EUV-lithography apparatus having a chamber for cleaning an optical element
There is provided, a system that includes (a) a source of light having a wavelength of less than or equal to about 193 nm, (b) an optical element having a region for directing the light, (c) an arrangement for cleaning the region, and (d) a chamber to accommodate the region during the cleaning.
Latest Carl-Zeiss SMT AG Patents:
1. Field of the Invention
The invention relates to an optical subsystem, in particular for a projection exposure system, wherein a light bundle passes through the subsystem and the optical subsystem has at least one optical element, on which the rays of the light bundle impinge on a first used area. Projection exposure systems for microlithography, in particular for wavelengths of ≦193 nm have become known from a plurality of applications. Relative to catadioptric systems, reference is made to DE-A-100 20 592; relative to refractive systems, reference is made to DE 198 55 157 and DE-A-199 05 203, the disclosure content of which is incorporated in its entirety in the present application. The field of the invention includes the field of projection exposure systems, in particular, those that operate with EUV radiation.
2. Description of the Related Art
At the present time, wavelengths in the range of 11-14 nm, in particular 13.5 nm, are discussed as wavelengths for EUV lithography, with a numerical aperture of 0.2-0.3. The image quality in EUV lithography is determined, on the one hand, by the projection objective, and on the other hand, by the illumination system. The illumination system will make available an illumination that is as uniform as possible in the field plane, in which the pattern-bearing mask, the so-called reticle, is disposed. The projection objective images the field plane in an image plane, the so-called wafer plane, in which a light-sensitive object is disposed. Projection exposure systems for EUV lithography are designed with reflective optical elements. The shape of the field in the image plane of an EUV projection exposure system is typically that of an annular field with a high aspect ratio of 2 mm (width)×22-26 mm (arc length). Projection systems are usually operated in scanning mode. With respect to EUV projection exposure systems, reference is made to the following publications: W. Ulrich, S. Beiersdörfer, H. J. Mann, “Trends in Optical Design of Projection Lenses for UV- and EUV-Lithography” in Soft-X-Ray and EUV Imaging Systems, W. M. Kaiser, R. H. Stulen (Eds.), Proceedings of SPIE, Vol. 4146 (2000), pages 13-24 and M. Antoni, W. Singer, J. Schultz, J. Wangler. I. Escudero-Sanz, B. Kruizinga, “Illumination Optics Design for EUV-Lithography” in Soft X Ray and EUV Imaging Systems, W. M. Kaiser, R. H. Stulen (Eds.), Proceedings of SPIE, Vol. 4146 (2000), pages 25-34.
The disclosure content of the above publications is incorporated in its entirety in the present application.
In projection exposure systems, which operate at wavelengths of ≦193 nm, in particular, in the range of ≦157 nm, particularly in the EUV range with wavelengths of <30 nm, the problem arises that radiation in the EUV- or VUV and DUV range, respectively, lead to a contamination and/or disruption of the optical surface of the components, which are also denoted optical elements.
The first and last optical surfaces, for example, of refractive systems are particularly at risk of contamination, since these are found in the direct vicinity, e.g., of a source, of a mask, or of a wafer to be exposed. Contaminants are introduced into the optical system by these surfaces. It is thus usual to protect these surfaces on either end, e.g., by a “skin”, which comprises thin foils. Such foils, however, lead to absorption and, in addition, introduce aberrations into the optical system.
The high-energy radiation of the light sources of ≦193 nm leads to the fact that, for example, the residual oxygen components are converted into ozone by the radiation, which in turn attacks and can disrupt the surfaces of the optical elements and their coatings.
In addition, contaminations can be formed on the optical surface due to concentrations of residual gas, such as hydrocarbons from the atmosphere surrounding the optical surface, e.g., due to crystal formation or layers, e.g, of carbon or carbon compounds. Such contamination leads to a reduction in reflection in the case of reflective components and to a reduction in transmission in the case of transmissive components. The contamination may thus depend on the illumination intensity. In the case of EUV lithography, one may use sources, which emit a broadband spectrum. Even after a spectral filtering, e.g., with a grating spectral filter or a zirconium foil, a broad spectrum of high-energy radiation is present. Particularly high is the load in the first optical element up to the first multilayer mirror in an EUV system, since except for the radiation at, e.g., 13.5 nm, the broadband radiation of the source is present and thus the radiation load is maximal. In an EUV projection exposure system, the reflection is particularly reduced due to contamination in the case of the first optical element up to and including the first normal-incidence mirror in an illumination system for a projection exposure system. A normal-incidence mirror in this application is to be understood as a mirror on which the rays of the incident light bundle strike at an angle of <70° relative to the surface normal line.
The reflection loss on the first normal-incidence mirror is greatest in an illumination system of an EUV projection exposure system for this reason, since this mirror receives the highest power density of the light source, but essentially reflects only selectively at 13.5 nm, on account of the multiple layers. All other radiation which is emitted by the EUV source is thus converted into absorption power. Carbon or carbon compounds are again removed by regular cleaning of the mirror, for example, by means of admixtures of argon and oxygen under an RF plasma.
Relative to the cleaning of contaminated optics, reference is made to the following publication:
T. Eggenstein, F. Senf, T. Zeschke, W. Gudat, Cleaning of contaminated XUV-optics at Bessy IIα, Nuclear Instruments and Methods in Physics Research A 467-468 (2001) p. 325-328,
the disclosure content of which is incorporated in its entirety in the present application.
Such cleaning of the mirror is, of course, necessary at short time intervals. The useful operating time of the machine is thus very sharply reduced in this way. It may be necessary, for example, to repeatedly clean the first normal-incidence mirror in an EUV projection exposure system as often as approximately every 20 hours of operation. This cleaning lasts, for example, for approximately 2 hours, i.e., 10% of the use time.
SUMMARY OF THE INVENTIONThe object of the invention is thus to offer an optical subsystem of a projection exposure system that is characterized in that the use times are increased in comparison to the devices known from the prior art. According to the invention, this is achieved by the fact that at least one optical element of the optical subsystem has a surface which is at least twice as large as the dimensions of the first used area on this optical element. By this measure, it can be achieved that an optical area on the mirror or a transmissive optical element can be regularly removed from the beam path in the optical subsystem and is cleaned, while a cleaned used area remains in the beam path. In this manner, it is possible to clean the contaminated optical elements regularly without interrupting the operating time of the machine.
It is particularly advantageous if the first used area and the used area(s) of the optical element have an identical optical effect. This is achieved in that the optical element is symmetric to a point of rotation, symmetric to an axis of rotation, or has several used areas with an identical optical effect, which are disposed along a translation axis, which is also denoted a displacement axis.
If the optical element has a point of rotation, then the optical element can be rotated around the point of rotation, in order to bring the different used areas with identical optical effect into the beam path.
As an alternative to a configuration symmetric to a point of rotation, the optical element can also be configured symmetric to an axis. The optical element then comprises an axis of rotation.
Such an optical element can be rotated around the axis of rotation in order to bring it from a first position into another position.
In another configuration of the invention, the optical element has a translation invariancy. In the case of such optical elements, the different optically identical regions can be brought into the beam path by displacement along an axis of translation, which is also denoted a displacement axis.
In a particularly advantageous embodiment, it is provided that the optical element is a reflective optical element, for example, a planar mirror, a spherical mirror, a grid, or an optical element with raster elements, wherein the raster elements are comprised of identical mirrors, in general a mirror with a behavior that is rotation- or translation-invariant. In another embodiment, it is provided that the optical element is a transmissive optical element, for example, a filter element or a refractive optical element. Refractive optical elements can be, for example, a planar plate, a lens, or an optical element with raster elements, wherein the raster elements are comprised, e.g. of lenses, a beam splitter, or, in general, a refractive element with a rotation- or translation-invariant behavior.
In particular, in optical subsystems for EUV lithography, the optical element can be a reflective optical element, for example, a mirror with multiple layers, on which the rays of a light bundle impinge at angles α<70° in the used area. It would also be possible to use here a grazing-incidence mirror, on which the rays of the light bundle impinge at an angle α>70° relative to the surface normal line.
In a particular embodiment of the invention, the optical subsystem comprises a cleaning chamber. The cleaning chamber has an atmosphere separated, e.g., by vacuum technology, from the chamber, for example, the vacuum chamber of the rest of the optical subsystem. In the cleaning chamber that is separate from the remainder of the optical subsystem, a specific gas concentration can be introduced for purposes of cleaning, e.g., preferably an oxygen concentration and/or an argon concentration, or a flow of gas, as well as other means for cleaning, such as, for example, a UV light source, an RF antenna for generating a high-frequency plasma, electrodes for applying fields, or mechanical cleaning means. The mirror surface not in use is cleaned in one or another of the ways described above in the cleaning chamber.
In EUV lithographic systems, in addition to the formation of a separate vacuum chamber for cleaning purposes, it may also be provided that the optical element to be cleaned, in particular the optical mirror to be cleaned, is itself separated relative to the vacuum chamber of the rest of the system. An arrangement of the optical element to be cleaned in a separate vacuum chamber has the advantage that the mirror can be continually cleaned during operation by mixing in a specific oxygen concentration, and a full cleaning will be necessary only after longer operating times. Due to the arrangement in a separate vacuum chamber, the remainder of the system is protected, for example, from possible harmful effects of the cleaning. The optical subsystem is preferably an illumination system of a projection exposure system, but it can also be the projection objective itself, in which one or more optical elements according to the invention are formed, so that they allow a simple cleaning without interrupting operation.
In addition to the optical subsystem, the invention also provides a projection exposure system for EUV lithography with such an optical subsystem as well as a method for the production of microelectronic components. The invention will be described below on the basis of the figures.
BRIEF DESCRIPTION OF THE DRAWINGS
The dimensions of the optical element 1, here the normal incidence mirror, as can be seen from
Transport into the cleaning chamber 16 is conducted in the present case by turning around the axis of rotation 18. Other possibilities are also conceivable for transport into the cleaning chamber without departing from the basic concept of the invention. Such possibilities include the lateral transport of planar optical elements or the rolling, e.g., of spherical mirrors or concentric menisci.
As is clearly seen in
The EUV projection exposure system comprises in addition a light source 3, a collecting optical element, a so-called collector 5, which is formed as a nested collector. The collector 5 images the light source 3 lying in the object plane of the illumination system via an optional planar mirror 9, which additionally bends the beam path into a secondary light source 5.1 in or in the vicinity of a diaphragm plane 7.1.
In the embodiment shown the light source 3, which can be, for example, a laser-plasma source or a plasma discharge source, is disposed in the object plane of the illumination system of the projection exposure system.
The planar mirror 9 can alternatively be designed, e.g., as a grating spectral filter. The grating spectral filter together with the physical diaphragm 7.1 blocks the light of undesired wavelengths, in particular wavelengths longer than 30 nm. For example, the focal point of the −1 order comes to lie in the plane of the diaphragm 7.1, i.e., the light source 3 is imaged by collector 5 and grating spectral filter 9 in the −1 diffraction order nearly stigmatically in the plane of diaphragm 7.1. The imaging in all other diffraction orders is not stigmatic. The use of a grating spectral filter is shown in the present embodiment, and this is of advantage, since radiation in the wavelength region of >30 nm can be filtered thereby, but it is in no way absolutely necessary. Thus an arrangement would also be conceivable, in which the grating spectral filter 9 is designed only as a planar mirror or is completely absent. It can also be clearly recognized that the entire vacuum chamber 20 of the illumination system is subdivided into three individual chambers. The light source, the collector and the grating spectral filter are disposed in a first vacuum chamber 21.1. Only the used area 12 that is in use of the optical element 1 is disposed in the second vacuum chamber 21.2. The optical elements of the illumination system that serve for the shaping and illumination of the field in the field plane 22 with an annular field are disposed in the third vacuum chamber 21.3. The separation of the individual vacuum chambers 21.1, 21.2, 21.3 is undertaken each time by means of differential pumping segments at the two intermediate images 5.1 and 5.2 of the light source 3. Such a separation of the illumination system into three vacuum chambers has the advantage that, by a separation of the optical element 1 to be cleaned into a separate vacuum chamber 21.2 and by adding, for example, a mixture of an oxygen concentration and an argon concentration in the vacuum chamber 21.2, a continual cleaning of the used area 12 in use of the first mirror 1 can be achieved during operation. In this manner, the service life can be clearly prolonged. Such a subdivision of the vacuum chamber of the illumination system is advantageous, but in no way necessary for the invention, however.
In addition, the illumination system of the projection system comprises an optical system for shaping and illuminating the field plane 22 with an annular field. As a mixing unit for the homogeneous illumination of the field, the optical system comprises two facet mirrors 29.1, 29.2 as well as two imaging mirrors 30.1, 30.2 and one field-forming, grazing-incidence mirror 32.
The first facet mirror 29.1, the so-called field facet mirror, produces a plurality of secondary light sources in or in the vicinity of the plane of the second facet mirror 29.2, the so-called pupil facet mirror. The following imaging optics images the pupil facet mirror 29.2 in the exit pupil of the illumination system, which comes to lie in the entrance pupil of the projection objective 26. The angles of inclination of the individual facets of the first and second facet mirrors 29.1, 29.2 are designed in such a way that the images of the individual field facets of the first facet mirror 29.1 are superimposed in the field plane 22 of the illumination system and thus a largely homogenized illumination of the pattern-bearing mask, which comes to lie in this field plane 22 is made possible. The segment of the annular field is formed via the field-forming, grazing-incidence mirror 32 operating under grazing incidence.
A double-faceted illumination system is disclosed, for example in U.S. Pat. No. 6,198,793, imaging and field-forming components are disclosed in PCT Publication No. WO 01/09681 and U.S. Pat. No. 6,840,640. The disclosure content of these documents is incorporated in its entirety in the present application.
The pattern-bearing mask, which is also denoted the reticle and is disposed in the field plane 22, is imaged by means of a projection objective 26 in the image plane 28 of the field plane 22. The projection objective 26 is a 6-mirror projection objective, such as disclosed, for example, in US Patent Application No. 2002-0056815, the disclosure content of which is incorporated in its entirety in the present application. The object to be exposed, for example, a wafer, is disposed in image plane 28.
Although the embodiment shows as the optical element a normal-incidence mirror in an illumination system by way of example, the invention is in no way limited thereto. Of course, any other optical element in the illumination system or even in the projection objective can be cleaned in the manner according to the invention, by selecting the mirrors essentially larger than the used areas and moving the areas not in use into cleaning chambers for cleaning. The invention can also be transferred to purely refractive systems, for example, projection exposure systems for 157 nm.
Examples are illustrated in FIGS. 2 to 6, which can also be applied to reflective optical elements according to the invention.
In the cleaning position, the used area that is to be cleaned and that is part of the first lens half 102 is found in a cleaning device, which is not shown and which can be formed, for example, as a cleaning chamber. The contaminants that arise due to the loading of the lens in this used area, such as, e.g., crystal formation, are removed by means of the introduction of reactive gases and/or irradiation or by other means such as mechanical cleaning, in the cleaning device. If need be, a new coating can also be applied or a desired coating can be reactivated or repaired.
The first lens half 102 is held in a rotatable first holder 112. The rotatable first holder 112 is introduced in a guide 114. The second lens half 104 is held in a rigid second holder 116. A person skilled in the art can transfer the teaching given for refractive systems to reflective systems without inventive step, and vice versa, can transfer the teaching for reflective systems to refractive systems. Although not explicitly described for each individual case, these teachings are included in the scope of protection of the application.
With the invention, for the first time, an optical subsystem is provided for a projection exposure system, with which it is possible to clean optical elements without shutting down the unit.
Claims
1-32. (canceled)
33. A system comprising:
- a source of light having a wavelength of less than or equal to about 193 nm;
- an optical element having a region for directing said light;
- an arrangement for cleaning said region; and
- a chamber to accommodate said region during said cleaning.
34. The system of claim 33,
- wherein said arrangement comprises a supply of a gas, and
- wherein said chamber comprises an inlet through which said gas is introduced into said chamber for said cleaning.
35. The system of claim 34, wherein said gas is selected from the group consisting of oxygen and argon.
36. The system of claim 34, wherein said chamber further comprises an outlet for said gas.
37. The system of claim 33, wherein said arrangement comprises a device for providing said chamber with an interior atmosphere that is separated from an exterior of said chamber.
38. The system of claim 37, wherein said device comprises a vacuum.
39. The system of claim 33, wherein said arrangement comprises a device that generates a plasma for said cleaning.
40. The system of claim 39, wherein said device is selected from the group consisting of a UV light source and an RF antenna.
41. The system of claim 33, wherein said arrangement comprises a device that produces an electrical voltage for said cleaning.
42. The system of claim 33, wherein said arrangement comprises a mechanical cleaning device for said cleaning.
43. The system of claim 33, wherein said region, when situated in a path of said light, reflects said light.
44. The system of claim 43, wherein said optical element is selected from the group consisting of (a) a mirror, (b) a grid, and (c) a plurality of mirrors.
45. The system of claim 43, wherein said optical element is selected from the group consisting of a plane mirror and a spherical mirror.
46. A system comprising:
- a source of light having a wavelength of less than or equal to about 193 nm;
- an optical element having a region for directing said light;
- a chamber, to accommodate said region, having an inlet through which a gas is introduced into said chamber for cleaning said region; and
- a vacuum for providing said chamber with an interior atmosphere that is separated from an exterior of said chamber.
47. A system comprising:
- a source of light having a wavelength of less than or equal to about 193 nm;
- an optical element having a region for reflecting said light, wherein said optical element is selected from the group consisting of (a) a mirror, (b) a grid, and (c) a plurality of mirrors; and
- a chamber, to accommodate said region, having an inlet through which a gas is introduced into said chamber for cleaning said region.
Type: Application
Filed: Apr 27, 2007
Publication Date: Dec 13, 2007
Applicant: Carl-Zeiss SMT AG (Oberkochen)
Inventors: Wolfgang Singer (Aalen), Joachim Hainz (Aalen), Joachim Wietzorrek (Aalen), Markus Weiss (Aalen)
Application Number: 11/796,475
International Classification: F26B 3/34 (20060101);