1.62-1.42 (m, br, 2H), 1.25 (d, 6H, J=6.0 Hz); ESMS m/e: 521.2 (M+H)+.
Example 927N-(3-{1-[5-(3-ACETYLPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 526.9 (M+H)+.
Example 928N-(3-{1-[5-(4-METHOXYPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-methoxyphenol and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 515.6 (M+H)+.
Example 929N-[3-(1-{5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]-5-[4-(TRIFLUOROMETHYL)PHENYL]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-[3-(1-{5-hydroxy-5-[4-(trifluoromethyl)phenyl]pentyl}-4-piperidinyl)phenyl]-2-methylpropanamide: ESMS m/e: 639.2 (M+H)+.
Example 930N-[3-(1-{5-(3-CHLOROPHENYL)-5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[5-(3-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.17 (s, br, 1H), 7.75-6.88 (m, 11H), 5.26-5.14 (m, 1H), 3.68-3.56 (m, br, 2H), 3.05-2.90 (br, 2H), 2.90-2.60 (m, br, 4H), 2.56-2.36 (m, br, 2H), 2.18-1.84 (m, br, 6H), 1.70-1.44 (m, br, 2H), 1.25 (d, 6H, J=7.2 Hz). Anal. Calc. for C33H38Cl2F4N2O2.0.9EtOAc: C, 60.98; H, 6.32; N, 3.89; Found: C, 60.99; H, 6.17; N, 3.81. ESMS m/e: 605.2 (M+H)+.
Example 931N-[3-(1-{5-(2-FLUOROPHENYL)-5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[5-(2-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.89 (s, br, 1H), 7.72-6.88 (m, 11H), 5.59-5.48 (m, 1H), 3.70-3.48 (br, 2H), 3.05-2.84 (br, 2H), 2.82-2.58 (m, br, 4H), 2.58-2.40 (m, br, 2H), 2.22-1.82 (m, br, 6H), 1.71-1.42 (m, br, 2H), 1.25 (d, 6H, J=6.4 Hz); ESMS m/e: 589.3 (M+H)+.
Example 932N-[3-(1-{5-(3-FLUOROPHENYL)-5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[5-(3-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.79 (s, br, 1H), 7.63-6.82 (m, 11H), 5.24-5.15 (m, 1H), 3.70-3.56 (br, 2H), 3.04-2.84 (br, 2H), 2.82-2.60 (m, br, 4H), 2.60-2.42 (m, br, 2H), 2.20-1.83 (m, br, 6H), 1.70-1.44 (m, br, 2H), 1.25 (d, 6H, J=6.4 Hz); ESMS m/e: 589.3 (M+H)+.
Example 933N-(3-{1-[5-(3-ACETYLPHENOXY)-5-(4-CHLOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(3-hydroxyphenyl)ethanone and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 8.05 (s, br, 1H), 7.74-6.88 (m, 12H), 5.27-5.16 (m, 1H), 3.69-3.52 (m, br, 2H), 3.10-2.81 (br, 2H), 2.81-2.57 (m, br, 4H), 2.54 (s, 3H), 2.52-2.40 (m, br, 2H), 2.05-1.80 (m, br, 6H), 1.66-1.42 (m, br, 2H), 1.25 (d, 6H, J=6.8 Hz); Anal. Calc. for C34H42Cl2N2O3 0. 5CH2Cl2 1.0H2O: C, 63.46; H, 6.91; N, 4.30. Found: C, 63.46; H, 7.09; N, 4.00. ESMS m/e: 561.1 (M+H)+.
Example 934N-[3-(1-{5-(4-CHLOROPHENYL)-5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: 1H NMR (400 MHz, CDCl3), HCl salt δ 7.61-6.92 (m, 11H), 5.24-5.16 (m, 1H), 3.70-3.58 (m, 2H), 3.02-2.91 (br, 2H), 2.80-2.64 (m, br, 3H), 2.64-2.50 (m, 3H), 2.18-1.94 (m, br, 6H), 1.62-1.44 (m, br, 2H), 1.25 (d, 6H, J=7.2 Hz); ESMS m/e: 605.3 (M+H)+.
Example 935N-[3-(1-{5-(4-FLUOROPHENYL)-5-[2-FLUORO-5-(TRIFLUOROMETHYL)PHENOXY]PENTYL}-4-PIPERIDINYL)PHENYL]-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-fluoro-5-(trifluoromethyl)phenol N-(3-{1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 589.3 (M+H)+.
Example 936N-(3-{1-[5-(4-BROMOPHENOXY)-5-(4-CHLOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-bromophenol and N-(3-{1-[5-(4-chlorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 597.2 (M+H)+.
Example 937N-(3-{1-[5-(4-CHLOROPHENOXY)-5-(4-FLUOROPHENYL)PENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-chlorophenol and N-(3-{1-[5-(4-fluorophenyl)-5-hydroxypentyl]-4-piperidinyl}phenyl)-2-methylpropanamide: ESMS m/e: 537.3 (M+H)+.
Example 938N-(3-{1-[5-(2-ACETYLPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 1-(2-hydroxyphenyl)ethanone and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 527.0 (M+H)+.
Example 939N-(3-{1-[5-(2-ETHOXYPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 2-ethoxyphenol and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 529.2 (M+H)+.
Example 940N-(3-{1-[5-(4-FLUOROPHENOXY)-5-PHENYLPENTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure A and Scheme AN using 4-fluorophenol and N-{3-[1-(5-hydroxy-5-phenylpentyl)-4-piperidinyl]phenyl}-2-methylpropanamide: ESMS m/e: 503.2 (M+H)+.
Example 941N-(3-{1-[4-(4-FLUOROPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-chloro-1-(4-fluorophenyl)-1-butanone: ESMS m/e: 411.2 (M+H)+.
Example 9422-METHYL-N-(3-{1-[3-(1H-PYRROL-3-YL)PROPYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 3-(3-bromopropyl)-1H-pyrrole: ESMS m/e: 354.2 (M+H)+.
Example 943N-(3-{1-[4-(4-ISOPROPYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-chloro-1-(4-isopropylphenyl)-1-butanone: ESMS m/e: 435.2 (M+H)+.
Example 944N-(3-{1-[4-(4-METHOXYPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-chloro-1-(4-methoxyphenyl)-1-butanone: ESMS m/e: 423.2 (M+H)+.
Example 9452-METHYL-N-(3-{1-[4-(4-METHYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-chloro-1-(4-methylphenyl)-1-butanone: ESMS m/e: 407.2 (M+H)+.
Example 946N-(3-{1-[4-(4-TERT-BUTYLPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(4-tert-butylphenyl)-4-chloro-1-butanone: ESMS m/e: 449.2 (M+H)+.
Example 947N-(3-{1-[4-(4-BROMOPHENYL)-4-OXOBUTYL]-4-PIPERIDINYL}PHENYL)-2-METHYLPROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 1-(4-bromophenyl)-4-chloro-1-butanone: ESMS m/e: 471.3 (M+H)+.
Example 9482-METHYL-N-(3-{1-[4-OXO-4-(2-THIENYL)BUTYL]-4-PIPERIDINYL}PHENYL)PROPANAMIDE: Prepared by Procedure K (KI) and Scheme E (K2CO3) using 2-methyl-N-[3-(4-piperidinyl)phenyl]propanamide and 4-chloro-1-(2-thienyl)-1-butanone: ESMS m/e: 399.1 (M+H)+.
II. Synthetic Methods for General StructuresThe examples described in Section I are merely illustrative of the methods used to synthesize MCH1 antagonists. Further derivatives may be obtained utilizing generalized methods based on the synthetic methods used to synthesize the examples.
It may be necessary to incorporate protection and deprotection strategies for substituents such as amino, amido, carboxylic acid, and hydroxyl groups in the generalized synthetic methods to form further derivatives. Methods for protection and deprotection of such groups are well-known in the art, and may be found, for example in Green, T. W. and Wuts, P. G. M. (1991) Protection Groups in Organic Synthesis, 2nd Edition John Wiley & Sons, New York.
III. Oral CompositionsAs a specific embodiment of an oral composition of a compound of this invention, 100 mg of one of the compounds described herein is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size 0 hard gel capsule.
IV. Pharmacological Evaluation of Compounds at Cloned Rat MCH1 ReceptorThe pharmacological properties of the compounds of the present invention were evaluated at the cloned rat MCH1 receptor using protocols described below.
Host Cells
A broad variety of host cells can be used to study heterologously expressed proteins. These cells include but are not restricted to assorted mammalian lines such as: Cos-7, CHO, LM(tk-), HEK293, Peak rapid 293, etc.; insect cell lines such as: Sf9, Sf21, etc.; amphibian cells such as xenopus oocytes; and others.
COS 7 cells are grown on 150 mm plates in DMEM with supplements (Dulbecco's Modified Eagle Medium with 10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 Fg/ml streptomycin) at 37° C., 5% CO2. Stock plates of COS-7 cells are trypsinized and split 1:6 every 3-4 days.
Human embryonic kidney 293 cells are grown on 150 mm plates in DMEM with supplements (10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 Fg/ml streptomycin) at 37° C., 5% CO2. Stock plates of 293 cells are trypsinized and split 1:6 every 3-4 days.
Human embryonic kidney Peak rapid 293 (Peakr293) cells are grown on 150 mm plates in DMEM with supplements (10% fetal bovine serum, 10% L-glutamine, 50 Fg/ml gentamycin) at 37° C., 5% CO2. Stock plates of Peak rapid 293 cells are trypsinized and split 1:12 every 3-4 days.
Mouse fibroblast LM(tk-) cells are grown on 150 mm plates in DMEM with supplements (Dulbecco's Modified Eagle Medium with 10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 Fg/ml streptomycin) at 37° C., 5% CO2. Stock plates of LM(tk-) cells are trypsinized and split 1:10 every 3-4 days.
Chinese hamster ovary (CHO) cells were grown on 150 mm plates in HAM=s F-12 medium with supplements (10% bovine calf serum, 4 mM L-glutamine and 100 units/ml penicillin/100 Fg/ml streptomycin) at 37° C., 5% CO2. Stock plates of CHO cells are trypsinized and split 1:8 every 3-4 days.
Mouse embryonic fibroblast NIH-3T3 cells are grown on 150 mm plates in Dulbecco=s Modified Eagle Medium (DMEM) with supplements (10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 Fg/ml streptomycin) at 37° C., 5% CO2. Stock plates of NIH-3T3 cells are trypsinized and split 1:15 every 3-4 days.
Sf9 and Sf21 cells are grown in monolayers on 150 mm tissue culture dishes in TMN-FH media supplemented with 10% fetal calf serum, at 27° C., no CO2. High Five insect cells are grown on 150 mm tissue culture dishes in Ex-Cell 400™ medium supplemented with L-Glutamine, also at 27° C., no CO2.
In some cases, cell lines that grow as adherent monolayers can be converted to suspension culture to increase cell yield and provide large batches of uniform assay material for routine receptor screening projects.
Transient Expression
DNA encoding proteins to be studied can be transiently expressed in a variety of mammalian, insect, amphibian and other cell lines by several methods including but not restricted to; calcium phosphate-mediated, DEAE-dextran mediated, Liposomal-mediated, viral-mediated, electroporation-mediated and microinjection delivery.
Each of these methods may require optimization of assorted experimental parameters depending on the DNA, cell line, and the type of assay to be subsequently employed.
A typical protocol for the calcium phosphate method as applied to Peak rapid 293 cells is described as follows:
Adherent cells are harvested approximately twenty-four hours before transfection and replated at a density of 3.5×106 cells/dish in a 150 mm tissue culture dish and allowed to incubate over night at 37° C. at 5% CO2. 250 Fl of a mixture of CaCl2 and DNA (15 Fg DNA in 250 mM CaCl2) is added to a 5 ml plastic tube and 500 Fl of 2×HBS (280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4, 12 mM dextrose, 50 mM HEPES) is slowly added with gentle mixing. The mixture is allowed to incubate for 20 minutes at room temperature to allow a DNA precipitate to form. The DNA precipitate mixture is then added to the culture medium in each plate and incubated for 5 hours at 37° C., 5% CO2. After the incubation, 5 ml of culture medium (DMEM, 10% FBS, 10% L-glut and 50 μg/ml gentamycin) is added to each plate. The cells are then incubated for 24 to 48 hours at 37° C., 5% CO2.
A typical protocol for the DEAE-dextran method as applied to Cos-7 cells is described as follows; Cells to be used for transfection are split 24 hours prior to the transfection to provide flasks which are 70-80% confluent at the time of transfection. Briefly, 8 Fg of receptor DNA plus 8 Fg of any additional DNA needed (e.g. Gα protein expression vector, reporter construct, antibiotic resistance marker, mock vector, etc.) are added to 9 ml of complete DMEM plus DEAE-dextran mixture (10 mg/ml in PBS). Cos-7 cells plated into a T225 flask (sub-confluent) are washed once with PBS and the DNA mixture is added to each flask. The cells are allowed to incubate for 30 minutes at 37° C., 5% CO2. Following the incubation, 36 ml of complete DMEM with 80 FM chloroquine is added to each flask and allowed to incubate an additional 3 hours. The medium is then aspirated and 24 ml of complete medium containing 10% DMSO for exactly 2 minutes and then aspirated. The cells are then washed 2 times with PBS and 30 ml of complete DMEM added to each flask. The cells are then allowed to incubate over night. The next day the cells are harvested by trypsinization and reseeded as needed depending upon the type of assay to be performed.
A typical protocol for liposomal-mediated transfection as applied to CHO cells is described as follows; Cells to be used for transfection are split 24 hours prior to the transfection to provide flasks which are 70-80% confluent at the time of transfection. A total of 10 Fg of DNA which may include varying ratios of receptor DNA plus any additional DNA needed (e.g. Gα protein expression vector, reporter construct, antibiotic resistance marker, mock vector, etc.) is used to transfect each 75 cm2 flask of cells. Liposomal mediated transfection is carried out according to the manufacturer=s recommendations (LipofectAMINE, GibcoBRL, Bethesda, Md.). Transfected cells are harvested 24 hours post transfection and used or reseeded according the requirements of the assay to be employed.
A typical protocol for the electroporation method as applied to Cos-7 cells is described as follows; Cells to be used for transfection are split 24 hours prior to the transfection to provide flasks which are subconfluent at the time of transfection. The cells are harvested by trypsinization resuspended in their growth media and counted. 4×106 cells are suspended in 300 Fl of DMEM and placed into an electroporation cuvette. 8 Fg of receptor DNA plus 8 Fg of any additional DNA needed (e.g. Gα protein expression vector, reporter construct, antibiotic resistance marker, mock vector, etc.) is added to the cell suspension, the cuvette is placed into a BioRad Gene Pulser and subjected to an electrical pulse (Gene Pulser settings: 0.25 kV voltage, 950 FF capacitance). Following the pulse, 800 Fl of complete DMEM is added to each cuvette and the suspension transferred to a sterile tube. Complete medium is added to each tube to bring the final cell concentration to 1×105 cells/100 Fl. The cells are then plated as needed depending upon the type of assay to be performed.
A typical protocol for viral mediated expression of heterologous proteins is described as follows for baculovirus infection of insect Sf9 cells. The coding region of DNA encoding the receptor disclosed herein may be subcloned into pBlueBacIII into existing restriction sites or sites engineered into sequences 5′ and 3′ to the coding region of the polypeptides. To generate baculovirus, 0.5 Fg of viral DNA (BaculoGold) and 3 Fg of DNA construct encoding a polypeptide may be co-transfected into 2×106 Spodoptera frugiperda insect Sf9 cells by the calcium phosphate co-precipitation method, as outlined in by Pharmingen (in “Baculovirus Expression Vector System: Procedures and Methods Manual”). The cells then are incubated for 5 days at 27° C. The supernatant of the co-transfection plate may be collected by centrifugation and the recombinant virus plaque purified. The procedure to infect cells with virus, to prepare stocks of virus and to titer the virus stocks are as described in Pharmingen=s manual. Similar principals would in general apply to mammalian cell expression via retro-viruses, Simliki forest virus and double stranded DNA viruses such as adeno-, herpes-, and vacinia-viruses, and the like.
Stable Expression
Heterologous DNA can be stably incorporated into host cells, causing the cell to perpetually express a foreign protein. Methods for the delivery of the DNA into the cell are similar to those described above for transient expression but require the co-transfection of an ancillary gene to confer drug resistance on the targeted host cell. The ensuing drug resistance can be exploited to select and maintain cells that have taken up the heterologous DNA. An assortment of resistance genes are available including but not restricted to Neomycin, Kanamycin, and Hygromycin. For the purposes of receptor studies, stable expression of a heterologous receptor protein is carried out in, but not necessarily restricted to, mammalian cells including, CHO, HEK293, LM(tk-), etc.
Cell Membrane Preparation
For binding assays, pellets of transfected cells are suspended in ice-cold buffer (20 mM Tris.HCl, 5 mM EDTA, pH 7.4) and homogenized by sonication for 7 sec. The cell lysates are centrifuged at 200×g for 5 min at 4° C. The supernatants are then centrifuged at 40,000×g for 20 min at 4° C. The resulting pellets are washed once in the homogenization buffer and suspended in binding buffer (see methods for radioligand binding). Protein concentrations are determined by the method of Bradford (1976) using bovine serum albumin as the standard. Binding assays are usually performed immediately, however it is possible to prepare membranes in batch and store frozen in liquid nitrogen for future use.
Radioligand Binding Assays
Radioligand binding assays for the rat MCH1 receptor were carried out using plasmid pcDNA3.1-rMCH1-f (ATCC Patent Deposit Designation No. PTA-3505). Plasmid pcDNA3.1-rMCH1-f comprises the regulatory elements necessary for expression of DNA in a mammalian cell operatively linked to DNA encoding the rat MCH1 receptor so as to permit expression thereof. Plasmid pcDNA3.1-rMCH1-f was deposited on Jul. 5, 2001, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Patent Deposit Designation No. PTA-3505.
Binding assays can also be performed as described hereinafter using plasmid pEXJ.HR-TL231 (ATCC Accession No. 203197) Plasmid pEXJ.HR-TL231 encodes the human MCH1 receptor and was deposited on Sep. 17, 1998, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and was accorded ATCC Accession No. 203197.
Human embryonic kidney Peak rapid 293 cells (Peakr293 cells) were transiently transfected with DNA encoding the MCH1 receptor utilizing the calcium phosphate method and cell membranes were prepared as described above. Binding experiments with membranes from Peakr293 cells transfected with the rat MCH1 receptor were performed with 0.08 nM [3H] Compound A (the synthesis of Compound A is described in detail below) using an incubation buffer consisting of 50 mM Tris pH 7.4, 10 mM MgCl2, 0.16 mM PMSF, 1 mM 1.10 phenantroline and 0.2% BSA. Binding was performed at 25° C. for 90 minutes. Incubations were terminated by rapid vacuum filtration over GF/C glass fiber filters, presoaked in 5% PEI using 50 nM Tris pH 7.4 as wash buffer. In all experiments, nonspecific binding is defined using 10 pM Compound A.
Functional Assays
Cells may be screened for the presence of endogenous mammalian receptor using functional assays. Cells with no or a low level of endogenous receptor present may be transfected with the exogenous receptor for use in functional assays.
A wide spectrum of assays can be employed to screen for receptor activation. These range from traditional measurements of phosphatidyl inositol, cAMP, Ca++, and K+, for example; to systems measuring these same second messengers but which have been modified or adapted to be higher throughput, more generic, and more sensitive; to cell based platforms reporting more general cellular events resulting from receptor activation such as metabolic changes, differentiation, and cell division/proliferation, for example; to high level organism assays which monitor complex physiological or behavioral changes thought to be involved with receptor activation including cardiovascular, analgesic, orexigenic, anxiolytic, and sedation effects, for example.
Radioligand Binding Assay Results
The compounds described above were assayed using cloned rat MCH1. The binding affinities of the compounds are shown in Table I.
Described below is the synthesis of Compound A.
Compound A is the radiolabeled compound that was used in the radioligand binding assays described above.
N-[3-(1,2,3,6-TETRAHYDRO-4-PYRIDINYL)PHENYL]ACETAMIDE: The reaction of saturated of aqueous Na2CO3 solution (25 mL), tert-butyl 4-{[(trifluoromethyl)sulfonyl]oxy}-1,2,3,6-tetrahydro-1-pyridine-carboxylate (20 mmol), 3-acetamidophenylboronic acid (30 mmol) and tetrakis-triphenylphosphine palladium (0) (1.15 g) in dimethoxyethane (40 mL) at reflux temperature overnight gave tert-butyl 4-[3-(acetylamino)phenyl]-3,6-dihydro-1(2H)-pyridinecarboxylate. Deprotection of the BOC group using HCl in dioxane followed by basification (pH 11-12) gave the desired product.
TERT-BUTYL N-(3-BROMOPROPYL)CARBAMATE: was prepared from 3-bromopropylamine hydrobromide and BOC2O in the presence of base in dichloromethane.
N-{3-[1-(3-AMINOPROPYL)-1,2,3,6-TETRAHYDRO-4-PYRIDINYL]PHENYL}ACETAMIDE: The reaction of tert-butyl N-(3-bromopropyl)carbamate and N-[3-(1,2,3,6-tetrahydro-4-pyridinyl)phenyl]acetamide in refluxing dioxane with catalytic Bu4NI and base as described in Scheme A gave tert-butyl 3-(4-[3-(acetylamino)phenyl]-3,6-dihydro-1(2H)-pyridinyl)propylcarbamate. Deprotection of the BOC group using HCl in dioxane followed by basification (pH 11-12) gave the desired product.
METHYL (4S)-3-({[3-(4-[3-(ACETYLAMINO)PHENYL]-3,6-DIHYDRO-1(2H)-PYRIDINYL)PROPYL]AMINO}CARBONYL)-4-(3,4-DIFLUOROPHENYL)-6-(METHOXYMETHYL)-2-OXO-1,2,3,4-TETRAHYDRO-5-PYRIMIDINECARBOXYLATE: Prepared from the reaction of 5-methyl 1-(4-nitrophenyl) (6S)-6-(3,4-difluorophenyl)-4-(methoxymethyl)-2-oxo-3,6-dihydro-1,5(2H)-pyrimidinedicarboxylate (describe in PCT Publication No. WO 00/37026, published Jun. 29, 2000) and N-{3-[1-(3-aminopropyl)-1,2,3,6-tetrahydro-4-pyridinyl]phenyl}acetamide: 1H NMR δ 8.90 (t, 1H, J=3.6 Hz), 7.75 (s, 1H), 7.50-7.00 (m, 8H), 6.68 (s, 1H), 6.03 (br s, 1H), 4.67 (s, 2H), 3.71 (s, 3H), 3.47 (s, 3H), 3.38 (ABm, 2H), 3.16 (m, 2H), 2.71 (t, 2H, J=5.4 Hz), 2.56 (m, 4H), 2.35-1.90 (br, 2H), 2.17 (s, 3 H), 1.82 (p, 2H, J=7.2 Hz); ESMS, 612.25 (M+H)+.
TRITIATED METHYL (4S)-3-{[(3-{4-[3-(ACETYLAMINO)PHENYL]-1-PIPERIDINYL}PROPYL)AMINO]CARBONYL}-4-(3,4-DIFLUOROPHENYL)-6-(METHOXYMETHYL)-2-OXO-1,2,3,4-TETRAHYDRO-5-PYRIMIDINECARBOXYLATE ([3H] COMPOUND A): This radiochemical synthesis was carried out by Amersham Pharmacia Biotech, Cardiff, Wales. A methanolic solution of methyl(4S)-3-({[3-(4-[3-(acetylamino)phenyl]-3,6-dihydro-1(2H)-pyridinyl)propyl]amino}carbonyl)-4-(3,4-difluorophenyl)-6-(methoxymethyl)-2-oxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate was exposed to tritium gas at 1 atmosphere pressure in the presence of 5% palladium on carbon with stirring overnight to give the tritiated methyl(4S)-3-{[(3-{4-[3-(acetylamino)phenyl]-1-piperidinyl}propyl)amino]carbonyl}-4-(3,4-difluorophenyl)-6-(methoxymethyl)-2-oxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate ((+)-isomer) After purification by reverse phase HPLC (Hypersil ODS, 4.6×100 mm, methanol:H2O:Et3N 10:90:1 to 100:0:1 in 15 min at 1.0 mL/min, with radiochemical and UV detection), this product was used as a radioligand in the MCH1 binding assays. The same procedure was carried out with H2 gas in place of 3H2 to afford the non-radioactive version of Compound A.
VI. In-Vivo MethodsThe following in vivo methods were performed to predict the efficacy of MCH1 antagonists for the treatment of obesity (3-day body weight and sweetened condensed milk), depression (forced swim test), anxiety (social interaction test), and urinary disorders (DIRC and CSTI).
Effects of MCH1 Antagonists on Body Weight (3 Day)
Male Long Evans rats (Charles River) weighing 180-200 grams were housed in groups of four on a 12-hour light/dark cycle with free access to food and water. Test compounds were administered twice daily via i.p. injection, 1 hour before the dark cycle and 2 hours after lights on, for three days. All rats were weighed daily after each morning injection. Overall results were expressed as body weight (grams) gained per day (mean±SEM) and were analyzed by two-way ANOVA. Data for each time point were analyzed by one-way ANOVA followed by post hoc Newman-Keuls test. The data were analyzed using the GraphPad Prism (v2.01) (GraphPad Software, Inc., San Diego, Calif.). All data were presented as means±S.E.M.
Effects of MCH1 Antagonists on Consumption of Sweetened Condensed Milk
Male C57BL/6 mice (Charles River) weighing 17-19 grams at the start of experiments were housed in groups of four or five on a 12 hour light/dark cycle with free access to food and water. For 7 days, mice were weighed, placed in individual cages and allowed to drink sweetened condensed milk (Nestle, diluted 1:3 with water) for 1 hour, 2-4 hours into the light cycle. The amount of milk consumed was determined by weighing the milk bottle before and after each drinking bout. On the test day, mice received i.p. injections of Test Compound (3, 10 or 30 mg/kg in 0.01% lactic acid), vehicle (0.01% lactic acid) of d-fenfluramine (10 mg/kg in 0.01% lactic acid) 30 min. prior to exposure to milk. The amount of milk consumed on the test day (in mls milk/kg body weight) was compared to the baseline consumption for each mouse determined on the previous 2 days. Data for each time point were analyzed by one-way ANOVA.
Forced Swim Test (FST) in the Rat
Animals
Male Sprague-Dawley rats (Taconic Farms, N.Y.) were used in all experiments. Rats were housed 5 per cage and maintained on a 12:12-h light-dark cycle. Rats were handled for 1 minutes each day for 4 days prior to behavioral testing.
Drug Administration
Animals were randomly assigned to receive a single i.p. administration of vehicle (2.5% EtOH/2.5% Tween-80), imipramine (positive control; 60 mg/kg), or Test Compound 60 minutes before the start of the 5 minute test period. All injections were given using 1 cc tuberculin syringe with 26 ⅜ gauge needles (Becton-Dickinson, VWR Scientific, Bridgeport, N.J.). The volume of injection was 1 ml/kg.
Experimental Design
The procedure used in this study was similar to that previously described (Porsolt, et al., 1978), except the water depth was 31 cm in this procedure. The greater depth in this test prevents the rats from supporting themselves by touching the bottom of the cylinder with their feet. Swim sessions were conducted by placing rats in individual plexiglass cylinders (46 cm tall×20 cm in diameter) containing 23-25° C. water 31 cm deep. Swim tests were conducted always between 900 and 1700 hours and consisted of an initial 15-min conditioning test followed 24 h later by a 5-minute test. Drug treatments were administered 60 minutes before the 5-minute test period. Following all swim sessions, rats were removed from the cylinders, dried with paper towels and placed in a heated cage for 15 minutes and returned to their home cages. All test sessions were videotaped using a color video camera and recorded for scoring later.
Behavioral Scoring
The rat's behavior was rated at 5-second intervals during the 5-minute test by a single individual, who was blind to the treatment condition. Scored behaviors were:
-
- 1. Immobility—rat remains floating in the water without struggling and was only making those movements necessary to keep its head above water;
- 2. Climbing—rat was making active movements with its forepaws in and out of the water, usually directed against the walls;
- 3. Swimming—rat was making active swimming motions, more than necessary to merely maintain its head above water, e.g. moving around in the cylinder; and
- 4. Diving—entire body of the rat was submerged.
Data Analysis
The forced swim test data (immobility, swimming, climbing, diving) were subjected to a randomized, one-way ANOVA and post hoc tests conducted using the Newman-Keuls test. The data were analyzed using the GraphPad Prism (v2.01) (GraphPad Software, Inc., San Diego, Calif.). All data were presented as means±S.E.M. All data were presented as means±S.E.M.
Forced Swim Test (FST) in the Mouse
Animals
DBA/2 mice (Taconic Farms, N.Y.) were used in all experiments. Animals were housed 5 per cage in a controlled environment under a 12:12 hour light:dark cycle. Animals were handled 1 min each day for 4 days prior to the experiment. This procedure included a mock gavage with a 1.5 inch feeding tube.
Drug Administration
Animals were randomly assigned to receive a single administration of vehicle (5% EtOH/5% Tween-80), Test Compound, or imipramine (60 mg/kg) by oral gavage 1 hour before the swim test.
Experimental Design
The procedure for the forced swim test in the mouse was similar to that described above for the rat, with some modifications. The cylinder used for the test was a 1-liter beaker (10.5 cm diameter×15 cm height) fill to 800 ml (10 cm depth) of 23-25° C. water. Only one 5-minute swim test was conducted for each mouse, between 1300 and 1700 hours. Drug treatments were administered 30-60 minutes before the 5-minute test period. Following all swim sessions, mice were removed from the cylinders, dried with paper towels and placed in a heated cage for 15 minutes. All test sessions were videotaped using a Sony color video camera and recorder for scoring later.
Behavioral Scoring
The behavior during minutes 2-5 of the test was played back on a TV monitor and scored by the investigator. The total time spent immobile (animal floating with only minimal movements to remain afloat) and mobile (swimming and movements beyond those required to remain afloat) were recorded.
Data Analysis
The forced swim test data (time exhibiting immobility, mobility; seconds) were subjected to a randomized, one-way ANOVA and post hoc tests conducted using the Newman-Keuls test. The data were analyzed using the GraphPad Prism (v2.01) (GraphPad Software, Inc., San Diego, Calif.). All data were presented as means±S.E.M.
Social Interaction Test (SIT)
Rats are allowed to acclimate to the animal care facility for 5 days and are housed singly for 5 days prior to testing. Animals are handled for 5 minutes per day. The design and procedure for the Social Interaction Test is carried out as previously described by Kennett, et al. (1997). On the test day, weight matched pairs of rats (±5%), unfamiliar to each other, are given identical treatments and returned to their-home cages. Animals are randomly divided into 5 treatment groups, with 5 pairs per group, and are given one of the following i.p. treatments: Test Compound (10, 30 or 100 mg/kg), vehicle (1 ml/kg) or chlordiazepoxide (5 mg/kg). Dosing is 1 hour prior to testing. Rats are subsequently placed in a white perspex test box or arena (54×37×26 cm), whose floor is divided up into 24 equal squares, for 15 minutes. An air conditioner is used to generate background noise and to keep the room at approximately 74° F. All sessions are videotaped using a JVC camcorder (model GR-SZ1, Elmwood Park, N.J.) with either TDK (HG ultimate brand) or Sony 30 minute videocassettes. All sessions are conducted between 1300-1630 hours. Active social interaction, defined as grooming, sniffing, biting, boxing, wrestling, following and crawling over or under, is scored using a stopwatch (Sportsline model no. 226, 1/100 sec. discriminability). The number of episodes of rearing (animal completely raises up its body on its hind limbs), grooming (licking, biting, scratching of body), and face washing (i.e. hands are moved repeatedly over face), and number of squares crossed are scored. Passive social interaction (animals are lying beside or on top of each other) is not scored. All behaviors are assessed later by an observer who is blind as to the treatment of each pair. At the end of each test, the box is thoroughly wiped with moistened paper towels.
Animals
Male albino Sprague-Dawley rats (Taconic Farms, N.Y.) are housed in pairs under a 12 hr light dark cycle (lights on at 0700 hrs.) with free access to food and water.
Drug Administration
Test Compound is dissolved in either 100% DMSO or 5% lactic acid, v/v (Sigma Chemical Co., St. Louis, Mo.). Chlordiazepoxide (Sigma Chemical Co., St. Louis, Mo.) is dissolved in double distilled water. The vehicle consists of 50% DMSO (v/v) or 100% dimethylacetamide (DMA). All drug solutions are made up 10 minutes prior to injection and the solutions are discarded at the end of the test day. The volume of drug solution administered is 1 ml/kg.
Data Analysis
The social interaction data (time interacting, rearing and squares crossed) are subjected to a randomized, one-way ANOVA and post hoc tests conducted using the Student-Newman-Keuls test. The data are subjected to a test of normality (Shapiro-Wilk test). The data are analyzed using the GBSTAT program, version 6.5 (Dynamics Microsystemsr Inc., Silver Spring, Md., 1997).
In Vivo Models of the Micturition Reflex
The effects of compounds on the micturition reflex were assessed in the “distension-induced rhythmic contraction” (DIRC), as described in previous publications (e.g. Maggi et al, 1987; Morikawa et al, 1992), and Continuous Slow Transvesicular Infusion (CSTI) models in rats.
DIRC Model
Female Sprague Dawley rats weighing approximately 300 g were anesthetized with subcutaneous urethane (1.2 g/kg). The trachea was cannulated with PE240 tubing to provide a clear airway throughout the experiment. A midline abdominal incision was made and the left and right ureters were isolated. The ureters were ligated distally (to prevent escape of fluids from the bladder) and cannulated proximally with PE10 tubing. The incision was closed using 4-0 silk sutures, leaving the PE10 lines routed to the exterior for the elimination of urine. The bladder was canulated via the transurethral route using PE50 tubing inserted 2.5 cm beyond the urethral opening. This cannula was secured to the tail using tape and connected to a pressure transducer. To prevent leakage from the bladder, the cannula was tied tightly to the exterior urethral opening using 4-0 silk.
To initiate the micturition reflex, the bladder was first emptied by applying pressure to the lower abdomen, and then filled with normal saline in 100 increments (maximum=2 ml) until spontaneous bladder contractions occurred (typically 20-40 mmHg at a rate of one contraction every 2 to 3 minutes. Once a regular rhythm was established, vehicle (saline) or Test Compounds were administered i.v. or i.p. to explore their effects on bladder activity. The 5-HT1A antagonist WAY-100635 was given as a positive control. Data were expressed as contraction interval (in seconds) before drug application (basal), or after the application of vehicle or test article.
Continuous Slow Transvesicular Infusion (CSTI) Rat Model
Male Sprague Dawley rats weighing approximately 300 g were used for the study. Rats were anaesthetized with pentobarbitone sodium (50 mg/kg, i.p). Through a median abdominal incision, bladder was exposed and a polyethylene cannula (PE 50) was introduced into the bladder through a small cut on the dome of the bladder and the cannula was secured with a purse string suture. The other end of the cannula was exteriorized subcutaneously at the dorsal neck area. Similarly, another cannula (PE 50) was introduced into the stomach through a paramedian abdominal incision with the free end exteriorized subcutaneously to the neck region. The surgical wounds were closed with silk 4-0 suture and the animal was allowed to recover with appropriate post surgical care. On the following day, the animal was placed in a rat restrainer. The open end of the bladder-cannula was connected to a pressure transducer as well as infusion pump through a three-way stopcock. The bladder voiding cycles were initiated by continuous infusion of normal saline at the rate of 100 μl/min. The repetitive voiding contractions were recorded on a Power Lab on-line data acquisition software. After recording the basal voiding pattern for an hour, the test drug or vehicle was administered directly into stomach through the intragastric catheter and the voiding cycles were monitored for 5 hours. Micturition pressure and frequency were calculated before and after the treatment (at every 30 min interval) for each animal. Bladder capacity was calculated from the micturition frequency, based on the constant infusion of 100 ul/min. The effect of the test drug was expressed as a percentage of basal, pre-drug bladder capacity. WAY 100635 was used as positive control for comparison.
In Vivo Results
A = Produced a significant reduction in weight gain relative to vehicle-treated controls
B = Produced a significant decrease in consumption of milk relative to vehicle-treated controls
C = Produced a significant decrease in immobility relative to vehicle-treated animals when administered orally.
D = Produced a significant decrease in immobility or a significant increase in swimming activity relative to vehicle-treated animals
E = Produced a significant increase in contraction interval relative to pre-drug interval
F = Produced an increase in bladder capacity in rats relative to baseline capacity.
- American Psychiatric Association (1994a), Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, D.C.: American Psychiatric Association.
- American Psychiatric Association (1994b), American DSM-IV Sourcebook. Washington, D.C.: American Psychiatric Association.
- Auburger, G., et al., (1992) Assignment of the second (cuban) locus of autosomal dominant cerebellar ataxia to chromosome 12q23-24.1, between flanking markers D12S58 and PLA2. Cytogenet. Cell. Genet. 61:252-256.
- Bahjaoui-Bouhaddi, M., et al., (1994) Insulin treatment stimulates the rat melanin-concentrating hormone-producing neurons. Neuropeptides 24:251-258.
- Baker, B. I. (1991) Melanin-concentrating hormone: a general vertebrate neuropeptide. Int. Rev. Cytol. 126:1-47.
- Baker, B. I. (1994) Melanin-concentrating hormone update: functional consideration. TEM 5:120-126.
- Bassett, A. S., et al., (1988) Partial trisomy chromosome 5 cosegregating with schizophrenia. Lancet 1:799-801.
Bednarek, M. A., et al. “Synthesis and biological evaluation in vitro of a selective, high potency peptide agonist of human melanin-concentrating hormone action at human melanin-concentrating hormone receptor 1” J Biol Chem 277(16): 13821-13826 (2002).
- Bittencourt, J. C., et al., (1992) The melanin-concentrating hormone system of the rat brain: An immuno- and hybridization histochemical characterization J. Comp. Neurol. 319:218-245.
- Bobes, J. (1998) J Clin Psychiatry; 59[suppl 17]:12-16.
- Borowsky, B., et al., Nature Medicine (in press).
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle or protein-dye binding. Anal. Biochem. 72: 248-254.
- Burgaud, J. L., et al., (1997) Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem. Biophys. Res. Commun. 241(3):622-629.
- Chambers, J., et al., “Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1” Nature 400(6741): 261-6 (1999).
- Chen, Y., et al, “Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity” Endocrinology 143(7): 2469-2477(2002).
- Craddock, N., et al., (1993) The gene for Darier's disease maps to chromosome 12q23-q24.1. Hum. Mol. Genet. 2:1941-1943.
- Dondoni, A., et al., (1995) T. Synthesis, 181.
- Drozdz, R. and Eberle, A. N. (1995) Binding sites for melanin-concentrating hormone (MCH) in brain synaptosomes and membranes from peripheral tissues identified with highly tritiated MCH. J. Recept. Signal. Transduct. Res. 15(1-4):487-502.
- Drozdz, R., et al., (199%) Melanin-concentrating hormone binding to mouse melanoma cells in vitro. FEBS 359:199-202.
- Drozdz, R., et al., (1998) Characterization of the receptor for melanin-concentrating hormone on melanoma cells by photocrosslinking. Ann. NY Acad. Sci. 839(1):210-213.
- Gale Group (2001) Gale Encyclopedia of Psychology, 2nd ed. Gale Group.
- Gilliam, T. C., et al., (1989) Deletion mapping of DNA markers to a region of chromosome 5 that cosegregates with schizophrenia. Genomics 5:940-944.
- Goodman W K, Price L H, Rasmussen S A et al. (1989), The Yale-Brown Obsessive Compulsive Scale. Arch Gen Psychiatry 46:1006-1011.
- Gonzalez, M. I., et al., (1997) Stimulatory effect of melanin-concentrating hormone on luteinizing hormone release. Neuroendocrinology 66(4):254-262.
- Gonzalez, M. I., et al., (1996) Behavioral effects of α-melanocyte-stimulating hormone (α-MSH) and melanin-concentrating hormone (MCH) after central administration in female rats. Peptides 17:171-177.
- Grillon, S., et al., (1997) Exploring the expression of the melanin-concentrating hormone messenger RNA in the rat lateral hypothalamus after goldthioglucose injection. Neuropeptides 31(2):131-136.
- Herve, C. and Fellmann, D. (1997) Changes in rat melanin-concentrating hormone and dynorphin messenger ribonucleic acids induced by food deprivation. Neuropeptides 31(3):237-242.
- Hervieu, G., et al., (1996) Development and stage-dependent expression of melanin-concentrating hormone in mammalian germ cells. Biology of Reproduction 54:1161-1172.
- Kauwachi, H., et al., (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321-333.
- Knigge, K. M., et al., (1996) Melanotropic peptides in the mammalian brain: The melanin-concentrating hormone. Peptides 17:1063-1073.
- Knigge, K. M. and Wagner, J. E. (1997) Melanin-concentrating hormone (MCH) involvement in pentylenetetrazole (PTZ)-induced seizure in rat and guinea pig. Peptides 18(7):1095-1097.
- Lakaye, B., et al., “Cloning of the rat brain cDNA encoding for the SLC-1 G protein-coupled receptor reveals the presence of an intron in the gene” Biochem Biophys Acta 1401(2): 216-220 (1998).
- Ludwig, D. S., et al., (1998) Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am. J. Physiol. Endocrinol. Metab. 274(4):E627-E633.
- MacKenzie, F. J., et al., (1984) Evidence that the dopaminergic incerto-hypothalamic tract has a stimulatory effect on ovulation and gonadotropin release. Neuroendocrinology 39:289-295.
- Maggi, C. A., et al., “Spinal and supraspinal components of GABAergic inhibition of the micturition reflex in rats.” J Pharmacol Exp Ther 240: 998-1005 (1987).
- Marsh, D. J., et al, “Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism” Proc Natl Acad Sci USA 99(5): 3240-3245 (2002).
- Martin, R., et al., (1997) J. Tetrahedron Letters, 38, 1633.
- McBride, R. B., et al., (1994) The actions of melanin-concentrating hormone (MCH) on passive avoidance in rats: A preliminary study. Peptides 15:757-759.
- Medical Economics Company (2002), Physicians' Desk Reference, 56th ed., Montvale, N.J.: Medical Economics Company, Inc., pp. 1609-1615, 2751-2756, 3495-3504.
- Melki, J., et al., (1990) Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature (London) 344:767-768.
- Miller, C. L., et al., (1993) α-MSH and MCH are functional antagonists in a CNS auditory paradigm. Peptides 14:1-10.
- Morikawa, K., et al., “Inhibitory effect of inaperisone hydrochloride (inaperisone), a new centrally acting muscle relaxant, on the micturition reflex.” Eur J Pharmacol 213: 409-415 (1992).
- Nahon, J-L. (1994) The melanin-concentrating hormone: from the peptide to the gene. Critical Rev. in Neurobiol 221:221-262.
- Parkes, D. G. (1996) Diuretic and natriuretic actions of melanin concentrating hormone in conscious sheep. J. Neuroendocrinol. 8:57-63.
- Pedeutour, F., et al., (1994) Assignment of the human pro-melanin-concentrating hormone gene (PMCH) to chromosome 12q23-24 and two variant genes (PMCHL1 and PMCHL2) to chromosome 5 p14 and 5q12-q13. Genomics 19:31-37.
- Porsolt, R. D., et al., “Behavioural despair in rats: a new model sensitive to antidepressant treatments” Eur J Pharmacol 47(4): 379-391 (1978).
- Presse, F., et al. (1992) Rat melanin-concentrating hormone messenger ribonucleic acid expression: marked changes during development and after stress and glucocorticoid stimuli. Endocrinology 131:1241-1250.
- Qu, D., et al. (199.6) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243-247.
- Rossi, M., et al., (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 138:351-355.
- Sahu, A. (1998) Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139(2):795-798.
- Sakurai, T., et al., (1998) Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573-585.
- Sanchez, M., et al., (1997) Melanin-concentrating hormone (MCH) antagonizes the effects of α-MSH and neuropeptide E-I on grooming and locomotor activities in the rat. Peptides 18:393-396.
- Saito, Y., et al., “Molecular characterization of the melanin-concentrating-hormone receptor” Nature 400(6741): 265-269 (1999).
- Schneier F R, Heckelman L R, Garfinkel R, et al. (1994) J Clin Psychiatry 55:322-331.
- Sherrington, R., et al., (1988) Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature (London) 336:164-167.
- Srebnik, M., et al., (1988) J. Org. Chem., 53, 2916-2920.
- Takekawa, S., et al., “T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist” Eur J Pharmacol 438(3): 129-35 (2002)
- Twells, R., et al., (1992) Chromosomal assignment of the locus causing olivo-ponto-cerebellar atrophy (SCA2) in a cuban founder population. Cytogenet. Cell. Genet. 61:262-265.
Westbrook, C. A., et al., (1992) Report of the second international workshop on human chromosome 5 mapping. Cytogenet. Cell. Genet. 61:225-231.
Claims
1-9. (canceled)
10. A compound having the structure:
- wherein R1 is aryl or heteroaryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —OCH3, phenoxy, fused cyclopentanyl, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
- wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
- wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
- wherein n is an integer from 1 to 5 inclusive.
11. The compound of claim 10, wherein R1 is aryl optionally substituted with one or more —F, —Cl, —Br, —I or straight chained or branched C1-C4 alkyl; and
- wherein A is H.
12. The compound of claim 11, wherein R2 is isopropyl; and wherein n is 2.
13. The compound of claim 12, wherein the compound has the structure:
14. The compound of claim 12, wherein the compound has the structure:
15. The compound of claim 12, wherein the compound has the structure:
16. The compound of claim 10, wherein R1 is thienyl; and wherein A is H.
17-33. (canceled)
34. A compound having the structure:
- wherein R1 is hydrogen, straight chained or branched C1-C7 alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3, straight chained or branched C1-C3 alkyl;
- wherein R2 is straight-chained or branched C3-C4 alkyl or cyclopropyl;
- wherein R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —CF3, —OCH3, or straight chained or branched C1-C3 alkyl, monofluoroalkyl or polyfluoroalkyl, or a phenyl ring fused to C6 and C7 of the indole moiety;
- wherein R4 is hydrogen or aryl optionally substituted with one or more —F, —Cl, —Br, —I, —CN, —NO2, —CF3, straight chained or branched C1-C3 alkyl;
- wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; and
- wherein n is an integer from 2 to 4 inclusive.
35. The compound of claim 34, wherein R3 is —H, —F, —Cl, —Br, —I, —CN, —NO2, —OCF3 or —OCH3; and
- wherein R4 is hydrogen or phenyl optionally substituted with one or more —F, —Cl or —CF3.
36. The compound of claim 35, wherein R1 is hydrogen or phenyl optionally substituted with one or more —F, —Cl, —Br, —CN, —NO2, —CF3, —OCH3 or straight chained or branched C1-C3 alkyl.
37. The compound of claim 36, wherein R2 is isopropyl.
38. The compound of claim 37, wherein the compound has the structure:
39. The compound of claim 37, wherein the compound has the structure:
40. The compound of claim 37, wherein the compound has the structure:
41. A compound having the structure:
- wherein each R1 is independently hydrogen or CH3;
- wherein R2 is straight-chained or branched C1-C4 alkyl or cyclopropyl;
- wherein R3 is benzyl or phenyl, wherein the benzyl or phenyl is optionally substituted with a methylenenedioxy group or one or more —F or —Cl;
- wherein A is —H, —F, —Cl, —Br, —CN, —NO2, straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl;
- wherein X is (CH2)2, COCH2 or CONH.
42. The compound of claim 41, wherein R3 is phenyl optionally substituted with one or more —F; and
- wherein A is hydrogen.
43. The compound of claim 42, wherein X is CONH.
44. The compound of claim 43, wherein R2 is methyl.
45. The compound of claim 44, wherein the compound has the structure:
46. The compound of claim 44, wherein the compound has the structure:
- wherein each Y is independently hydrogen or —F.
47-79. (canceled)
Type: Application
Filed: Aug 30, 2005
Publication Date: Feb 22, 2007
Inventors: Mohammad Marzabadi (Ridgewood, NJ), John Wetzel (Fair Lawn, NJ), John DeLeon (North Bergen, NJ), Yu Jiang (Jersey City, NJ), Chien-An Chen (Flushing, NY), Kai Lu (Lake Hiawatha, NJ)
Application Number: 11/214,968
International Classification: A61K 31/445 (20060101); C07D 211/26 (20060101);