COVALENT CONJUGATES BETWEEN ENDOPEROXIDES AND TRANSFERRIN AND LACTOFERRIN RECEPTOR-BINDING AGENTS

- WASHINGTON, UNIVERSITY OF

The invention relates to covalent conjugates between endoperoxides and small peptides and organic compounds that bind to molecular cavities on the transferrin or lactoferrin receptor, and the use of compositions comprising these conjugates to treat cancer, hyperproliferative disorders, inflammatory diseases, and infections.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/743,851, filed Mar. 28, 2006, which is incorporated by reference.

FIELD OF THE INVENTION

The invention relates to covalent conjugates between endoperoxides and small peptides and organic compounds that bind to molecular cavities on the transferrin or lactoferrin receptor, and the use of compositions comprising these conjugates to treat cancer, hyperproliferative disorders, inflammatory diseases, and infections.

BACKGROUND OF THE INVENTION

Artemisinin, isolated from the plant Artemisia annua L., is a sesquiterpene lactone which contains an endoperoxide bridge that reacts with an iron atom to form free radicals. Plant extracts containing artemisinin have been used to treat malaria for over 1600 years. The anti-malarial action of this compound is due to its reaction with intra-parasitic heme iron to generate free radicals, causing cell death. Since cancer cells are known to have a significantly higher influx of iron than normal cells, many studies have shown that artemisinin and its analogs are cytotoxic against established tumors and tumor cell lines (see, e.g., Woerdenbag et al. (1993) J. Nat. Prod. 56(6):849-856; Lai and Singh (1995) Cancer Lett. 91:41-46; Efferth et al. (2001) Int. J. Oncol. 18:767-773; Li et al. (2001) Bioorg. Med. Chem. Lett. 11:5-8; Singh and Lai (2001) Life Sci. 70:49-56; Efferth et al. (2002) Biochem. Pharmacol. 64:617-623; Efferth et al. (2002) Blood Cells, Molecules and Diseases 28(2):160-168; Sadava et al. (2002) Cancer Lett. 179:151-156; Berger et al. (2005) Oncol. Rep. 14:1599-1603; Disbrow et al. (2005) Cancer Res. 65:10854-10861).

Many analogs of artemisinin and other compounds containing an endoperoxide bridge that are biologically active have been described (see, e.g., U.S. Pat. No. 5,180,840; U.S. Pat. No. 5,216,175; U.S. Pat. No. 5,225,427; Cumming et al. (1998) J. Med. Chem. 41(6):952-964; Posner et al. (1999) J. Med. Chem. 42:300-304; Li et al. (2001) Bioorg. Med. Chem. Lett. 11:5-8; Wu et al. (2001) Eur. J. Med. Chem. 36:469-479; Posner et al. (2003) J. Med Chem 46:1060-5; Vennerstrom et al. (2004) Nature 430:900-904). Analogs of artemisinin that have been used in the treatment of malaria include dihydroartemisinin, artemether, artesunate, arteether, propylcarbonate dihydroartemisinin and artelinic acid.

Artemisinin is a relatively safe drug, with few and minor side effects even at high doses. Oral doses of 70 mg/kg/day for 6 days, for example, have been used in humans to treat malaria. No apparent adverse side effects were observed when a cancer patient was treated with artesunate for a period of 9 months (intramuscular dose of 60 mg/day for 15 days; oral dose of 50 mg per day for 8.5 months) (Singh and Verma (2002) Arch. Oncol. 10(4):279-280). A patient with pituitary macroadenoma was also treated orally with artemether for a period of 12 months, without any observed adverse side effects (Singh and Panwar (2006) Integr Cancer Ther. 5(4):391-4). Artemisinin and artemisinin analogs have also been used in the treatment of skin conditions such as psoriasis, blistering skin diseases, viral warts, mulluscum contagiosum, and hemorrhoids (see, e.g., U.S. Pat. No. 4,978,676; U.S. Pat. No. 5,219,880). U.S. Pat. No. 5,057,501 discloses the use of combinations artemisinin and artemisinin analogs with monocarboxylic acids, esters or amides in the treatment of papulosquamous skin diseases, including psoriasis, and eczematous skin diseases, including seborrheic and atopic dermatitis. The administration of iron salts or the iron-carrying protein holotransferrin increases the susceptibility of cancer cells and implanted tumors to artemisinin and its analogs (Lai and Singh (1995) Cancer Lett. 91:41-46; Moore et al. (1995) Cancer Lett. 98:83-87; Singh and Lai (2001) Life Sci. 70:49-56; Sadava et al. (2002) Cancer Lett. 1179:151-156; Efferth et al. (2004) Free Radic. Biol. Med. 37:998-1009).

Several pathogens obtain iron from iron-carrying host proteins. Neisseria meningitidis, the causative agent of bacterial meningitis, for example, expresses cell surface receptors for host iron-carrying compounds such as transferrin and lactoferrin (Evans and Oakhill (2002) Biochem. Soc. Trans. 30(4):705-707). No vaccine is currently available for the B strain of N. meningitidis, the most prevalent strain in the Western world. Helicobacter pylori, the etiologic agent of gastritis, gastric and duodenal ulcers, and adenocarcinoma in humans, also obtains iron by binding human lactoferrin (Husson et al. (1993) Infect. Immun. 61(6):2694-2697). Fungi are also known to obtain iron from host iron-carrying proteins (Terng et al. (1998) FEMS Microbiol. Lett. 160:61-67).

U.S. Pat. No. 5,225,427 discloses 10-substituted ether derivatives of dihydroartemisinin alleged to exhibit antimalarial and antiprotozoal activity.

U.S. Pat. No. 5,578,637 discloses methods of killing cancer cells wherein compounds having an endoperoxide moiety that is reactive with heme are administered under conditions which enhance intracellular iron concentrations. Endoperoxide bearing sesquiterpene including artemisinin and its analogs are preferred compounds.

U.S. Patent Application No. 2004/0058981 discloses methods for preventing or delaying the development of cancer by administering free radical-generating agents to a subject. Preferred compounds include endoperoxide bearing sesquiterpene compounds such as artemisinin and its analogs. Intracellular iron concentrations may be enhanced by the administration of iron salts or complexes.

U.S. Patent Application No. 2004/0067875 discloses covalent conjugates between artemisinin-related endoperoxides and iron-carrying proteins, such as holotransferrin, to treat cancer and infections by pathogens that bind iron-carrying proteins.

U.S. Patent Application No. 2006/0193778 and U.S. Pat. No. 6,743,893 disclose peptides discovered by phage display techniques that are capable of binding to and internalizing with the human transferring receptor, including the peptides HAIYPRH (SEQ ID NO: 1) and THRPPMWSPVWP (SEQ ID NO: 2).

U.S. Patent Application No. 2006/0142377 discloses orally active artemisinin-derived trioxane dimers suitable as orally active compounds, which demonstrate antimalarial and anti-tumor activities.

There is a need in the art for artemisinin compositions with increased efficacy for the treatment of cancer and disease caused by pathogens that interact with receptors for iron-carrying host proteins. There is also a need for methods for treating cancer and infections caused by pathogens that obtain iron by internalizing or using iron from iron-carrying host proteins. The present invention addresses these needs.

SUMMARY OF THE INVENTION

The invention relates to covalent conjugates between endoperoxides and small peptides and organic compounds that bind to molecular cavities on the transferrin or lactoferrin receptor, and the use of compositions comprising these conjugates to treat cancer, hyperproliferative disorders, inflammatory diseases, and infections.

One embodiment of the invention includes compounds comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor.

Another embodiment includes compositions comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor, and a pharmaceutically acceptable carrier.

Another embodiment of the invention includes a method of treating a disease or condition elected from the group consisting of cancer; restenosis; proliferative eye, kidney, and skin diseases; precancerous hyperplastic conditions, e.g., benign prostatic hyperplasia (BPH) and benign breast disease (BBD); autoimmune disease; arthritis; graft rejection; inflammatory bowl disease; proliferation induced after medical procedures; an infection by a pathogenic organism that has a receptor for an iron-carrying protein selected from the group consisting of transferrin and lactoferrin; topical bacterial infections; gingivitis; skin infections; and eye infections; comprising administering to said subject an effective amount of a composition comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the receptor.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 shows a schematic diagram for transferrin receptor-targeted delivery of artemisinin.

FIG. 2 shows a schematic diagram of the synthesis of artemisinin-peptide conjugates, which are generally prepared by reacting a carbonyl-containing peptide with artemisinin derivatives that carry a hydrazine (R,R′—N—NH2) or aminoxy (R—O—NH2) group.

FIG. 3 shows the effect of artemisinin-tagged peptide HAIYPRH on cultured human Molt-4 lymphobastoid leukemia cells and normal human lymphocytes. Cell viability was determined at 24, 48, and 72 hours in the presence of different concentrations (3.1, 6.2, 12.4 μM) of artemisinin-tagged peptide. The artemisinin-tagged peptide killed Molt-4 cells very effectively at low micromolar concentrations without affecting normal lymphocytes (FIGS. 3A and 3B). The IC50 values of ART-peptide and ART2-peptide on Molt-4 cells were 4.23±0.09 μM and 0.86±0.10 μM at 72 hrs, respectively (FIGS. 3C and 3D). ART-peptide and ART2-peptide were peptides covalently attached with one and two artemisinin moieties, respectively. The artemisinin-tagged peptides were virtually non-toxic to normal leukocytes (IC50>10,000 uM, data not shown). Under the same assay condition, DHA showed IC50 values of 5.3±0.26 μM and 43±22 μM for Molt-4 cells and normal leukocytes, respectively. Therefore, tagging to the TfR-binding peptide significantly improved the anti-cancer potency and selectivity of artemisinin. The in vitro cancer cytotoxicity of the artemisinin-tagged peptides is comparable to or higher than that of the other commonly used anti-cancer drugs, except that the artemisinin-tagged peptides show much higher cancer/normal cell selectivity. FIGS. 3E and 3F show the effect of ART-peptide and ART2-peptide on medulloblastoma cells (DAOY cells). Both compounds are effective against this cell line, and it is clear that ART2-peptide is more effective than ART-peptide.

FIG. 4 shows the effect of artemisinin-tagged peptide HAIYPRH on breast tumors in an in vivo cancer model. Rats with breast tumors that were previously induced by injections with MTLn3 breast cancer cells and between 5 mm to 10 mm in diameter were treated daily with the artemisinin-tagged peptide for 5 days. The artemisinin-tagged peptide was dissolved in a phosphate buffer at pH 7.4. 0.1 mL of the buffer containing 0.5 mg of the tagged-peptide was injected daily via a tail vein. Controls were injected with 0.1 mL of the buffer daily. The length, width, and height of ellipsoidal tumor were measured with a caliper. The tumor volume was calculated using the formula: length×width×height×7/6. The results presented in the figure are expressed as percent change in tumor volume from the first day of tagged-peptide treatment for each rat. Intravenous injection of the peptide significantly retarded the growth of breast tumors in the rat.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to covalent conjugates between endoperoxides and small peptides and organic compounds that bind to molecular cavities on the transferrin or lactoferrin receptor, and the use of compositions comprising these conjugates to treat cancer, hyperproliferative disorders, inflammatory diseases, and infections.

One aspect of the invention includes compounds comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor.

As used herein, the term “covalent conjugate” refers to a compound in which an endoperoxide is covalently linked to small peptides and organic compounds that bind to molecular cavities on the transferrin or lactoferrin receptor.

The term “endoperoxide” refers to a compound having an endoperoxide bridge, which can react with an iron atom to form free radicals, causing cell death. Endoperoxide compounds may also form free radicals in the presence of copper and manganese. The source of endoperoxides may be natural (e.g., isolated from plants), synthetic, or semi-synthetic. For example, the free radical-generating agents may be produced by expressing the enzymes for the relevant synthetic pathways in a microbial host (see, e.g., Martin et al. (2003) Nature Biotechnol. 21:796-802). Representative endoperoxides are set forth herein, although it will be apparent that other endoperoxides will be useful for this purpose.

Another aspect of the invention provides covalent conjugates wherein the endoperoxide containing moiety comprises an endoperoxide bridge. The key “core structure” conveying activity to the compounds and conjugates of the invention is the endoperoxide bridge defined by 1,2,4-trioxane and 1,2,4,5-tetraoxane derivatives. The term “artemisinin-related endoperoxide compounds” encompasses both 1,2,4-trioxane and 1,2,4,5-tetraoxane derivatives, as described more fully below.

One aspect of the invention provides covalent conjugates between endoperoxides and transferrin receptor-binding agents. In some embodiments, the endoperoxide is selected from the group consisting of sesquiterpene lactones and alcohols, carbonates, esters, ethers, and sulfonates thereof, arteflene, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes.

The endoperoxide may have the structure:

wherein R is

where R1 is hydrogen, hydroxyl, alkyl, or has the formula:

where R2 is alkyl or aryl and n is 1 to 6, and the pharmaceutically acceptable salts thereof. As used herein, the term “alkyl” means lower alkyl having from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Alkyl groups of the invention may be straight-chain or branched-chain groups. The term “aryl” refers to monocyclic and polycyclic aromatic groups containing from 4 to 14 backbone carbon or heteroatoms, and includes both carbocyclic aryl groups and heterocyclic aryl groups. Carbocyclic aryl groups are aryl groups in which all ring atoms are carbon. Heterocyclic aryl groups have from 1 to 4 heteroatoms as ring atoms with the remainder of the ring atoms being carbon. Representative aryl groups include, for example, phenyl and benzyl. Pharmaceutically acceptable salts include the alkali or alkaline earth metal salts, preferably sodium or potassium.

Artemisinin, a highly oxygenated sesquiterpene lactone endoperoxide isolated by Chinese researchers in 1971, has been found to be a plasmocidal and blood schizontocidal agent superior to conventional antimalarial drugs against malarial strains. Artemisinin-related endoperoxides include artemisinin, where R is

dihydroartemisinin (R1=—OH), artesunic acid (R1=—OCO(CH2)2CO2H), and artesunate, artemether (R=—OCH3), and arteether (R=—OC2H5). Other representative endoperoxide compounds included in the definition of artemisinin-related endoperoxides include artelinic acid, dihydroartemisinin propyl carbonate, arteflene (Ro. 42-1611) and its analogs (Biirgen et al. (1994) Sixth Int. Cong. Infect. Dis. Abst. 427, p. 152, Prague), 1,2,4-trioxanes (Peters et al. (1993) Ann. Trop. Med. Parasit. 87(1):9-16) and 1,2,4,5-tetraoxanes (Vennerstrom et al. (1992) J. Med. Chem. 35(16):3023-3027). Other suitable structural analogs of artemisinin are described in, for example, U.S. Pat. Nos. 5,216,175 and 5,180,840; Cumming et al. (1998) J. Med. Chem. 41(6):952-964; and PCT patent applications WO 97/01548, WO 99/33461, and WO 00/42046.

The artemisinin molecule and related compounds have been studied by many by different groups covering aspects such as characterization, total synthesis, and understanding of the mechanism of action through QSAR studies. These studies have unveiled a large amount of information about this artemisinin and related endoperoxide compounds and have resulted in a large number of published and patented literatures (See, Bez, G., et al., Current Organic Chemistry 7:1231-1255, 2003). For example, the endoperoxide function has been shown to be essential for the antimalarial activity antimalarial activity of artemisinin (Gu, Acta Pharmacol. Sinica 1(1):48-50, 1980 Abstract). The total synthesis of (+)-artemisinin has been reported (Avery, M. A., et al., Tetrahedron Letters 28:4629-4632, 1987). The same group also synthesized several simplified analogues of artemisinin (Avery, 1987). Desethanoqinghaosu has also been (Imakura, Y., et al., J. Chem. Soc. Chem. Comm., 1988, pp. 372-374). Lin et al. reported a new series of hydrolytically stable and water-soluble dihydroartemisinin derivatives with optically active side chains as potential antimalarial agents. (Lin, 1989) Imakura et al. reported the study of acid degradation products of Qinghaosu and their structure-activity relationships (Imakura, Y., et al., Heterocycles 31(6):1011-1016, Jun. 1, 1990. Abstract). Zaman et al. reported the aspects of the chemistry and biological activity of artemisinin and related antimalarials. (Zaman, S. S., and R. P. Sharma, Heterocycles 32:1593-1638, 1991). Peters et al. evaluated the activities of some synthetic artemisinin endoperoxide 1,2,4-trioxanes against several lines of Plasmodium berghei and P. yoelii ssp. NS in vivo. (Peters, W., et al., Ann. Trop. Med. Parasit. 87(1):9-16, 1993). The results from these studies have enabled scientists during the 1990s to delineate the basic structural requirement for artemisinin-related 1,2,4-trioxane endoperoxides—the 1,2,4-trioxane ring system—as the essential pharmacophore for artemisinin. Since then, interest in artemisinin has persisted. Benoit-Vical et al. reported the in vitro and in vivo potentiation of artemisinin and synthetic endoperoxide antimalarial drugs in 2000 (Benoit-Vical, F., et al., Antimicrobial Agents and Chemotherapy 44(10):2836-2841, 2000). Recently, Anfosso et al. used microarray expression profiles of angiogenesis-related genes to predict tumor cell response to artemisinin. (Anfosso, L. et al., Pharmacogenomics Journal, 2006, pp. 1-10).

The compounds of the invention are not meant to be limited by the specific means of covalently linking the one or more endoperoxide containing moieties to the receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the receptor. Representative linking groups include, for example, those such as covalent bonds, alkylene, arylene, —O—, —CO—, —OCO—, —CO—(CH2)n—, —CO—(CH2)n—CO—, —CO—(CH2)n—COO—, —CO—(CH2)n—SOO—, —O-Ph-CONH—, —O-Ph-CONH—N-Ph-CONH—, —O—CH2-Ph-CO—NH—N═CH-Ph-CO—, -Ph-CONH—, -Ph-CONH—N-Ph-CONH—, —CH2-Ph-CO—NH—N═CH-Ph-CO—, —O-Ph-CONH—, —O-Ph-CONH—N-Ph-CONH—, and —O—CH2-Ph-CO—NH—N═CH-Ph-CO—. Branched (double amino) amino acids such as lysine, beta-lysine, gamma-lysine, asparagine, arginine, and the like, can be used to facilitate the synthesis of covalent conjugates comprising two or more endoperoxide moieties linked to a single transferrin or lactoferrin receptor binding agent, as described above. Other branched linking groups will permit the synthesis of compounds comprising one or more endoperoxide moieties linked to two or more transferrin or lactoferrin receptor binding agents.

As a result of an apparent association between the endoperoxide functional group and antimalarial activity, a substantial effort has been devoted to developing new peroxide antimalarials (Vennerstrom, J. L., and J. W. Eaton, Journal of Medicinal Chemistry 31(7):1269-1277, 1988). Motivated by the structure and pharmacological mechanism of artemisinin, a large number of molecules containing mainly the core pharmacophore, 1,2,4-trioxane, as well as its close analogue, 1,2,4,5-tetraoxane, and other endoperoxides have been synthesized and studied (U.S. Pat. No. 6,906,205, U.S. Pat. No. 6,486,199). Rational design of structurally simpler analogs of artemisinin has led to the synthesis of various racemic 1,2,4-trioxanes displaying potent antimalarial activities (U.S. Pat. No. 5,225,437) Another group reported the development of dispiro-1,2,4,5-tetraoxanes as endoperoxide antimalarial drugs (Vennerstrom, J. L., et al., Journal of Medicinal Chemistry 35:3023-3027, 1992), as well as identification of a series of 1,2,4-trioxolane antimalarial drug candidates (US 2005/0256185).

1,2,4-Trioxane itself has not been isolated or characterized. The tremedous amount of literature in the field suggests that it is the discovery of artemisinin with its novel 1,2,4-trioxane heterocyclic pharmacophore that initiated the development of 1,2,4-trioxanes, 1,2,4,5-tetraoxanes, and other artemisinin-related endoperoxides derivatives. Therefore, it would be readily apparent to a person of ordinary skill in the art that the term “artemisinin-related endoperoxide compounds” encompasses both 1,2,4-trioxane and 1,2,4,5-tetraoxane derivatives.

Because artemisinin reacts with intra-parasitic heme through its endoperoxide bridge to generate free radicals and cause cell death, and because cancer cells have a significantly higher influx of iron than normal cells, it has been shown that artemisinin and artemisinin analogs are cytotoxic against established tumors and tumor cells lines. Many analogs of artemisinin and other compounds containing an endoperoxide bridge (see, e.g., U.S. Pat. No. 5,216,175) are useful in treating several varieties of diseases. U.S. Pat. No. 5,216,175 also discloses many 1,2,4-trioxanes.

The term “artemisinin-related endoperoxide” is defined as a compound having an endoperoxide bridge, which reacts with an iron atom to form free radicals, causing cell death. The application further indicates that the artemisinin-related endoperoxide “is selected from the group consisting of sesquiterpene lactones and alcohols, carbonates, esters, ethers, and sulfonates thereof, arteflene, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes.”

Representative endoperoxide compounds of the invention include 1,2,4-trioxanes (Peters et al., (1993) Ann. Trop. Med. Parasit. 87(1):9-16) and 1,2,4,5-tetraoxanes (Vennerstrom et al. (1992) J. Med. Chem. 35(16):3023-3027).

An ideal requirement for cancer chemotherapy is that the therapeutic agent acts specifically on cancer cells, with little toxicity towards normal cells. Artemisinin has been shown to have relatively high selectivity on cancer cells, e.g., it has a therapeutic index (i.e., toxicity towards cancer cells versus that on normal cells) of approximately 100 on human leukemia cells. This is due to cancer cells picking up and containing a high concentration of iron that reacts with artemisinin and other artemisinin-related endoperoxides. Iron converts endoperoxides into free radicals that kill cells. Covalently tagging artemisinin-related endoperoxides to the iron-carrying protein transferrin increases the cancer cell cytotoxicity of the artemisinin-related endoperoxides by approximately 2 fold and cancer/normal cell selectivity by 950 fold (Lai et al. (2005) Life Sci. 76:1267-79). Since cancer cells, in general, have a high cell surface concentration of transferrin receptors that uptake transferrin, tagging of artemisinin-related endoperoxides to transferrin provides selective delivery of these endoperoxides to cancer cells. Iron is released from transferrin intracellularly and reacts immediately with the tagged endoperoxide, causing cell death. Methods for targeting the delivery of drugs by the transferrin receptor-mediated endocytosis pathway have been reviewed (Qian et al. (2002) Pharmacological Rev 54: 561-587).

A variety of cancers are known to be associated with elevated transferrin receptor expression. Table 1, shown below, provides a summary of literature references, grouped by cancer type.

TABLE 1 Cancers with Elevated Transferrin Receptor Expression Liver Cancer and Hepatitis C Sciot R et al., Histopathology 1988 Jan; 12(1): 53–63. Lee AW, Oates PS, Trinder D. Hepatology 2003 Oct; 38(4): 967–77. Pascale RM et al., Hepatology 1998 Feb; 27(2): 452–61. Lin J. Zhonghua Yi Xue Za Zhi 1992 Feb; 72(2): 86–7, 128. Sciot R, Van Eyken P, Desmet VJ. Histopathology 1990 Jan; 16(1): 59–62. Bolewska B et al., Pol Merkur Lekarski 2005 May; 18(107): 552–5. Saito H et al., Hepatol Res 2005 Apr; 31(4): 203–10. Pancreatic Cancer Buchler MW et al., Eur J Cancer 2004 Jun; 40(9): 1418–22. Breast Cancer Wrba Fet al. Virchows Arch A Pathol Anat Histopathol 1986; 410(1): 69–73. Hogemann-Savellano D et al., Neoplasia 2003 Nov–Dec; 5(6): 495–506. Yang DC et al., Anticancer Res 2001 May–Jun; 21(3B): 1777–87. Yang DC et al., Anticancer Res 2001 Jan–Feb; 21(1B): 541–9. Cavanaugh PG et al., Breast Cancer Res Treat 1999 Aug; 56(3): 203–17. Lung Cancer Anabousi S et al., Eur J Pharm Sci 2006 Dec; 29(5): 367–74. Epub 2006 Jul 22. Dowlati A et al., Br J Cancer 1997; 75(12): 1802–6. Carbognani P et al., Cancer 1996 Jul 1; 78(1): 178–9. Whitney JF et al., Cancer. 1995 Jul 1; 76(1): 20–5. Kayser K, Ernst M, Bubenzer J. Exp Pathol 1991; 41(1): 37–43. Kondo K et al., Chest 1990 Jun; 97(6): 1367–71. Vostrejs M et al., J Clin Invest 1988 Jul; 82(1): 331–9. Gastric Cancer Yuan PX, Si LS. Zhonghua Bing Li Xue Za Zhi 1992 Apr; 21(2): 88–91. Iinuma H et al., Int J Cancer 2002 May 1; 99(1): 130–7. Colorectal Cancer Brookes MJ et al., Gut 2006 Oct; 55(10): 1449–60. Epub 2006 Apr 26 Prutki M et al., Cancer Lett 2006 Jul 18; 238(2): 188–96. Epub 2005 Aug 18. Leukemia Shackelford RE et al., Med Hypotheses 2006; 66(3): 509–12. Epub 2005 Dec 2. Smilevska T et al., Leuk Res 2006 Feb; 30(2): 183–9. Epub 2005 Jul 28. Staber PB et al., Oncogene 2004 Jan 29; 23(4): 894–904. Huang G et al., Hua Xi Yi Ke Da Xue Xue Bao 1997 Mar; 28(1): 55–7. Petrini M et al., Cancer Res 1989 Dec 15; 49(24 Pt 1): 6989–96. Barnett D et al., Clin Lab Haematol 1987; 9(4): 361–70. Cervical Cancer Disbrow GL et al., Cancer Res 2005 Dec 1; 65(23): 10854–61. Farley J et al., Anal Quant Cytol Histol 1998 Aug; 20(4): 238–49. Ovarian Cancer Hereiz HA, Bayoumi FA. J Egypt Public Health Assoc 1992; 67(5–6): 697–707. Lloyd JM et al., J Clin Pathol 1984 Feb; 37(2): 131–5. Brain Cancer Ucar T, Gurer I. Br J Neurosurg 2003 Dec; 17(6): 525–9. Wen DY et al., Neurosurgery 1995 Jun; 36(6): 1158–63; discussion 1163–4. Martell LA et al., Cancer Res 1993 Mar 15; 53(6): 1348–53. Prior R et al. Virchows Arch A Pathol Anat Histopathol 1990; 416(6): 491–6. Hall WA et al., J Neurosurg 1992 May; 76(5): 838–44. Non-Hodgkin's Lymphoma Nejmeddine F et al. J Nucl Med 1999 Jan; 40(1): 40–5. Das Gupta A, Shah VI. Hematol Pathol 1990; 4(1): 37–41. Head and Neck Cancer Kearsley JH et al. Br J Cancer 1990 Jun; 61(6): 821–7. Barresi G, Tuccari G. Pathol Res Pract 1987 Jun; 182(3): 344–51. Pituitary Cancer Tampanaru-Sarmesiu A et al. Am J Pathol 1998 Feb; 152(2): 413–22. Oral Cancer Miyamoto T et al. Int J Oral Maxillofac Surg 1994 Dec; 23(6 Pt 2): 430–3. Miyamoto T. Kokubyo Gakkai Zasshi 1992 Mar; 59(1): 21–32. Tanaka N et al. Bull Tokyo Med Dent Univ 1991 Sep; 38(3): 19–26. Bladder Cancer Limas C. J Pathol 1993 Sep; 171(1): 39–47. Smith NW et al., Br J Urol 1990 Apr; 65(4): 339–44. Seymour GJ et al., Urol Res 1987; 15(6): 341–4. Melanoma van Muijen GN et al. Int J Cancer 1991 Apr 22; 48(1): 85–91. Soyer HP et al. J Cutan Pathol 1987 Feb; 14(1): 1–5. Iwata M et al., J Dermatol 1988 Jun; 15(3): 208–11. Richardson DR. Biochim Biophys Acta 1991 Feb 19; 1091(3): 294–302. Prostate Cancer Keer HN et al., J Urol 1990 Feb; 143(2): 381–5. Sahoo SK et al., Int J Cancer. 2004 Nov 1; 112(2): 335–40. Rossi MC, Zetter BR. Proc Natl Acad Sci USA 1992 Jul 1; 89(13): 6197–201. Biliary Cancer Tuccari G et al., Histol Histopathol 1997 Jul; 12(3): 671–6.

Artemisinin-related endoperoxide-tagged transferrin has to compete with endogenous transferrin for transferrin receptor binding, which requires administration of sufficient amounts of artemisin-related endoperoxide-tagged transferrin to obtain binding to the transferrin receptor. To circumvent the need to compete with transferrin, the present invention provides covalent conjugates between endoperoxides and transferrin receptor-binding agents. The term “transferrin receptor-binding agents” refers to small peptides and organic compounds that bind to molecular cavities on a receptor for a host iron-carrying compound such as transferrin or lactoferrin. In the covalent conjugates of the invention, endoperoxides are linked to the transferrin receptor-binding agents in any way that preserves both the receptor binding affinity of the transferrin receptor-binding agents and the activity of the endoperoxide. Moreover, the covalent conjugates of the invention do not interfere with transferrin binding to the same transferrin receptor.

The structure of the transferrin-transferrin receptor complex is known. Using the software program called PASS, a number of surface cavities on the transferrin receptor have been identified. When all the cavities that are close to the transferrin-binding site are removed, there are 15 surface cavities (“target cavities”) per monomer that could be used to bind the covalent conjugates of the invention. Since the receptor is a symmetric dimer, a total of 30 cavities are available for binding to artemisinin derivatives. Table 2 transferrin receptor. The atomic coordinates are calculated by using the structure of transferrin-transferrin receptor complex (1SUV) that is available from Protein Data Bank.

TABLE 2 Atomic coordinates of surface cavities of the B-chain of transferrin receptor in 1SUV ATOM 30007 H7 SPH 907 29.202 15.243 −28.609 1.00 36.67 PATB 6 ATOM 30019 H19 SPH 919 4.766 21.399 −22.762 1.00 25.97 PATB 18 ATOM 30033 H33 SPH 933 13.192 2.473 −30.135 1.00 18.15 PATB 32 ATOM 30034 H34 SPH 934 21.175 27.910 −11.692 1.00 17.94 PATB 33 ATOM 30043 H43 SPH 943 36.539 25.067 −39.182 1.00 15.13 PATB 42 ATOM 30050 H50 SPH 950 24.774 8.593 −25.987 1.00 12.18 PATB 49 ATOM 30054 H54 SPH 954 32.285 22.875 −0.665 1.00 10.12 PATB 53 ATOM 30060 H60 SPH 960 33.907 7.338 4.480 1.00 9.27 PATB 59 ATOM 30062 H62 SPH 962 9.972 22.189 −14.193 1.00 8.96 PATB 61 ATOM 30063 H63 SPH 963 16.245 8.306 −38.876 1.00 8.63 PATB 62 ATOM 30067 H67 SPH 967 21.718 −2.591 5.229 1.00 7.44 PATB 66 ATOM 30076 H76 SPH 976 23.955 14.153 −19.834 1.00 5.89 PATB 75 ATOM 30086 H86 SPH 986 28.386 30.523 −9.090 1.00 2.98 PATB 85 ATOM 30089 H89 SPH 989 23.244 −1.459 −39.902 1.00 1.83 PATB 88 ATOM 30091 H91 SPH 991 19.128 −9.924 −30.585 1.00 1.70 PATB 90

These target cavities are of a diameter of 8-15 Å with various shapes and polarities. Visual inspection suggested that all the target cavities are easily accessible from the surface through a wide opening.

In one aspect, the covalent conjugates of the invention comprise a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor without interfering with transferrin or lactoferrin binding to the receptor. Two peptides with a sequence of HAIYPRH (SEQ ID NO: 1) and THRPPMWSPVWP (SEQ ID NO: 2) have been shown to bind to the human transferrin receptor without interfering with transferrin binding (Lee et al. (2004) Eur. J. Biochem. 268:2004-2012). In addition, virus-derived peptides have also been identified that can bind to the human transferrin receptor without interfering with transferrin binding (Zhang et al (2003) J. Virol. 77, 10468-10478; Xia et al. (2000) J. Virol. 74, 11359-11366; Palermo et al. (2003) J. Virol. 77, 8915-8923). All these peptides are likely to bind to one or more target cavities.

Other transferrin and lactoferrin receptor-binding agents may be identified using methods known in the art, for example, using biopanning methods (see, e.g., Lee et al. (2004) Eur. J. Biochem. 268:2004-2012) or in silico methods (see, e.g., Tom et al. (2003) Chemistry and Biology 10, 759-767; Kuo et al. (2003) J. Med. Chem. 46, 4021-4031; Nilsson et al. (2003) J. Med. Chem. 46, 3985-4001; Bjerrum et al. (2003) J. Med. Chem. 46, 2246-2249).

The structural and functional characteristics of transferrin and lactoferrin receptors from various vertebrate animal species have been compared to the human receptors (Lim B C, McArdle H J, Morgan E H. J Comp Physiol [B]. 1987; 157(3):363-71; van Bockxmeer F M, Morgan E H. Comp Biochem Physiol A. 1982; 71(2):211-8). Transferrin and lactoferrin receptor-binding agents which more specifically target non-human vertebrate animal species can be prepared by the methods disclosed herein, and coupled to the endoperoxides, including artemisinin-related endoperoxides, by the methods of the invention.

Another embodiment includes compositions comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor, and a pharmaceutically acceptable carrier.

Another embodiment of the invention includes a method of treating a disease or condition elected from the group consisting of cancer; restenosis; proliferative eye, kidney, and skin diseases; precancerous hyperplastic conditions, e.g., benign prostatic hyperplasia (BPH) and benign breast disease (BBD); autoimmune disease; arthritis; graft rejection; inflammatory bowl disease; proliferation induced after medical procedures; an infection by a pathogenic organism that has a receptor for an iron-carrying protein selected from the group consisting of transferrin and lactoferrin; topical bacterial infections; gingivitis; skin infections; and eye infections; comprising administering to said subject an effective amount of a composition comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the receptor. One embodiment includes a method where the disease or condition is selected from the group consisting of cancer and precancerous hyperplastic conditions, such as BPH and BBD. The methods include compounds wherein the endoperoxide containing moiety comprises an endoperoxide bridge. In some embodiments, the endoperoxide bridge is a 1,2,4-trioxane bridge or a 1,2,4,5 tetraoxane bridge. In preferred embodiments, the endoperoxide containing moiety is an artemisinin-related endoperoxide.

The covalent conjugates of the invention have high binding affinity for the transferrin receptor and do not interfere with receptor binding of transferrin. The attached endoperoxide is then transported into cancer cells concomitantly with transferrin, which will provide the iron for activation of the endoperoxide inside the cell (FIG. 1). Since these are small synthetic molecules, they may be easily administered in relatively large quantities. In some embodiments, the covalent conjugates of the invention comprise endoperoxide-tagged peptides, as described in Examples 9-12.

As described above, the covalent conjugates of the invention are useful for treating cancer and precancerous hyperplastic conditions. The covalent conjugates of the invention are also useful for treating infections by pathogenic organisms that have receptors for the iron-carrying proteins such as transferrin or lactoferrin. To establish a successful infection, a pathogen must overcome the strict iron limitations imposed by the host. To overcome this limitation, many pathogens obtain iron from iron-carrying host proteins (see, e.g., Cornelissen, (2003) Front. Biosci. 8:D836-847). For example, Neisseria meningitidis, the causative agent of bacterial meningitis, expresses cell surface receptors for the iron-carrying proteins transferrin and lactoferrin (Evans and Oakhill (2002) Biochem. Soc. Trans. 30(4):705-707), Helicobacter pylori, the etiologic agent of gastritis and peptic ulcer disease in humans, expresses a receptor for human lactoferrin (Husson et al. (1993) Infect. Immun. 61(6):2694-2697), and Staphylococcus aureus expresses receptors for hemoglobin (Mazmanian et al. (2003) Science 299:906-909) Thus, the covalent conjugates of the invention are useful for killing pathogenic organisms (such as bacterial or fungi) that have receptors that bind the transferrin or lactoferrin receptor-binding agent in the conjugate. For example, a covalent conjugate between an artemisinin-related endoperoxide and a receptor-binding agent that binds to pathogenic organism cell surface receptors that binds host holotransferrin or hololactoferrin may be used to treat bacterial meningitis caused by N. meningitidis or gastritis and peptic ulcer disease caused by Helicobacter pylori.

To prepare the covalent conjugates of the invention, endoperoxides are covalently linked (or tagged) to transferrin or lactoferrin receptor-binding agents using well-known methods (see, e.g., Chen et al. (2005) J. Med. Chem. 48, 1098-1106; Thumshirn et al. (2003) Chem. Eur. J. 9:2717-2725). Exemplary methods for preparing covalent conjugates of the invention are provided in Examples 1-12.

The covalent conjugates may be purified by using standard methods in the art, for example by using gel-filtration chromatography, ion-exchange, and reverse-phase or hydrophobic interaction High-Pressure Liquid Chromatography (HPLC). The number of molecules of endoperoxide bound to one molecule of transferrin receptor-binding agent may be determined by using standard methods in the art, for example ion-spray mass spectrometry. The ratio of endoperoxide to transferrin receptor-binding agents in the covalent conjugates will depend on the transferrin receptor-binding agent being used and the method of forming the conjugate.

According to the methods of the invention, the covalent conjugates between an endoperoxide and a transferrin or lactoferrin receptor-binding agent have cytotoxic activities when administered to cancer cells. In addition, the covalent conjugates of the invention are effective at killing pathogens with receptors that bind transferrin or lactoferrin. The invention also provides compositions comprising the covalent conjugates of the invention.

The invention also provides methods for administering compositions comprising a covalent conjugate between an endoperoxide and transferrin or lactoferrin receptor-binding agent to a subject in need thereof. The covalent conjugates between endoperoxides and a transferrin or lactoferrin receptor-binding agent are as described above.

These methods are applicable to any animal subject, such as a human subject. For example, a subject in need of compositions comprising a covalent conjugate of the invention may be a cancer patient. As described above, rapidly proliferating cells such as cancer cells generally possess higher concentrations of cell surface transferrin receptors. The methods provide a mechanism for selectively delivering both the endoperoxide moiety and the iron it reacts with to rapidly proliferating cells, such as cancer cells. Accordingly, the invention provides methods for treating cancer by administering to a human or animal subject in need thereof an effective amount of a compound comprising a covalent conjugate between an endoperoxide and a transferrin or lactoferrin receptor-binding agent. Other conditions in which there is an abnormal hyperproliferation of cells and which may be treated with the covalent conjugates of the invention include, but are not limited to, restenosis, proliferative eye, kidney, and skin diseases, precancerous hyperplastic conditions, e.g., benign prostatic hyperplasia (BPH) and benign breast disease (BBD), autoimmune disease, arthritis, graft rejection, inflammatory bowl disease, or proliferation induced after medical procedures.

The compounds and compositions comprising a covalent conjugate between an endoperoxide and a transferrin or lactoferrin receptor-binding agent may also be administered for treating an infection by a pathogen expressing cell-surface receptors for the transferrin or lactoferrin receptor-binding agent in the covalent conjugate. As used herein, the term “treating an infection by a pathogen” refers to inhibiting the growth of the pathogen and/or preventing or ameliorating the symptoms of disease associated with the infection.

Another embodiment of the invention therefore includes compounds wherein the transferrin receptor binding agent is a peptide. Preferred compounds include those wherein the transferring receptor binding agent is a peptide that binds to the human transferrin receptor without interfering with transferrin binding. The peptide, for example, may be selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2.

As described above, the covalent conjugates of the invention are useful for treating cancer and precancerous hyperplastic conditions. The covalent conjugates of the invention are also useful for treating infections by pathogenic organisms that have receptors for the iron-carrying proteins such as transferrin or lactoferrin. To establish a successful infection, a pathogen must overcome the strict iron limitations imposed by the host. To overcome this limitation, many pathogens obtain iron from iron-carrying host proteins (see, e.g., Cornelissen, (2003) Front. Biosci. 8:D836-47). For example, Neisseria meningitidis, the causative agent of bacterial meningitis, expresses cell surface receptors for the iron-carrying proteins transferrin and lactoferrin (Evans and Oakhill (2002) Biochem. Soc. Trans. 30(4):705-7), Helicobacter pylori, the etiologic agent of gastritis and peptic ulcer disease in humans, expresses a receptor for human lactoferrin (Husson et al. (1993) Infect. Immun. 61(6):2694-7), and Staphylococcus aureus expresses receptors for hemoglobin (Mazmanian et al. (2003) Science 299:906-9) Thus, the covalent conjugates of the invention are useful for killing pathogenic organisms (such as bacterial or fungi) that have receptors that are bound by the transferrin or lactoferrin receptor-binding agent in the conjugate. For example, a covalent conjugate between an artemisinin-related endoperoxide and a receptor-binding agent that binds to pathogenic organism cell surface receptors that binds host holotransferrin or hololactoferrin may be used to treat bacterial meningitis caused by N. meningitidis or gastritis and peptic ulcer disease caused by Helicobacter pylori.

Thus in one aspect the compounds and compositions comprising a covalent conjugate between an artemisinin-related endoperoxide and a transferrin or lactoferrin receptor-binding agent may also be administered for treating an infection by a pathogen expressing cell-surface receptors for the transferrin or lactoferrin receptor-binding agent in the covalent conjugate. As used herein, the term “treating an infection by a pathogen” refers to inhibiting the growth of the pathogen and/or preventing or ameliorating the symptoms of disease associated with the infection.

Exemplary pathogens with receptors for iron-carrying host proteins are described above and include Neisseria meningitidis, which expresses a receptor for human transferrin and H. pylori, which expresses a receptor for human lactoferrin. S. aureus has recently been shown to express a receptor for hemoglobin (Mazmanian et al. (2003) Science 299:906-9), and similar proteins are also expressed by Listeria monocytogenes and Bacillus anthracis (Cabanes et al. (2002) Trends. Microbiol. 10(5):238-45). An exemplary list of pathogens that express receptors for iron-carrying host proteins are shown in Table 3. Once the iron-carrying protein is bound to the receptor expressed by pathogen, the iron or heme is generally released from the iron-carrying protein and transported into the cell (see, e.g., Gray-Owens and Schryvers (1996) Trends Microbiol. 4(5):185-91; Wandersman and Stojiljkovic (2000) Curr. Op. Microbiol. 3:215-20).

TABLE 3 Receptors for Iron-Carrying Proteins in Human and Animal Pathogens Pathogen Host Disease Receptor Moraxella bovis Bovine Kerato-conjunctivitis Transferrin, lactoferrin1 Moraxella catarrhalis Human Otitis media Transferrin, lactoferrin1 Moraxella lacunata Human Kerato-conjunctivitis Transferrin, lactoferrin1 Neisseria meningitidis Human Meningitis Transferrin, lactoferrin, hemoglobin1,19 Neisseria gonorrheae Human Gonorrhea Transferrin, lactoferrin, hemoglobin1,18 Actinobacillus Human Juvenile periodontitis Transferrin1 actinomycetecomitans Actinobacillus equuli Equine Septicemia Transferrin1 Actinobacillus Porcine Pneumonia Transferrin1 pleuropneumoniae Haemophilus agnii Ovine Septicemia Transferrin1 Haemophilus avium Poultry Sinusitis Transferrin1 Haemophilus influenzae Human Meningitis, otitis media Transferrin, hemoglobin1,20 Haemophilus Poultry Infectious coryza Transferrin1 paragallinarum Haemophilus somnus Bovine Thromboembolic Transferrin1 meningoencephalitis Haemophilus parasuis Porcine Glasser's disease Transferrin1 Haemophilus ducreyi Human Genital ulcer disease Hemoglobin15 Pasteurella haemolytica Bovine, Shipping fever, Transferrin1 ovine, pasteurellosis caprine Pasteurella multocida Bovine Pneumonia, septicemia Transferrin1 Staphylococcus aureus Human Bacteremia, pneumonia, Transferrin, endocarditis, septic hemoglobin2,13 arthritis, osteomyelitis, deep abscesses, food poisoning Staphylococcus Human Endocarditis, Transferrin2 epidermidis endopthalmitis, septicemia, cystitis Streptococcus Human Pneumonia, meningitis, Lactoferrin3 pneumoniae bacteremia, otitis media Leishmania chagasi Human Leishmaniasis Transferrin, lactoferrin4 Escherichia coli K88 Porcine Enteropathogenesis Transferrin5 Tritrichonomas foetus Cattle Trichomoniasis Lactoferrin, hemoglobin6, Treponema pallidum Human Syphilis Lactoferrin7 Mycoplasma pneumonia Human Pneumonia Lactoferrin8 Bordetella pertussis Human Whooping cough Lactoferrin9 Trichonomas vaginalis Human Vaginosis Lactoferrin10 Aeromonas salmonicida Fish Furunculosis Transferrin, lactoferrin11 Helicobacter pylori Human Gastritis, gastric and Lactoferrin12 duodenal ulcers, gastric adenocarcinoma, lymphoma Yersinia enterocolitica Human Enteritis Hemoglobin, myoglobin, hemopexin, catalase, albumin-heme14 Vibrio vulnificus Eel Food poisoning, Hemoglobin16 septicemia, wound infections Porphyromonas Human Periodontal disease Hemoglobin17 gingivalis 1Gray-Owen and Schryvers (1996) Trends Microbiol. 4(5): 185–191 2Modun et al. (1998) Infect. Immun. 66(8): 3591–3596 3Hammerschmidt et al. (1999) Infect. Immun. 67(4): 1683–1687 4Britigan et al. (1998) Adv. Exp. Med. Biol. 443: 135–140 5Grange et al. (1997) Adv. Exp. Med. Biol. 412: 357–361 6Tachezy et al. (1996) Exp. Parasitol. 83(2): 216–228 7Alderete et al. (1988) Genitourin. Med. 64(6): 359–363 8Tryon and Baseman (1987) Microb. Pathog. 3(6): 437–443 9Redhead et al. (1987) J. Gen. Microbiol. 133(4): 891–898 10Peterson and Alderete (1984) J. Exp. Med. 160(2): 398–410 11Chart and Trust (1983) J. Bacteriol. 156(2): 758–764 12Dhaenens et al. (1997) Infect. Immun. 65(2): 514–518 13Mazmanian et al. (2003) Science 299: 906–909 14Bracken et al. (1999) J. Bacteriol. 181(19): 6063–6072 15Al-Twafiq et al. (2000) J. Infect. Dis. 181(3): 1049–1054 16Fouz et al. (1997) Microbiol. Lett. 156(2): 187–191 17Simpson et al. (2000) J. Bacteriol. 182(10): 5737–5748 18Chen et al. (1996) Infect. Immun. 64: 5008–5014 19Stojiljkovic et al. (1996) J. Bacteriol. 179(15): 4670–4678 20Frangipane et al. (1994) FEMS Microbiol. Lett. 118: 243–248

This invention may also be useful for the treatment of infection by bacterial pathogens that invade host cells, e.g., Mycobacterium tuberculosis. The invasion induces an increased expression of transferrin/lactoferrin receptors on the surface of host cells, thus, leading to an increased uptake of iron (Olakanmi et al. (2004) Infect. Immun. 72:2022-2028). The covalent conjugate could kill the host cell and bacteria within by the mechanism described above.

In one aspect, the methods of this aspect of the invention provide a mechanism for selectively delivering an endoperoxide moiety and the iron it reacts with directly to the cell membrane of a pathogenic organisms or a cell infected by a pathogenic organism by binding of the covalent conjugate to a receptor for iron-carrying protein. According to the methods of the invention, the endoperoxide moiety in the bound covalent conjugate reacts with the iron, producing harmful free radicals in close proximity to the pathogen.

Other exemplary infections that may be treated by administering an effective amount of a composition comprising a covalent conjugate of the invention include topical bacterial infections, such as gingivitis, skin, and eye infections.

Effective amounts of the covalent conjugates will generally range up to the maximally tolerated dosage, but the concentrations are not critical and may vary widely. The precise amounts employed by the attending physician will vary, of course, depending on the compound, route of administration, physical condition of the patient and other factors. The daily dosage may be administered as a single dosage or may be divided into multiple doses for administration.

The amount of the conjugates of the invention actually administered will be a therapeutically effective amount, which term is used herein to denote the amount needed to produce a substantial beneficial effect. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. The animal model is also typically used to determine a desirable dosage range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans or other mammals. The determination of an effective dose is well within the capability of those skilled in the art. Thus, the amount actually administered will be dependent upon the individual to which treatment is to be applied, and will preferably be an optimized amount such that the desired effect is achieved without significant side-effects.

Therapeutic efficacy and possible toxicity of the covalent conjugates of the invention may be determined by standard pharmaceutical procedures, in cell cultures or experimental animals (e.g., ED50, the dose therapeutically effective in 50% of the population; and LD50, the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio LD50 to ED50. Covalent conjugates that exhibit large therapeutic indices are particularly suitable in the practice of the methods of the invention. The data obtained from cell culture assays and animal studies may be used in formulating a range of dosage for use in humans or other mammals. The dosage of such conjugates lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage typically varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration. Thus, optimal amounts will vary with the method of administration, and will generally be in accordance with the amounts of conventional medicaments administered in the same or a similar form.

The covalent conjugates of the invention may be administered alone, or in combination with one or more additional therapeutically active agents. For example, in the treatment of cancer, the conjugates may be administered in combination with therapeutic agents including, but not limited to, androgen inhibitors, such as flutamide and luprolide; antiestrogens, such as tomoxifen; antimetabolites and cytotoxic agents, such as daunorubicin, fluorouracil, floxuridine, interferon alpha, methotrexate, plicamycin, mecaptopurine, thioguanine, adriamycin, carmustine, lomustine, cytarabine, cyclophosphamide, doxorubicin, estramustine, altretamine, hydroxyurea, ifosfamide, procarbazine, mutamycin, busulfan, mitoxantrone, carboplatin, cisplatin, streptozocin, bleomycin, dactinomycin, and idamycin; hormones, such as medroxyprogesterone, estramustine, ethinyl estradiol, estradiol, leuprolide, megestrol, octreotide, diethylstilbestrol, chlorotrianisene, etoposide, podophyllotoxin, and goserelin; nitrogen mustard derivatives, such as melphalan, chlorambucil, methlorethamine, and thiotepa, steroids, such as betamethasone; and other antineoplastic agents, such as live Mycobacterium bovis, dicarbazine, asparaginase, leucovorin, mitotane, vincristine, vinblastine, and taxotere. Appropriate amounts in each case will vary with the particular agent, and will be either readily known to those skilled in the art or readily determinable by routine experimentation.

The covalent conjugates of the invention may also be administered in combination with an agent that increases iron transport into cells, for example, by increasing the cell surface number of receptors for the iron-carrying protein in the conjugate. It has been shown for example, that insulin, insulin-like growth factor I, and epidermal growth factor cause an increase in the number of transferrin receptors at the cells surface (see, e.g., Davis et al. (1987) J. Biol. Chem. 261(19):8708-11; Davis et al. (1986) J. Biol. Chem. 262(17):13126-34). Therefore, in some embodiments, covalent conjugates of the invention are administered in combination with insulin, insulin-like growth factor I, or epidermal growth factor.

The covalent conjugates of the invention may also be combined with agents such as cytokines, growth factors, and other compounds that are iron-regulating molecules that enhance TfR expression and/or intracellular iron to facilitate the treatment of cancer, hyperproliferative disorders, inflammation, and infectious diseases. Table 4 illustrates a non-limiting set of exemplary compounds that may be used in combination with the covalent conjugates of the invention.

TABLE 4 Combination Therapies Molecule Effect on Iron Metabolism Clinical Target Erythropoietin Enhance binding affinity of Cancer (Leukemia) (Weiss G, et al. Blood. 1997 Jan iron-regulatory protein 15; 89(2): 680–7; Vreugdenhil G, et al. (IRP)-1 Ann Hematol. 1992 Dec; 65(6): 265–8.) Increase in transferrin receptor mRNA levels in K562 and MEL Enhance cell surface expression of TfR Increase uptake of iron into cells. Interleukin-4 Enhance iron uptake and Infectious and (Weiss G, et al. J Immunol. 1997 Jan storage in activated Inflammatory 1; 158(1): 420–5.) macrophages Diseases Increase ferritin translation IRP-independent augmentation of TfR mRNA expression. Interleukin-10 Stimulates TfR-mediated Infectious and (Ludwiczek S, et al. Blood. 2003 May iron uptake into activated Inflammatory 15; 101(10): 4148–54. Epub 2003 Jan monocytes Diseases 9) Interleukin-13 Enhance iron uptake and Infectious and (Weiss G, et al. J Immunol. 1997 Jan storage in activated Inflammatory 1; 158(1): 420–5.) macrophages Diseases Increase ferritin translation IRP-independent augmentation of TfR mRNA expression. Dexrazoxane Enhance the binding Cancer (Leukemia) (Weiss G, et al. Biochem Pharmacol. affinity of iron regulatory 1997 May 15; 53(10): 1419–24) protein (IRP) Increase TfR surface expression Enhance cellular iron uptake Enhance cellular sequestration of iron

Administration of the covalent conjugates of the invention is accomplished by any effective route, e.g., parenterally or orally. Methods of administration include topical (for examples, skin patches), inhalational, buccal, intraarterial, subcutaneous, intramedullary, intravenous, intranasal, intrarectal, intraocular administration, and other conventional means. For example, the covalent conjugates may be injected directly into a tumor, into the vicinity of a tumor, or into a blood vessel that supplies blood to the tumor.

The covalent conjugates of the invention may be formulated into a composition that additionally comprises suitable pharmaceutically acceptable carriers, including excipients and other compounds that facilitate administration of the covalent conjugate to a mammalian subject. Further details on techniques for formulation and administration may be found in the latest edition of “Remington's Pharmaceutical Sciences” (Mack Publishing Co, Easton, Pa.).

Compositions for oral administration may be formulated using pharmaceutically acceptable carriers well known in the art, in dosages suitable for oral administration. Such carriers enable the compositions containing covalent conjugates of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, etc., suitable for ingestion by a subject. Compositions for oral use may be formulated, for example, in combination with a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable additional compounds, if desired, to obtain tablets or dragee cores. Suitable excipients include carbohydrate or protein fillers. These include, but are not limited to, sugars, including lactose, sucrose, mannitol, or sorbitol, starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; as well as proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores are provided with suitable coatings such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound (i.e., dosage).

Covalent conjugates for oral administration may be formulated, for example, as push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating such as glycerol or sorbitol. Push-fit capsules may contain covalent conjugates mixed with filler or binders such as lactose or starches, lubricants such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the covalent conjugates may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycol with or without stabilizers.

Compositions for parenteral administration include aqueous solutions of one or more covalent conjugates of the invention. For injection, the covalent conjugates may be formulated in aqueous solutions, such as in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the covalent conjugates may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Optionally, the suspension may also contain suitable stabilizers or agents, which increase the solubility of the covalent conjugate to allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are typically used in the formulation. Examples of these are 2-pyrrolidone, N-methyl-2-pyrrolidone, dimethylacetamide, dimethyl-formamide, propylene glycol, methyl or isopropyl alcohol, dimethyl sulfoxide, and azone. Additional agents may further be included to make the formulation cosmetically acceptable. Examples of these are fats, waxes, oils, dyes, fragrances, preservatives, stabilizers, and surface-active agents. Keratolytic agents such as those known in the art may also be included. Examples are salicylic acid and sulfur. For topical administration, the composition may be in the form of a transdermal ointment or patch for systemic delivery of the compound and may be prepared in a conventional manner (see, e.g., Barry, Dermatological Formulations (Drugs and the Pharmaceutical Sciences-Dekker); Harrys Cosmeticology (Leonard Hill Books).

For rectal administration, the compositions may be administered in the form of suppositories or retention enemas. Such compositions may be prepared by mixing the covalent conjugates with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Suitable excipients include, but are not limited to, cocoa butter and polyethylene glycols.

The amounts of each of these various types of additives will be readily apparent to those skilled in the art, optimal amounts being the same as in other, known formulations designed for the same type of administration. Stratum corneum penetration enhancers, for example, will typically be included at levels within the range of about 0.1% to about 15%.

Compositions containing the covalent conjugates of the present invention may be manufactured in a manner similar to that known in the art (e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes). The compositions may also be modified to provide appropriate release characteristics, e.g., sustained release or targeted release, by conventional means (e.g., coating).

Compositions containing the covalent conjugates may be provided as a salt and can be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.

After compositions formulated to contain covalent conjugates and an acceptable carrier have been prepared, they can be placed in an appropriate container and labeled for use.

EXAMPLES

The foregoing discussion may be better understood in connection with the following representative examples which are presented for purposes of illustrating the principle methods and compositions of the invention and not by way of limitation. Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.

The covalent conjugates of the invention are generally prepared by reacting a carbonyl-containing peptide with an endoperoxide moiety that carries a hydrazine (R,R′—N—NH2) or aminoxy (R—O—NH2) group (FIG. 2). The linker between the endoperoxide moiety and the receptor binding agent, such as a peptide, can be by any covalent bond means, including but not limited to hydrazones, oxime, amides, esters, ethers, and thioethers. All the linear peptides have at least one amino group at the N-terminus end, and artemisinin or other endoperoxides can be attached to the peptide by using the chemistry described here. In the sections below, the synthesis of these compounds and their reaction to produce artemisinin-tagged peptides is described.

All parts are by weight, and temperatures are indicated in degrees centigrade (° C.), unless otherwise indicated.

Example 1 Synthesis of 4-formylbenzoyl-His-Ala-Ile-Tyr-Pro-Arg-His-amide (HAIYPRH)

Fmoc-Rink amide resin (0.5 g) was placed in a 10 mL reaction vessel. Fmoc-Ala, Fmoc-Ile, Fmoc-Tyr(tBu), Fmoc-His(Trt) and Fmoc-Arg(PMC) were sequentially coupled to assemble the desired peptide on the resin. After the final Fmoc group was deprotected with 20% piperidine in DMF, 4-Formylbenzoic acid was coupled to introduce a carbonyl group at the N-terminus of the peptide. The peptide was cleaved from the resin in 5 mL of 20% TFA (trifluoroacetic acid) in CH2Cl2 for 15 min. The resin was removed by filtration, and washed with CH2Cl2 three times. The filtrate and washings were combined, and concentrated to approximately 2 mL. Dry ether (30 mL) was added the residue to precipitate the peptide. The precipitates were collected by centrifugation and washed three times with ether. After vacuum drying, the crude product (0.3 gram) was obtained and the peptide was purified by reverse phase HPLC. The C4 reverse-phase column was used with a linear gradient from 100% water (0.1% TFA) to 60% acetonitrile-40% water (0.1% TFA). The peptide was detected by the absorbance at 270 nm. The yield was 0.1 gram. Ion-spray MS: m/z=1024.2 (M+H)+.

Example 2 Synthesis of 6-oxo-heptanoyl-His-Ala-Ile-Tyr-Pro-Arg-His-amide (HAIYPRH)

Fmoc-Rink amide resin (0.5 g) was placed in a 10 mL reaction vessel. Fmoc-Ala, Fmoc-Ile, Fmoc-Tyr(tBu), Fmoc-His(Trt) and Fmoc-Arg(PMC) were sequentially coupled to assemble the desired peptide on the resin. After the final Fmoc group was deprotected with 20% piperidine in DMF, 6-oxo-heptanoic acid was coupled to introduce a carbonyl group at the N-terminus of the peptide. The peptide was cleaved from the resin in 5 mL of 20% TFA (trifluoroacetic acid) in CH2Cl2 for 15 min. The resin is removed by filtration, and washed with CH2Cl2 three times. The filtrate and washings were combined, and concentrated to approximately 2 mL. Dry ether (30 mL) was added to the residue to precipitate the peptide. The precipitates were collected by centrifugation, and three times washed with ether. After vacuum drying, the crude product (0.3 gram) was obtained, and the peptide purified by reverse phase HPLC. The C4 reverse-phase column was used with a linear gradient from 100% water (0.1% TFA) to 60% acetonitrile-40% water (0.1% TFA). The peptide was detected by the absorbance at 270 nm. The yield was 0.1 gram. Ion-spray MS: m/z=1018.4 (M+H)+ and 1040.4 (M+Na)+.

Example 3 Synthesis of bis(4-formylbenzoyl)Lys-His-Ala-Ile-Tyr-Pro-Arg-His-amide (HAIYPRH)

Fmoc-Rink amide resin (0.5 g) was placed in a 10 mL reaction vessel. Fmoc-Ala, Fmoc-Ile, Fmoc-Tyr(tBu), Fmoc-His(Trt), Fmoc-Arg(PMC) and Fmoc-Lys(Boc)2 were sequentially coupled to assemble the desired peptide on the resin. After the final Fmoc group was deprotected with 20% piperidine in DMF, 4-Formylbenzoic acid (2 equivalent) was coupled to the N-terminal Lys residue. The peptide was cleaved from resin in 5 mL of 20% TFA (trifluoroacetic acid) in CH2Cl2 for 15 min. The resin was removed by filtration, and washed with CH2Cl2 three times. The filtrate and washings were combined and concentrated to approximately 2 mL. Dry ether (30 mL) was added to the residue to precipitate the peptide. The precipitates were collected by centrifugation, and washed three times with ether. After vacuum drying, the crude product (0.3 gram) was obtained and the peptide purified by reverse phase HPLC. The C4 reverse-phase column was used with a linear gradient from 100% water (0.1% TFA) to 60% acetonitrile-40% water (0.1% TFA). The peptide was detected by the absorbance at 270 nm. The yield was 0.1 gram. Ion-spray MS: m/z=1284.8 (M+H)+ and 1306.9 (M+Na)+.

Example 4 Synthesis of 5-(Dihydroxyartemisinin-methyl)-2-pyridine carbohydrazide (DHA-Pyr-NH2)

5-(Dihydroxyartemisinin-methyl)-2-pyridine carbohydrazide (DHA-Pyr-NH2) was synthesized sequentially from Dimethyl-2,5-pyridinedicarboxylate, Pyridine 2,5-dicarboxylic acid 5-methyl ester, 5-Hydroxymethyl-2 ethyl pyridinecarboxylate (EHMP), 5-(Dihydroxyartemisinin-methyl)-2 ethyl pyridinecarboxylate (DHA-Pyr-Ester) as shown below.

Dimethyl-2,5-pyridinedicarboxylate

Dimethyl-2,5-pyridinedicarboxylate (inspired from Isagawa, K.; Kawai, M.; Fushizaki, Y. Nippon Kagaku Zasshi, 1967, 88, (5), 553-6; Dawson, M. I.; Cha, R.; Hobbs, P. D.; Chao, W-r; Schiff, L. J. J. Med. Chem., 1983, 26, 1282-1293; and Hull, K. G.; Visnick, M.; Sheffrom, A. Tetrahedron 1997, 53, 12405-12414) was prepared as described below.

2,5-pyridinedicarboxylic acid (30 g, 0.182 moles) and methanol (300 mL) were mixed together in a 1 L round bottom flask connected to a funnel containing sulfuric acid conc. (16 mL, 0.285 moles). The acid was added dropwise over a period of 30 min, and then the funnel was removed and replaced with a condenser. The mixture was heated at reflux for 16 h which becomes a brown and later a yellow solution. After the reaction cooled to r.t., the slurry was poured in 500 mL of ice water. Sodium bicarbonate solid (30 g) was added to neutralize the pH. The reaction mixture was concentrated with evaporation in a vacuum. The slurry was dissolved with water/chloroform and the compound processed by extraction. The organic layer was dried with brine and then MgSO4 before solvents were evaporated under reduced pressure to yield a pale yellow solid (29.05 g, 83%). NMR 1H 300 MHz, CDCl3 (δ, ppm): 9.29 (dd, J=1.5 Hz and 0.6 Hz, 1H, CH), 8.42 (dd, J=6 Hz and 2.1 Hz, 1H, CH), 8.19 (dd, J=7.2 Hz and 0.9 Hz, 1H, CH), 4.02 (s, 3H, CH3), 3.97 (s, 3H, CH3).

Pyridine 2,5-dicarboxylic acid 5-methyl ester

Pyridine 2,5-dicarboxylic acid 5-methyl ester (Faul, M. M.; Ratz, A. M.; Sullivan, K. A.; Trankle, W. G.; Winneroski, L. L. J. Org. Chem., 2001, 66, 5772-5782) was produced as described below.

Di-ester (28 g, 0.146 moles) and methanol (260 mL) were stirred in a 500 mL 3-neck round bottom flask with connected a condenser and a funnel. The reaction mixture was heated at reflux after adding one portion of NaOH (6.2 g, 0.155 moles) for 3 h 30 min to produce a white mixture. While at reflux, 2M HCl (121 mL) was added dropwise over a 1 h period to produce a yellow solution. The flask was placed in an ice water bath to cool, and at r.t., a precipitate appears. The precipitate was collected by filtration and washed with 2:1 MeOH/H2O (35 mL) and then water (50 mL). The precipitate was dried overnight. The final yield was 19.68 g (75%). NMR 1H 300 MHz, DMSO-d6 (δ, ppm): 9.12 (m, 1H), 8.40 (dd, J=2.1 Hz and 8.1 Hz, 1H, CH), 8.12 (dd, J=0.9 Hz and 8.4 Hz, 1H, CH), 3.89 (s, 3H, CH3). NMR 13C 75.45 MHz, DMSO-d6 (δ, ppm): 165.9, 165.0, 152.1, 150.2, 138.8, 128.3, 125.0, 53.2.

5-Hydroxymethyl-2 ethyl pyridinecarboxylate (EHMP)

The monoester was converted to the corresponding Ca-salt, and then reduced with sodium borohydride to give 5-Hydroxymethyl-2 ethyl pyridinecarboxylate (EHMP). NMR 1H 300 MHz, CDCl3 (δ, ppm): 8.63 (b, 1H), 8.05 (broad d, J=7.86 Hz, 1H, CH), 7.83 (dd, J=2.0 Hz and 8.0 Hz, 1H, CH), 4.79 (s, 2H, CH2), 4.42 (q, J=7.1 Hz, CH2), 1.40 (t, J=7.1 Hz, 3H, CH3). NMR 13C 75.45 MHz, CDCl3 (δ, ppm): 165.0, 148.1, 146.6, 140.8, 135.4, 124.9, 61.9, 61.8, 14.3.

5-(Dihydroxyartemisinin-methyl)-2 ethyl pyridinecarboxylate (DHA-Pyr-Ester)

EHMP was then coupled to dihydroartemisinin by the same procedure as described in Example 6 to give 5-(Dihydroxyartemisinin-methyl)-2 ethyl pyridinecarboxylate (ART-Py-ester). The reaction time was 48 h and the yield was 39%. NMR 1H 300 MHz, CDCl3 (δ, ppm): 8.69 (b, 1H), 8.07 (broad d, J=7.9 Hz, 1H, CH), 7.71 (dd, J=2.2 Hz and 8.1 Hz, 1H, CH), 5.39 (s, 1H, CH), 4.97 (d, J=13.4 Hz, 1H, CH2), 4.88 (d, J=3.3 Hz, 1H, CH), 4.57 (d, J=13.4 Hz, 1H, CH2), 4.43 (q, J=7.2 Hz, CH2), 2.71-2.61 (m, 1H, CH), 2.38-2.28 (m, 1H, CH), 2.04-1.16 (several m, 16H), 0.93-0.84 (m, 7H). NMR 13C 75.45 MHz, CDCl3 (δ, ppm): 165.1, 148.6, 147.4, 137.5, 135.4, 124.7, 104.2, 101.9, 88.0, 80.9; 67.1, 61.9, 52.4, 44.2, 37.4, 36.3, 34.5, 30.8, 26.1, 24.6, 24.5, 20.2, 14.3, 13.0.

5-(Dihydroxyartemisinin-methyl)-2-pyridine carbohydrazide (DHA-Pyr-NH2)

ART-Py-ester was then reacted with hydrazine to obtain the title compound 5-(Dihydroxyartemisinin-methyl)-2-pyridine carbohydrazide. Yield was 83%.

ESI-MS positive (MeOH): 472.4 [M+K]+, 456.4 [M+Na]+, 434.4 [M+H]+, 418.6 [M+H−NH2]+ (100%).

Example 5 Synthesis of 5-(Dihydroxyartemisinin-methyl)-furan-2-carbohydrazide (DHA-Furan-NH2)

5-(Dihydroxyartemisinin-methyl)-furan-2-carbohydrazide (DHA-Furan-NH2) was synthesized from methyl 5-(hydroxymethyl)-furan-2-carboxylate, methyl 5-(dihydroxyartemisinin-methyl)-furan-2-carboxylate (DHA-Furan-Ester) as shown below.

Methyl 5-(hydroxymethyl)-furan-2-carboxylate

Methyl 5-(hydroxymethyl)-furan-2-carboxylate (Raimundo, B. C.; Oslob, J. D.; Braisted, A. C.; Hyde, J.; McDowell, R. S.; Randal, M.; Waal, N. D.; Wilkinson, J.; Yu, C. H.; Arkin, M. R. J. Med. Chem., 2004, 47 (12), 3111-3130) was synthesized as described below.

5-formyl-2-furan carboxylic acid (1 g, 7.14 mmoles) was stirred in benzene (18 mL)/methanol (4 mL) in a 3-neck 50 mL round bottom flask with one neck connected to a funnel that was previously flushed with nitrogen gas. Trimethylsilyl diazomethane 2M in hexanes (3.6 mL, 7.2 mmoles) was added dropwise over a period of 15 min. After addition, the medium was a green limpid solution, which was stirred for 2 h at r.t. The reaction advancement is monitored by TLC 8:2 Hexanes/AcOEt followed by 95:5 CHCl3/MeOH, and stained with KMnO4. Solvents were evaporated under vacuum, and 14 mL of methanol was added. The flask was placed in an ice-water bath and sodium borohydride (600 mg, 15.8 mmoles) was added. The reaction mixture was stirred for 3 h at r.t. Water was poured off and the mixture extracted with AcOEt. The organic phase was dried over MgSO4, and the solvent was evaporated. The product was purified by silica gel column chromatography (7×3.5 cm) with 100 mL of 90:10, then 200 mL of 80:20, and finally 400 mL of a 75:25 mixture of Hexane/AcOEt to yield a yellow powder after extraction (780 mg, 70%). NMR 1H 300 MHz, CDCl3, (δ, ppm): 7.13 (d, J=3.4 Hz, 1H), 6.41 (d, J=3.3 Hz, 1H), 4.67 (d, J=6.2 Hz, 2H), 3.89 (s, 3H).

Methyl 5-(dihydroxyartemisinin-methyl)-furan-2-carboxylate (DHA-Furan-Ester)

Methyl 5-(dihydroxyartemisinin-methyl)-furan-2-carboxylate was synthesized as follows:

DHA was introduced into a 100 mL 3-neck round bottom flask with one neck connected to nitrogen gas, that was previously heated under vacuum and flushed with N2. The flask was flushed with cyclic vacuum/Nitrogen gas (1.261 g, 4.44 mmoles), before benzene (50 mL) the linker (833 mg, 5.34 mmoles in 5 mL benzene) were added. Using a funnel, TMSCl 1M in THF was added dropwise (2.24 mL, 2.24 mmoles). The solution became clear and was covered with aluminum foil for 3 h at r.t. The reaction was monitored by TLC using 8:2 Hexanes/AcOEt, and stained using 12. Hydrolysis, with saturated NaOAc (DI water, 5 mL), changed the color of the solution from green to yellow/orange. The aqueous phase was extracted twice with AcOEt, and the organic phase was washed with 15 mL of NaCl sat, dried over MgSO4, and the solvents evaporated. Hexane was added to the crude mixture. A white precipitate if it appears, is the unreacted DHA. The liquid phase was reddish. Purification was performed by silica gel column chromatography (7×3.5 cm), and using a 9:1 and then 8:2 mixture of Hexanes/AcOEt to elute the product. To separate the alpha product from the beta product, a second silica gel column chromatography was used (25×2.5 cm). Samples (10 mL fractions) were collected during elution with Hexanes/AcOEt: 250 mL 9:1 and then an 8:2 mixture of column solvents. The resulting powder was slightly yellow, which was washed with Et2O to give a white powder. A 1 h reaction lead to 33% mixture of beta product, 27% DHA, and 8% alpha product. A 3 h reaction was necessary to produce 70% beta linker product. 1H-NMR (CDCl3) δ 0.86 (d, J=7.0 Hz), 0.94 (brs, 4H), 1.24 (m, 2H), 1.43 (brs, 4H), 1.60 (m, 3H), 1.87 (m, 1H), 2.02 (m, 1H), 2.37 (m, 1H), 2.64 (brs, 1H), 3.88 (s, 3H), 4.57 (d, J=12.9 Hz), 1H), 4.77 (d, J=13.4 Hz, 1H), 4.89 (brs, 1H), 5.45 (s, 1H), 6.40 (brs, 1H), 7.13 (brs, 1H); 13C-NMR (CDCl3) δ 13.23, 20.72, 24.84, 25.06, 26.52, 31.13, 34.98, 36.79, 44.72, 52.25, 52.93, 62.12, 81.45, 88.43, 101.67, 104.53, 110.90, 119.12, 144.61, 156.57, 160.02.

Synthesis of 5-(Dihydroxyartemisinin-methyl)-furan-2-carbohydrazide (DHA-Furan-NH2)

DHA-furan-OMe (40 mg, 95 μmoles) and methanol (5 mL). were added to a 10 mL round bottom flask with a condenser, that was previously flame-dried under vacuum and flushed with nitrogen gas. The system was under nitrogen pressure. Anhydrous hydrazine (40 μL, 1.3 mmoles) was added and the reaction mixture heated at reflux for 24 h. After evaporation under vacuum, the compound was purified by silica gel column chromatography (11×2 cm). Samples (8 mL) were collected and the column covered with aluminum foil. Elution solvents were 50 mL 99:1 Chloroform/Methanol, 50 mL 97:3, 50 mL 95:5. The reaction was monitored by TLC and the TLC products stained with ninhydrine in EtOH. A yellow powder was obtained (25 mg, 63%). 1H-NMR (C6D6) δ 0.81 (m, 7H), 1.18 (m, 2H), 1.44 (m, 2H), 1.53 (brs, 1H), 1.57 (brs, 2H), 1.68 (m, 3H), 1.85 (m, 3H), 2.47 (dt, 1H), 2.87 (m, 1H) 3.95 (brs, 2H, exchangeable with D20), 4.48 (m, 3H), 4.88 (d, J=3.0 Hz, 1H), 5.62 (brs, 1H), 6.04 (m, 1H), 7.15 (d, J=2.4 Hz, 1H), 8.2 (brs, 1H, exchangeable with D2O); 13C-NMR (C6D6) δ 12.72, 19.85, 20.17, 24.55, 24.97, 25.93, 30.93, 31.56, 34.30, 24.55, 36.48, 37.32, 44.50, 46.47, 52.50, 61.93, 80.67, 81.32, 87.88, 101.69, 104.21, 110.89, 114.85, 147.56, 153.90, 158.9.

Example 6 Synthesis of 1-(Dihydroxyartemisinin-ethyl)-1H-1,2,3-triazole-4-carbohydrazide (DHA-Triazole-NH2)

1-(Dihydroxyartemisinin-ethyl)-1H-1,2,3-triazole-4-carbohydrazide (DHA-Triazole-NH2) was sequentially synthesized from 2-Azido ethanol: Methyl 1-(2-hydroxyethyl)-1H-1,2,3-triazole-4-carboxylate, Methyl 1-(Dihydroxyartemisinin-ethyl)-1H-1,2,3-triazole-4-carboxylate: DHA-Triazole-Ester, as shown below.

2-Azido ethanol

2-Azido ethanol (Synthesis 1996, 11, 1345-49) was prepared as described below. 2-chloroethanol (2 mL, 30 mmoles) was rapidly added to a round bottom flask with a condenser containing sodium azide (2.34 g, 36 mmoles). The reaction mixture was heated to 30° C. for 1 h, and then 70° C. for 24 h. After a slow cool down to room temperature, the solution was extracted with diethylether. The organic phase was dried over MgSO4 and the solvent evaporated to provide a colorless oil (1.882 g, 75%, d=11.149) and stored at 4° C. (slow decomposition was noted when stored at room temperature.). IR (DCM) cm−1: 2125 N3. NMR 1H 300 MHz, CHCl3, (δ, ppm): 3.73 (m, 2H, CH2OH), 3.38 (m, 2H C2N), 2.95 (b, 1H O).

Methyl 1-(2-hydroxyethyl)-1H-1,2,3-triazole-4-carboxylate

Methyl 1-(2-hydroxyethyl)-1H-1,2,3-triazole-4-carboxylate (Tsypin, G. I.; Timofeeva, T. N., Mel'nikov, V. V.; Gidaspov, B. V. Zh. Org. Khim., 1977, 13, 2275-2281) was synthesized as follows:

Azidoethanol (1 mL, 13.2 mmoles) and methylpropiolate (5 mL, 56.25 mmoles) were added to a 50 mL round bottom flask and mixed for 4 days at room temperature. A beige powder was obtained after drying under vacuum (2.43 g, quant.). NMR 1H 300 MHz, CHCl3, (δ, ppm): 8.21 (s, 1H), 4.52 (t, J=4.8 Hz, 2H, CH2N), 4.08 (q, J=1.8 Hz and 4.2 Hz, 2H, CH2OH), 3.89 (s, 3H).

Methyl 1-(Dihydroxyartemisinin-ethyl)-1H-1,2,3-triazole-4-carboxylate (DHA-Triazole-Ester)

Acetyl-dihydroxyartemisinin (50 mg, 0.154 mmole) in dry chloroform (0.5 mL) and the linker (32 mg, 0.187 mmole) were placed in a 2 mL round bottom flask that was previously flame-dried and flushed with nitrogen gas. The flask was placed in an ice-water bath and chloro trimethylsilane (25 μL, 0.197 mmole) was added dropwise. The reaction was maintained at 0° C. for 1 h, allowed to reach room temperature, and the flask was covered with aluminum foil. After 24 h, 0.5 mL of saturated sodium acetate was added. The organic phase was recovered and the aqueous phase extracted 2 times with chloroform. The organic phase was washed with brine and dried over Na2SO4 before the solvents were removed under vacuum. The crude product was purified by silica gel chromatography (1×3 cm) with 40 mL 7:3 Hexanes/AcOEt, which yielded a white powder after extracting oil product with diethyl ether (65 mg, 97%). NMR 1H 300 MHz, CDCl3 (δ, ppm): 8.14 (s, 1H), 5.10 (s, 1H), 4.76 (d, J=3.3 Hz, 1H), 4.62 (m, 1H), 4.30 (m, 1H), 3.93 (s, 3H), 3.79 (m, 1H), 2.60 (m, 1H), 2.32 (m, 1H), 2.10-1.90 (m, 1H), 1.89-1.80 (m, 1H), 1.70-1.15 (m, 8H), 0.99-0.79 (m, 7H). NMR 13C 75.45 MHz, CDCl3 (δ, ppm): 161.0, 139.5, 128.3, 104.2, 102.2, 87.8, 80.7, 66.1, 52.4, 52.2, 50.7, 44.0, 37.3, 36.3, 34.4, 30.6, 26.0, 24.6, 24.4, 20.3, 12.8.

1-(Dihydroxyartemisinin-ethyl)-1H-1,2,3-triazole-4-carbohydrazide (DHA-Triazole-NH2)

The ester (DHA-Triazole-Ester) (15 mg, 34.3 μmoles), hydrazine hydrate (15 μL, 309 μmoles), and dry ethanol (0.5 mL) were placed in to a 5 mL round bottom flask that was previously flame dried and flushed with nitrogen. The flask was protected from light and the mixture stirred for 48 h at r.t. The solvent was evaporated and the product purified by silica gel chromatography (1×5 cm), eluting with 98:2 chloroform/methanol, to yield a white powder (15 mg, Quant.). NMR 1H 300 MHz, CDCl3 (δ, ppm): 8.28 (b, 1H), 8.11 (s, 1H), 5.11, (s, 1H), 4.75 (d, J=3.3 Hz, 1H), 4.64-4.59 (m, 2H), 4.35-4.28 (m, 1H), 4.04 (b, 2H), 3.83-3.76 (m, 1H), 2.62-2.57 (m, 1H), 2.32 (td, J=14.5 Hz and 3.9 Hz, 1H), 2.02-1.98 (m, 1H), 1.88-1.82 (m, 1H), 1.63-1.53 (m, 2H), 1.45-1.34 (m, 7H), 1.23-1.17 (m, 2H), 0.93-0.86 (m, 4H), 0.82-0.75 (m, 3H). NMR 13C 75.5 MHz, CDCl3 (δ, ppm): 160.6, 141.7, 126.2, 104.2, 103.1, 102.0, 87.8, 65.9, 52.3, 50.7, 43.9, 37.3, 36.3, 34.3, 30.6, 26.0, 24.6, 24.3, 20.2, 12.8. ESI-MS positive (MeOH): 476.4 [M+K]+, 460.4 [M+Na]+ (100%), 438.4 [M+H]+.

Example 7 Synthesis of aminoxy-artemisinin

This compound was prepared from dihydroartemisinin by the published procedure (Kim and Sasaki, J. Org. Chem. 2004, 69, 3242-3244). The aminoxy-artemisinin reacts with benzaldehyde to form the corresponding oxime readily (Kim and Sasaki, J. Org. Chem. 2004, 69, 3242-3244)

Example 8 Synthesis of Artelinic Acid Hydrazide

This compound was prepared from dihydroartemisinin by the published procedure (Lai et al., Life Science (2005), 76, 1267-1279).

Example 9 Synthesis of Artemisinin-Tagged HAIYPRH Peptides

The following is an example of the synthesis of the artemisinin-tagged peptide HAIYPRH:

A solution of 4-formylbenzoyl-HAIYPRH (10 mg) in 1 mL of methanol-water (1:1) and a solution of artelinic acid hydrazine (5 mg) in 1 mL of methanol-water (1:1) were added to a 2 mL round bottom reaction vessel. The mixture was stirred for 1 hr. The solvent was removed by rotavap, and the residue purified by reverse phase HPLC. The same HPLC condition as that of Example 1 was used. The retention times were 18 min, 24 min and 29 min for 4-formylbenzoyl-HAIYPRH, artelinic acid hydrazine and the conjugate, respectively. The yield was 11 mg. Ion-spray MS: m/z=1438.7 (M+H)+.

Example 10 Synthesis of Lysine-Branched Artemisinin-Tagged HAIYPRH Peptides

The following is an example of the synthesis of the lysine-branched artemisinin-tagged HAIYPRH peptide:

This compound was prepared by the same procedure as that for Example 9, except that 2 equivalents of artelinic acid hydrazide was used for conjugation. Ion-spray MS: m/z=2112.9 (M+H)+.

Example 11 Synthesis of α,ε-(bis(4-formylbenzoyl)Lys)2-Lys-His-Ala-Ile-Tyr-Pro-Arg-His-amide. (HAIYPRH)

Fmoc-Rink resin (0.5 gram) was placed in a 10 mL reaction vessel. Fmoc-Ala, Fmoc-Ile, Fmoc-Tyr(tBu), Fmoc-His(Trt), Fmoc-Arg(PMC), (Fmoc)2-Lys and two equivalents of (Boc)2-Lys were sequentially coupled to assemble the desired peptide on the resin. The final Fmoc group was then deprotected with 20% piperidine in DMF, and 4-formylbenzoic acid (4 equivalent) was coupled to the N-terminus Lys residues. The peptide was cleaved from resin in 5 mL of 20% TFA (trifluoroacetic acid) in CH2Cl2 for 15 min. The resin was removed by filtration, and washed with CH2Cl2 3 times. The filtrate and washings were combined and concentrated to approximately 2 mL. Dry ether (30 ml) was added to the residue to precipitate the peptide. The precipitates were collected by centrifugation, and washed with ether 3 times. After vacuum drying, the crude product (0.3 gram) was obtained and purified by reverse phase HPLC. The C4 reverse-phase column was used with a linear gradient from 100% water (0.1% TFA) to 60% acetonitrile-40% water (0.1% TFA). The peptide was detected by the absorbance at 270 nm. The yield was 0.1 gram. Ion Spray MS: m/z=1804.7 (M+H)+, 1826.7 (M+Na)+

Example 12 Synthesis of Lysine-Branched Artemisinin-Tagged HAIYPRH Peptides

The compound was prepared by the same procedure as that for EXAMPLE 9, except that 4 equivalents of artelinic acid hydrazide was used for conjugation. Ion-spray MS: m/z=3461.7 (M+H)+, 3483.7 (M+Na)+.

Example 13 Synthesis of Trioxane Dimer Hydrazide

A solution of dimer-COOH (17 mg, 27 μmol) in a dried dichloromethane-DMSO (20:1=1 mL) was modified by addition of EDCI (12.4 mg, 65 μmol) and tetrafluorophenol (10.6 mg, 64 μmol) in the presence of Et3N (20 μL). The reaction was stirred for 1 h at room temperature, the mixture then treated with an excess of anhydrous hydrazine (10 μL). The reaction was kept standing for 3 h. The product was purified by short silica gel column chromatography, and the product eluted with chloroform, followed by chloroform-methanol (20:1). The product-containing fractions were combined, and concentrated under reduced pressure to yield 13 mg of a mixture of dimer-COOH and the corresponding hydrazide (dimer-CONHNH2). The ratio of the two trioxane dimers was determined to be 1:1, based on the integrals of 1H-NMR of the reaction product. 300 MHz 1H NMR (CDCl3) δ 7.03 (s, 1H), 5.30 (s, 1H), 5.17 (s, 1H), 4.20-4.05 (m, 2H), 1.43, (s), 1.39 (s), 0.93 (d, J=6.0, 6H), 0.84 (d, J=7.6, 6H); LRMS (ES) m/z=657.6 (M+Na+)

Example 14 Toxicity of the Artemisinin-Tagged Peptide in Leukemia Cells and Normal Lymphocytes

The artemisinin-tagged peptide HAIYPRH was tested on human Molt-4 lymphobastoid leukemia cells and compared with normal human lymphocytes, as follows. Molt-4 cells (obtained from the ATCC, Manassas, Va.) were cultured at 37° C. in 5% CO2/95% air and 100% humidity in culture flasks. Cell viability was determined before an experiment by using trypan blue dye exclusion. After an initial counting of cells, human holotransferrin (Sigma Chemicals, St. Louis, Mo.) was added to samples of the cells. Different concentrations (3.1, 6.2, 12.4 μM) of ‘artemisinin-tagged peptide’ (dissolved in 0/1 mL of complete medium) were added 1 hr later to the cell samples. The final concentration of holotransferrin was 12 μM (which is the concentration in human circulation). An equal volume of medium was added to control samples. Cells were kept in an incubator at 37° C. under 5% CO2/95% air and 100% humidity during the experiment. At 24, 48 and 72 hrs after the addition of the tagged peptide, cell concentrations in appropriate flasks were counted using a counting hemocytometer chamber and microscope. In a similar set up, the same procedures were carried out on normal human lymphocytes. The artemisinin-tagged peptide killed Molt-4 cells very effectively at low micromolar concentrations without affecting normal lymphocytes, as shown in FIGS. 3A and B, respectively.

The IC50 values of ART-peptide and ART2-peptide on Molt-4 cells were 4.23±0.09 μM and 0.86±0.10 μM at 72 hrs, respectively (FIGS. 3C and 3D). The artemisinin-tagged peptides were virtually non-toxic to normal leukocytes (IC50>10,000 uM, FIG. 3B). Under the same assay condition, DHA showed IC50 values of 5.3±0.26 uM and 43±22 μM for Molt-4 cells and normal leukocytes, respectively. Therefore, tagging to the TfR-binding peptide significantly improved the anti-cancer potency and selectivity of artemisinin. The in vitro cancer cytotoxicity of the artemisinin-tagged peptides is comparable to or higher than that of the other commonly used anti-cancer drugs, except that the artemisinin-tagged peptides show much higher cancer/normal cell selectivity. When both ART-peptide and ART2-peptide are kept in DMSO at room temperature for one month, essentially no change in activity was observed, except for ART-peptide that showed a significant increase in activity after the storage in DMSO, presumably due to its slow dissolution rate in DMSO.

TABLE 5 LD50 of Selected compounds LD50 (μM)a LD50 (μM)a (after stored in DMSO Compounds (fresh sample) at room temperature for 30 days) DHA  5.3 ± 0.26 5.01 ± 0.35 ART-peptideb 4.23 ± 0.09 1.06 ± 0.08 ART2-peptideb 0.86 ± 0.1  0.61 ± 0.05 aafter 72 hr ball the cells are dead after 7 days

Example 15 Inhibition of Growth of Rat Breast Cancer Cells

The artemisinin-tagged peptide HAIYPRH was also tested on rat breast cancer cells, as follows. MTLn3 rat breast cancer cells were grown in complete MEM from GIBCO/BRL (Rockville, Md.) at 37° C. in a humid atmosphere containing 5% CO2. After confluency, the cells were trypsinized and plated in a ratio of 1:4 to a T-25 flask. Testing was done on cultures at 24 hrs after plating. The cells were counted in one set of flasks. Each flask contained approximately one hundred thousand cells. Medium from cultures was aspirated and 5 ml each of the same medium containing 12.4 μM of the tagged peptide was added to each flask. The cells were incubated for 72 hrs at 37° C.

Since this is a test to investigate whether the artemisinin-tagged peptide also kills rat cancer cells, only one drug concentration and one test time point were studied. Medium from a flask was aspirated out and collect in a 50 ml tube. Attached cells were washed twice with 5 ml of PBS (phosphate buffered saline without calcium and magnesium) each time and these washes were collected along with the medium. Two milliliters of freshly made 0.025% trypsin (Amresco, Solan, Ohio) in PBS at 37° C. were then added for 5 min to detach cells from the flask. Detached cells were collected along with the medium and washes from the flask. Thus, all cells floating as well as detached using trypsin, were collected together. Ten microliters of this cell suspension were loaded on each side of a hemocytometer and all cells (normal, as well apoptotic and necrotic) were counted. Apoptotic and necrotic cells were identified using the morphological criteria. Controls were cells subjected to the same protocol, but not treated with the ‘tagged-peptide’. The data show that at 72 hrs after the above treatment, the artemisinin-tagged peptide (at 12.4 μM) retarded the growth of the rat breast cancer cells by approximately 40%. The surviving cells were not able to attach to the culture plate, indicating that the peptide binds to rat transferrin receptors as well as human transferrin receptors.

Example 16 Inhibition of Growth of Medulloblastoma Cancer Cells

DAOY human Medulloblastoma cells (10,000 cells/200 μL) were seeded on a 96 well plate and incubated for 24 h at 37° C. Cell culture medium was removed after 24 h and 150 μL of medium with different combinations of drug treatment was added. Human holotransferrin (20 μM) was added to half of the samples. Treatment medium was removed after 48 h, and 100 μL of cell medium was added, and the following protocol was used to determine cell viability: (1) 10 μL of 12 mM MTT reagent was added to each well; (2) the cultures were incubated at 37° C. for 4 h; (3) 100 μL of isopropanol was added to each well to lyse the cells and then incubated at 4° C. for 30 min; (4) after incubation each well was plunged (3×200 μL) to ensure the cells were lysed; (5) the samples were then centrifuged at 13,000 rpm in a microcentrifuge for 3 min at room temperature; and (6) 100 μL of the supernatant was read in a plate reader at λ=570 nm. FIGS. 3E and 3F show the effects of peptides tagged with one and two moieties of artemisinin, respectively. Both peptides inhibited the growth of human medulloblastoma cells in vitro. In addition, peptide containing two artemisinin moieties is more potent than peptide containing one moiety.

Example 17 Inhibition of Rat Breast Tumor Growth In Vivo

The artemisinin-tagged peptide HAIYPRH was then tested in an animal cancer in vivo model. In this experiment, breast tumors were induced in rats by injecting subcutaneously 1 million rat MTLn3 breast cancer cells. When the tumors had reached a size between 5 mm to 10 mm in diameter, rats were treated daily with the tagged peptide for 5 days, as follows. The artemisinin-tagged peptide was dissolved in a phosphate buffer at pH 7.4. 0.1 mL of the buffer containing 0.5 mg of the tagged-peptide was injected daily via a tail vein. Controls were injected with 0.1 mL of the buffer daily. The length, width, and height of each ellipsoidal tumor were measured with a caliper. The tumor volume was calculated using the formula: length×width×height>π/6. The results are shown in FIG. 4, where the data were expressed as percent change in tumor volume from the first day of tagged-peptide treatment for each rat. Intravenous injection of the peptide significantly retarded the growth of breast tumors in the rat.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. All references, patents, or applications cited herein are incorporated by reference in their entirety, as if written herein.

Claims

1. A compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor.

2. The compound of claim 1, wherein the endoperoxide containing moiety comprises an endoperoxide bridge.

3. The compound of claim 2, wherein the endoperoxide bridge is a 1,2,4-trioxane bridge or a 1,2,4,5-tetraoxane bridge.

4. The compound of claim 3, wherein the endoperoxide containing moiety is an artemisinin-related endoperoxide.

5. The compound of claim 1, wherein the receptor binding agent is a peptide.

6. The compound of claim 5, wherein the peptide is selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2.

7. A composition comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the receptor, and a pharmaceutically acceptable carrier.

8. A method of treating a human or animal subject for a disease or condition selected from the group consisting of cancer; restenosis; proliferative eye, kidney, and skin diseases; precancerous hyperplastic conditions, benign prostatic hyperplasia (BPH), benign breast disease (BBD); autoimmune disease; arthritis; graft rejection; inflammatory bowl disease; proliferation induced after medical procedures; an infection by a pathogenic organism that has a receptor for transferrin or lactoferrin; topical bacterial infections; gingivitis; skin infections; eye infections; and malaria; comprising administering to said subject a therapeutically effective amount of a composition comprising a compound comprising at least one endoperoxide containing moiety covalently linked to a receptor binding agent that binds to a transferrin receptor or a lactoferrin receptor on a cell without interfering with transferrin or lactoferrin binding to the same receptor.

9. The method of claim 8, wherein the endoperoxide containing moiety comprises an endoperoxide bridge.

10. The method of claim 9, wherein the endoperoxide bridge is a 1,2,4-trioxane bridge or a 1,2,4,5-tetraoxane bridge.

11. The method of claim 10, wherein the endoperoxide containing moiety is an artemisinin-related endoperoxide.

12. The method of claim 8, wherein receptor binding agent is a peptide.

13. The method of claim 8, wherein the subject is human.

14. The method of claim 8, wherein the disease or condition is selected from the group consisting of cancer, precancerous hyperplastic conditions, BPH, and BPD.

15. The method of claim 8, comprising administering an effective amount of the covalent conjugate in combination with an agent that increases iron transport into cells.

16. The method of claim 15, wherein the agent that increases iron transport into cells is selected from the group consisting of insulin, insulin-like growth factor I, epidermal growth factor, erythropoietin, interleukin-4, interleukin-10, interleukin-13, and dexrazoxane.

Patent History
Publication number: 20070231300
Type: Application
Filed: Mar 28, 2007
Publication Date: Oct 4, 2007
Applicant: WASHINGTON, UNIVERSITY OF (Seattle, WA)
Inventors: Tomikazu Sasaki (Bothell, WA), Henry Chiu-Yuen Lai (Seattle, WA), Narendra Pal Singh (Lynnwood, WA), Steve J. Oh (Mill Creek, WA)
Application Number: 11/692,866
Classifications
Current U.S. Class: Interleukin (424/85.2); 514/12; Plural Ring Oxygens In The Hetero Ring (514/452); 514/3; Three Or More Ring Oxygens In The Hetero Ring (549/367)
International Classification: A61K 38/20 (20060101); A61K 38/28 (20060101); A61K 38/18 (20060101); C07D 323/04 (20060101);