STRUCTURE AND METHOD OF THREE DIMENSIONAL HYBRID ORIENTATION TECHNOLOGY

- IBM

A method and device for increasing pFET performance without degradation of nFET performance. The method includes forming a first structure on a substrate using a first plane and direction and forming a second structure on the substrate using a second plane and direction. In use, the device includes a nFET stack on a substrate using a first plane and direction, e.g., (100)<110> and a pFET stack on the substrate using a second plane and direction, e.g., (111)/<112>. An isolation region within the substrate is provided between the nFET stack and the pFET stack.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 10/907,622, filed Apr. 8, 2005, the disclosure of which is expressly incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to semiconductor devices, and more particularly to semiconductor devices having increased pFET performance without degradation of the nFET performance and a method of manufacture.

2. Background Description

Field effect transistors (FET's) are a fundamental building block in the field of integrated circuits. FET's can be classified into two basic structural types: horizontal and vertical. Horizontal, or lateral, FET's exhibit carrier flow from source to drain in a direction parallel (e.g., horizontal) to the plane of the substrate and vertical FET's exhibit carrier flow from source to drain in a direction transverse to the plane of the substrate (e.g., vertical) on which they are formed. FET structures may include a single gate (e.g., for forming a single channel) or a pair of gates (e.g., for forming a pair of channels), with double-gate versions providing an advantage of an increased current carrying capacity (e.g. typically greater than twofold over the single-gate versions).

A FET typically consists of source and drain electrodes interconnected by semiconductor material. Conduction between the drain and source electrodes occurs basically within the semiconductor, and the length between the source and drain is the conduction channel. In particular, the output current is inversely proportional to the channel length, while the operating frequency is inversely proportional to the square of the channel length.

The basic metal-oxide-semiconductor field-effect transistor (MOSFET) structure has a so-called “flat design”. A nFET structure is a four-terminal device and consists of a p-type semiconductor substrate, into which two n-regions, a source electrode and drain electrode are formed (e.g., by ion implantation). The metal contact on the insulator is a gate. Heavily doped polysilicon or a combination of silicide and polysilicon can also be used as the gate electrode.

The basic device parameters are the channel length L, which is the distance between the two metallurgical n-p junctions, the channel width W, the gate oxide thickness t, the junction depth, and the substrate doping. When voltage is applied to the gate, the source-to-drain electrodes correspond to two p-n junctions connected back to back. The only current that can flow from source to drain is the reverse leakage current. When a sufficiently positive bias is applied to the gate so that a surface inversion layer (or channel) is formed between the two n-regions, the source and the drain are connected by the conducting surface of the n-channel through which a current can flow.

It is known, though, that the nFETs are optimized in the horizontal plane of the substrate. That is, the electron mobility across the channel is optimized when the nFET is fabricated on the 100 plane and the 110 direction. This is a typical flat structure fabrication. The pFET device, on the other hand, has significantly decreased performance characteristics when it is fabricated on the 100 plane and the 110 direction; namely, the hole mobility is significantly decreased, thereby degrading the performance of the entire device. However, it is typical in semiconductor fabrication to build both the nFET and pFET structures in the 100 plane and the 110 direction, using well-known processes.

SUMMARY OF THE INVENTION

In a first aspect of the invention, a method of fabricating a semiconductor structure comprising forming a first structure on a substrate using a first plane and direction and forming a second structure on the substrate using a second plane and direction.

In another aspect of the invention, a method of manufacturing a semiconductor device comprising building a nFET stack on a substrate using a first plane and direction and building a pFET stack on the substrate using a second plane and direction, different from the first plane and first direction. The method further includes providing an isolation region within the substrate between the nFET stack and the pFET stack.

In another aspect of the invention, a semiconductor structure includes a nFET stack on a substrate using a first plane and direction and a pFET stack on the substrate using a second plane and direction, different from the first plane and first direction. An isolation region within the substrate is provided between the nFET stack and the pFET

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1-15 illustrates steps in manufacturing a device in accordance with the invention; and

FIG. 16 illustrates a final structure and manufacturing in accordance with the invention.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The invention is directed to semiconductor structures and more particularly to semiconductor structures and methods of manufacture using three dimensional hybrid orientation technologies. In one aspect of the invention, the performance of a pFET is improved or optimized by increasing carrier mobility for the pFET without any degradation in the performance of the nFET. To accomplish the invention, the nFET is formed in a first plane/direction and the pFET is formed in a second plane/direction using similar processing steps. For example, in one non-limiting aspect of the invention, the nFET will be formed in the (100)/<110> plane/direction and the pFET will be formed in the (111)/<112> plane/direction. In this manner, the channel length of the pFET may be longer than the channel length of nFET using the same processes. The invention is compatible with CMOS technologies such as, for example, SOI, strained Si, dual spacer and the like.

FIG. 1 shows a beginning structure in accordance with the invention. In this structure, a shallow trench isolation structure (STI) 12 is formed in a substrate 10 having a (100) plane. In one exemplary illustration, the depth of the STI 12 is between 2000 Å-5000 Å, depending on the required device performance. The depth of the STI 12 may be shallower in SOI process technologies. In the embodiment described herein, a nFET will be formed on one side of the STI 12 and a pFET will be formed on an opposing side of the STI 12.

By an exemplary illustration, the STI 12 may be formed by depositing a pad oxide and pad nitride over the substrate 10. A photo mask or a hard mask is formed over the pad nitride and an etching process etches to the substrate through the formed layers. An additional etching process etches into the substrate to form the trench. An oxide, for example, is deposited in the trench to fill the trench. The surface is planarized using a chemical mechanical polishing (CMP) process. The pad nitride may then be removed, resulting in the structure of FIG. 1.

FIG. 2 represents a well implantation process. In one implementation, the p-well is doped using boron, which later forms part of the nFET. The n-well may be doped with phosphorous, which later forms part of the pFET. The doping is performed using well-known processes in the industry.

In FIG. 3, an oxide material 14 is formed over the substrate 10 using well-known processes such as, for example, thermal oxidation or chemical vapor deposition. In one aspect of the invention, the oxide layer 14 is approximately 10 Å to 100 Å in thickness; although other thickness or dimensions are contemplated by the invention. A block material 16 such as nitride is deposited over the oxide layer 14 using a CVD process, for example. The block material 16 may be in the range of 200 Å to 2000 Å, although other thickness and dimensions are also contemplated for use with the invention. A photoresist 18 is deposited over the block material 16. After patterning, only pFET region is opened for subsequent anisotropic etching.

FIG. 4 is representative of a selective anisotropic etch of the block material 16. In this process, the etching is selective to the nitride block layer 16, and the oxide layer 14 acts as a etch stop layer. In this process, an etched area 20 is formed in the block material 16.

The photoresist layer 18 is then stripped using a dry stripping process, for example (FIG. 5). In FIG. 6, a spacer nitride deposition and etching process is performed. In this process, spacers 22 are formed in the etched area 20 to reduce the spacing and smooth the active area of the to be formed pFET. Forming spacer nitride may be skipped if the etched area 20 is controllable by litho process in FIG. 3.

Referring to FIG. 7, the oxide layer 14 is then removed in the etched area 20 using, for example, a wet etch process. This wet etch process may utilize, for example, diluted HF. A preferential etching process is then performed in the substrate using for example a KOH, or ammonia. This etching step is an anisotropic etching which, in non-limiting embodiments, etches to a depth of 200 Å to 900 Å, although other etching depths and dimensions are contemplated by the invention depending on the device requirements. In one aspect of the invention, the etched area, which forms a trench 24, will have a smooth transition with the STI 12; however, it is contemplated by the invention that a stepped portion can be present between the STI 12 and the etched trench 24.

FIG. 8 represents one embodiment of the etch geometry as discussed with reference to FIG. 7. In this non-limiting embodiment, an anisotropic wet etch is used to etch in the substrate 100, forming a sidewall 24a having an angle of approximately 57.5° with respect to the plane (100) of the substrate 10.

In FIG. 9, the nitride block material 16 is removed using well-known hot phosphoric acid etching. It is well-known that hot phosphoric acid etches only nitride without loss of oxide and silicon. The oxide layer 14 may be removed.

Referring to FIG. 10, after the etching of the nitride block and the oxide layer, a gate dielectric 26 is formed on the surface of the substrate 10, including in the trench 24. The gate dielectric 26 may be an oxide, oxynitride or high-K material, for example. In one example, the gate dielectric 26 may be approximately 10 Å to 100 Å. A poly 28 is deposited over the gate dielectric 26. In case of high-K material, metallic electrode can be deposited over the high-K material.

FIG. 11 shows the formation of the beginning structures (e.g., stacks) of the nFET and the pFET. In this process, the poly 28 is etched in well-known processes such as lithography and poly RIE. The STI 12 may be used as a basis for alignment of the pFET stack as should be understood to those of ordinary skill in the art, i.e., to ensure that the formation of the pFET stack is formed on the angled sidewall 24a. In this manner, the pFET stack 28a will be formed in the (111) plane and a <112> direction; whereas, the nFET 28b stack will be formed in the (100) plane and <110> direction, simultaneously.

FIG. 12 shows a spacer 30 formation. Depending on the particular requirements, the spacers 30 may be a nitride or an oxide. The spacers 30 are formed in processes well-known in the art to those of skill such that further discussion is not required herein for a complete understanding of the invention. Extension implantation is performed, as representative of the steps of FIG. 13. In this process, phosphorous or arsenic may be implanted for the nFET and boron may be implanted for the pFET.

FIG. 14 is representative of a spacer 32 formation on the sides of the stacks 28a and 28b of the pFET and nFET, respectively. It is also contemplated that different material can be used as 28a and 28b respectively for improving device performance. Some nitride with tensile stress for nFET and other nitride with compressive stress for pFET will be one of the examples. In one non-limiting aspect of the invention, the spacers 32 are formed of nitride using processes well-known in the art to those of skill such that further discussion is not required for a complete understanding of the invention. FIG. 15 represents the source/drain formation for both the nFET and pFET. Again, the processes for forming the source/drain regions are well known in the art to those of skill such that further discussion is not required for a complete understanding of the invention.

FIG. 16 illustrates the final structure of the device in accordance with the invention. In FIG. 16, metal contacts 34 are formed to the source drain/regions of the nFET and pFET. In one exemplary process, a RIE process is used to etch the inter layer dielectric 35 and the gate dielectric. A metal is then deposited to fill the contact hole such as, for example, tungsten. TiN may be used to form the barrier material between source/drain and metal contact prior to tungsten deposition, as one illustrative example. As represented in FIG. 16, the resultant pFET stack is formed in the (111) plane and carrier transport direction is the <112> direction as a result of the etching step formed in FIG. 6, in addition to the remaining stack formation steps. Also, the nFET stack is formed in the (100) plane and carrier transport direction is <110> direction.

It has been found that the hole mobility for a pFET in the (111) plane and <112> direction is superior than in the (100) plane and <110> direction, but worse than in the (110) plane and <110> direction; whereas, the electron mobility for a nFET in the (111) plane and <112> direction is worse than in the (100) plane and <110> direction, but superior than in the (110) plane and <110> direction. To thus optimize the pFET performance without degrading the nFET performances, in the present invention, the pFET is formed in the (111) plane and the <112> direction and the nFET is optimized in the (100) plane and the <110> direction.

While the invention has been described in terms of exemplary embodiments, those skilled in the art will recognize that the invention can be practiced with modifications and in the spirit and scope of the appended claims.

Claims

1. A method of manufacturing a semiconductor structure, comprising forming a first structure from a poly layer on a substrate using a first plane and direction and forming a second structure from the poly layer on the substrate using a second plane and direction.

2. The method of claim 1, wherein the first structure is a stack for a nFET and the second structure is a stack for a pFET.

3. The method of claim 1, wherein the first plane and direction differ from the second plane and direction and the first structure and the second structure are formed simultaneously.

4. The method of claim 3, wherein the first plane and direction is (100)/<110> and the second plane and direction is (111)/<112>.

5. The method of claim 1, wherein forming the second structure on the substrate using a second plane and direction comprises etching the substrate to form an angled sidewall and building the second structure at least partially on the angled sidewall.

6. The method of claim 5, wherein forming the angled sidewall comprises an anisotropic etching of the substrate at an active area of a pFET.

7. The method of claim 5, wherein forming the angled sidewall comprises etching the substrate to result in an angled of approximately 57.5 degrees from a plane of the substrate.

8. The method of claim 5, wherein the forming of the angled sidewall comprises etching through an oxide layer deposited over the substrate, a block material deposited over the oxide layer and into the substrate.

9. The method of claim 8, further comprising:

etching a photoresist deposited over the block material,
performing a selective etch of the block material using the oxide layer as a etch stop layer to form an etched area;
stripping the photoresist layer;
forming a spacer in the etched area; and
anisotropic etching the substrate to a depth of approximately 200 Å to 900 Å to form a trench in the substrate which has the angled sidewall.

10. The method of claim 1, wherein forming the first structure and the second structure comprises:

forming at least one n-well and one p-well for pFET and nFET devices, respectively;
depositing a gate dielectric on a surface of the substrate including in a trench with an angled sidewall with respect to a plane of the surface of the substrate, the trench is formed in an active area of the pFET;
depositing the poly layer over the gate dielectric;
etching portions of the poly layer to form a nFET stack comprising the first structure on a plane of the substrate and a pFET stack comprising the second structure on the angled sidewall of the trench;
forming spacers on sidewalls of the nFET stack and the pFET stack; and
doping source and drain regions in the substrate for nFET and pFET devices on sides of the nFET stack and the pFET stack, respectively.

11. The method of claim 10, wherein the pFET stack and the nFET stack are in a (111) plane and a <112> direction and in a (100) plane and <110> direction.

12. A method of manufacturing a semiconductor device, comprising:

building a nFET stack on a gate dielectric layer on a substrate in a first plane and direction;
building a pFET stack on the gate dielectric layer on the substrate in a second plane and direction, which is different from the first plane and direction; and
providing an isolation region within the substrate between the nFET stack and the pFET stack.

13. The method of claim 12, wherein the first plane and direction is (100)/<110> and the second plane and direction is (111)/<112>.

14. The method of claim 12, wherein forming the pFET stack comprises etching the substrate to form a trench with an angled sidewall and building the pFET stack at least partially on the angled sidewall.

15. The method of claim 14, wherein forming the angled sidewall comprises anisotropic etching of the substrate using basic wet chemicals at an active area of a pFET.

16. The method of claim 14, wherein the angled sidewall is etched at an angle of approximately 57.5 degrees from a plane of the substrate.

17. The method of claim 14, wherein the forming of the angled sidewall comprises:

etching through an oxide layer deposited over the substrate, a block material deposited over the oxide layer using the oxide layer as a etch stop layer to form an etched area;
stripping a photoresist deposited over the block material after etching the block material,
forming a spacer in the etched area; and
anisotropic etching the substrate using wet chemicals to a depth of approximately 200 Å to 900 Å to form the trench in the substrate having the angled sidewall.

18. The method of claim 14, wherein forming the nFET stack and the pFET stack comprises:

forming at least one n-well and one p-well for pFET and nFET, respectively;
depositing the gate dielectric layer on a surface of the substrate including in the trench with an angled sidewall with respect to a plane of the surface of the substrate, the trench being formed in an active area of the pFET;
depositing a poly layer over the gate dielectric layer;
etching portions of the poly layer to form the nFET stack and the pFET stack on the angled sidewall of the trench using an isolation region as a basis for alignment;
forming spacers on sidewalls of the nFET stack and the pFET stack;
implanting extensions in the substrate on the side of the nFET stack and the pFET stack; and
doping source and drain regions in the substrate for nFET and pFET on sides of the nFET stack and the pFET stack, respectively.

19. A method of manufacturing a semiconductor structure, comprising:

depositing a gate dielectric layer on a substrate;
depositing a poly layer on the gate dielectric layer on the substrate; and
forming a nFET structure from the poly layer on the gate dielectric layer on the substrate in a first plane and direction; and
forming a pFET structure from the poly layer on the gate dielectric layer on the substrate in a second plane and direction, which is different from the first plane and direction.

20. The method of claim 19, wherein the nFET structure and the pFET structure are formed simultaneously.

Patent History
Publication number: 20070224754
Type: Application
Filed: May 18, 2007
Publication Date: Sep 27, 2007
Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION (Armonk, NY)
Inventor: Oh-jung KWON (Hopewell Junction, NY)
Application Number: 11/750,830
Classifications
Current U.S. Class: 438/224.000; Complementary Field-effect Transistors, E.g., Cmos (epo) (257/E21.632)
International Classification: H01L 21/8238 (20060101);