System and method for determining reticle defect printability
A method and software program for determining printability of a defect on a reticle or photomask onto a substrate during processing. That is performed by creating a pixel grid image having a plurality of individual pixel images showing the defect. A gray scale value is assigned to each pixel image of the pixel grid image and a probable center pixel of the defect is selected. Then the polarity of the defect is determined, with a coarse center pixel of the defect optionally selected using the probable center defect and polarity of the defect. If a coarse center pixel is selected, then a fine center of the defect can optionally be selected from the coarse center pixel and polarity of the defect. From the center pixel the physical extent of the defect can be determined followed by the determination the transmissivity energy level of the physical extent of the defect. Optionally, the proximity of the defect to a pattern edge on the reticle or photomask can be determined using the physical extent and polarity of the defect. Then the printability of the defect can be determined from the transmissivity energy level of the defect and characteristics of the wafer fabrication process being used to produce the substrate from the reticle or photomask.
Latest Patents:
This application is a continuation of the application having Ser. No. 11/067,179 filed on Feb. 25, 2005, which is a continuation of the application having Ser. No. 10/712,576 filed on Nov. 13, 2003, which is a continuation of the application having Ser. No. 10/342,414 filed on Jan. 13, 2003, which is a continuation of the application having Ser. No. 10/074,857 filed on Feb. 11, 2002, which is a divisional of the application having Ser. No. 09/559,512 filed on Apr. 27, 2000 that is now U.S. Pat. No. 6,381,358, which is a divisional of Ser. No. 08/933,971 filed on Sep. 19, 1997 that is now U.S. Pat. No. 6,076,465 which claims priority from provisional application having Ser. No. 60/026,426 filed on Sep. 20, 1996.
FIELD OF THE INVENTIONThe present invention relates generally to electro-optical inspection systems, and more particularly to an automated reticle inspection system and method for determining which defects in a reticle will print on the substrate and effect the performance of a completed semiconductor device.
BACKGROUND OF THE INVENTIONPresent reticle and photomask inspection systems currently identify defects on reticles and photomasks merely as defective pixels. No effort is made to determine printability and the ultimate impact of identified defects on a finalized semiconductor device. That approach has been satisfactory in the past given the trace widths and number of components to be implemented on a single substrate and in a single chip.
However new technology has continued to push the line and component density on a single semiconductor substrate, and in a single chip, to greater and greater levels with ever narrower line widths being required. That being true, and given the previous criteria as to what defects are a potential problem, smaller and smaller anomalies in reticles and photomasks are being considered a defect. Given the current technology, anomalies of well below one micron in size (down to 200 nanometers in some cases) are being considered defects. Therefore, inspection machines have been refined to detect these ever smaller anomalies on reticles and photomasks.
Currently, in the semiconductor industry, complex reticles and photomasks that can cost tens of thousands of dollars to produce are being scraped since it is believed that even the smallest defect in one reticle or photomask used in the production of a substrate may have a detrimental effect on the performance of the final semiconductor component.
What is needed is a method and system that not only identifies the ever smaller anomalies on a reticle or photomask as a defect, but which goes further and considers other characteristics, the location of the defect, and the line patterns on the reticle or photomask, to determine whether or not each individually identified defective pixel will print onto the semiconductor substrate. If this is accomplished, many reticles and photomasks that are currently being scraped could instead be used with no detrimental effect on the operation of the final semiconductor component, thus reducing the cost of production of semiconductor devices. It is believed that the present invention provides that capacity.
SUMMARY OF THE INVENTIONThe present invention includes a method and software program for determining printability of a defect on a reticle or photomask onto a substrate during processing. That is performed by creating a pixel grid image having a plurality of individual pixel images showing the defect. A gray scale value is assigned to each pixel image of the pixel grid image and a probable center pixel of the defect is selected. Then the polarity of the defect is determined, with a coarse center pixel of the defect optionally selected using the probable center defect and polarity of the defect. If a coarse center pixel is selected, then a fine center of the defect can optionally be selected from the coarse center pixel and polarity of the defect. From the center pixel the physical extent of the defect can be determined followed by the determination the transmissivity energy level of the physical extent of the defect. Optionally, the proximity of the defect to a pattern edge on the reticle or photomask can be determined using the physical extent and polarity of the defect. Then the printability of the defect can be determined from the transmissivity energy level of the defect and characteristics of the wafer fabrication process being used to produce the substrate from the reticle or photomask.
DESCRIPTION OF THE FIGURES
There are numerous inspection machines available that have the capability of identifying defects on a reticle or photomask. An example of such a machine that performs the inspection automatically by either die-to-die or die-to-database inspection is described in detail in European Patent Specification EP 0532927B1 published Feb. 21, 1996, entitled “Automated photomask inspection apparatus”, and which is incorporated herein by reference. In performing that inspection, the above identified inspection machine, and other similar machines, scans the reticle or photomask and pixelizes the image, saving the pixel location information for each of the scanned regions where there is not agreement between the dies (in die-to-die) or between the die and the data base (in die-to-data base). A typical pixel size used by such inspection machines is a 0.25 μm square. What is not determined by the currently available defect detection machines is the transmittible energy level of light through the groups of pixels that constitute each defect; more specifically the transmittible energy level of the radiation frequency used by the steeper to expose a semiconductor wafer to the pattern on the reticle or photomask prior to each chemical processing step of the wafer in the production of the finished semiconductor component.
It has been discovered that there are numerous factors that contribute to whether or not a defect on a reticle or photomask will print on a substrate. The size of such a defect is only one of those factors. It has also been determined that the energy level that will pass through such a defect is equally important to being able to make a determination as to whether or not such a defect will print onto a substrate that is exposed to such a reticle or photomask. There are still other factors that contribute to whether or not such a defect will print onto a substrate.
The primary factor as to the printing of a defect in a reticle on a substrate is the transmittible energy level through that defect. It is clear that if the defect in question is a type that is not transmissive, there can be no trace of that defect on the substrate exposed by the reticle in which the defect is contained, regardless of the size of that defect.
There are numerous other factors that influence whether or not a defect prints onto a substrate. Those include, among other factors, the type of resist used on the substrate, line width size, stepper type, numerical aperture of the stepper, focus of the stepper, radiation frequency of the stepper, exposure time of the stepper, etc.
Referring to
More specifically, the simplified block diagram of
With a gray scale value assigned to each pixel in the defect area, the probable center of the defect is selected (16) and the coordinates of the pixel at that location are noted. Next the polarity (white or black) of the defect is determined (18) by comparing the gray scale value of the pixel at the selected probable center of the defect to the gray scale value of at least one reference pixel a number of pixels spaced apart from the probable center pixel (e.g., 10 pixels to the right). If the gray scale value of the selected probable center pixel is less than the gray scale value of the reference pixel, the defect is considered to be black, or have negative energy. If the gray scale value of the selected probable center pixel is greater than the gray scale value of the reference pixel, the defect is considered to be white, or have positive energy.
Alternatively, reference pixels 2, 5, 7 and 10 pixel positions away from the probable center pixel could each be checked and if gray scale value successively from reference pixel to reference pixel continues to drop then the defect is considered to be white, or have positive energy. Whereas, if the gray scale values successively from reference pixel to reference pixel continues to rise then the defect is considered to be black, or have negative energy. However, if the gray scale value of the reference pixels at first moves in one direction and then changes direction the further that reference pixel is from the probable center pixel, the probable center pixel is near a line edge and the reference pixel progression will have to be performed in another direction without encountering a line edge.
This procedure to identify the defect as either black or white could be refined further by considering a second reference pixel either further away from the selected probable center pixel, or in another direction than the first reference pixel, if the gray scale differences between the first considered reference pixel and the selected probable center pixel are closer together than a preselected difference. Still other distances and directions could be tried until a more definitive difference value is observed to better determine the polarity of the defect.
Referring again to
Returning again to
where x, is the gray scale value of pixel 1;
x2 is the gray scale value of pixel 2; and
x3 is the gray scale value of pixel 3.
Using the sample gray scale values of
thus the fine center pixel location is 0.0697 of a pixel width closer to pixel 3 from pixel 2, or 6.97% of a pixel width from the center of pixel 2 in the direction of pixel 3.
Again returning to
Back to
One way to approximate the background energy of the defect is to sum together the gray scale values for all of the pixels in an immediately adjacent region to the pixel grid image (see 12 above) that is the same size and shape as the determined extent of the defect. For best results, this immediately adjacent region should be defect free, and of the same polarity as the defect. The summed energy from that adjacent region is then considered to be approximately what would have been the background energy level of the defect region and is therefore subtracted from the summed energy level of the defect region to get a more accurate measure of the transmittable energy level of the defect region.
To obtain a more accurate approximation of the background energy of the defect region, multiple adjacent regions of the same size and shape can be used with the energy levels of those regions averaged together. Then that averaged energy value would be subtracted from the energy value of the defect region. Through the use of the average level, the effects of some anomalies or system noise in the regions being used to determine the background energy level would be reduced.
Referring to
As stated above, (see
It should be noted that the above discussion has been for a single defect, and it should further be understood that for multiple defects that may be found in a reticle the above described procedure would be repeated for each such defect that was not otherwise incorporated into the defect extent of an earlier processed defect.
It should further be noted that the above discussion has included a group of procedures, with some of those procedures being optimization procedures, and that if some of those procedures are not performed, improvement over the prior art will still be achieved. For example, those procedures corresponding to blocks 20, 22, 28 and 32 are secondary procedures that can be omitted with a useful result still being achieved.
While the present invention has been described having several optional steps, it is contemplated that persons skilled in the art, upon reading the preceding descriptions and studying the drawings, will realize various alternative approaches to the implementation of the present invention, including several other optional steps, or consolidations of steps. It is therefore intended that the following appended claims be interpreted as including all such alterations and modifications that fall within the true spirit and scope of the present invention.
Claims
1. A computer program stored on a computer-readable medium for determining the printability of a defect on a reticle or photomask onto a substrate during processing of said substrate, said printability being determined from a defect review menu of said reticle or photomask prepared by an inspection machine and weighting factors related to a fabrication procedure used to produce said substrate, said computer program comprising:
- a. instructions for creating a pixel grid image of a portion of said reticle or photomask containing said defect identified in said defect review menu, said pixel grid image having a plurality of associated individual pixel images of said reticle or photomask;
- b. instructions for assigning a gray scale value to each of said associated individual pixel images of said pixel grid image;
- c. instructions for selecting a probable center pixel of said defect in said pixel grid image;
- d. instructions for determining a polarity of said defect;
- e. instructions for determining a region of physical extent of said defect; and
- f. instructions for determining a transmissivity energy level of said region of physical extent of said defect.
2.-25. (canceled)
Type: Application
Filed: Nov 22, 2006
Publication Date: Jun 21, 2007
Applicant:
Inventors: Anthony Vacca (Cedar Park, TX), Thomas Vavul (San Francisco, CA), Donald Parker (San Jose, CA), Zain Saidin (Sunnyvale, CA), Sterling Watson (Palo Alto, CA), James Wiley (Menlo Park, CA)
Application Number: 11/603,536
International Classification: G06K 9/00 (20060101);