Free layer for CPP GMR enhancement
By using a composite free layer of Fe25% Co/NiFe, an improved CPP GMR device has been created. The resulting structure yields a higher CPP GMR ratio than prior art devices, while maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is also described.
Latest Patents:
This is a divisional application of U.S. patent application Ser. No. 10/845,888, filed on May 14, 2004, which is herein incorporated by reference in its entirety, and assigned to a common assignee.
FIELD OF THE INVENTIONThe invention relates to the general field of CPP GMR read heads with particular reference to the free layer sub-structure.
BACKGROUND OF THE INVENTIONThe principle governing the operation of most magnetic read heads is the change of resistivity of certain materials in the presence of a magnetic field (magneto-resistance or MR). Magneto-resistance can be significantly increased by means of a structure known as a spin valve where the resistance increase (known as Giant Magneto-Resistance or GMR) derives from the fact that electrons in a magnetized solid are subject to significantly less scattering by the lattice when their own magnetization vectors (due to spin) are parallel (as opposed to anti-parallel) to the direction of magnetization of their environment.
The key elements of a spin valve are illustrated in
Next is a copper spacer layer 16 on which is low coercivity (free) ferromagnetic layer 17. A contacting layer such as lead 18 lies atop free layer 17. When free layer 17 is exposed to an external magnetic field, the direction of its magnetization is free to rotate according to the direction of the external field. After the external field is removed, the magnetization of the free layer will stay at a direction, which is dictated by the minimum energy state, determined by the crystalline and shape anisotropy, current field, coupling field and demagnetization field.
If the direction of the pinned field is parallel to the free layer, electrons passing between the free and pinned layers suffer less scattering. Thus, the resistance in this state is lower. If, however, the magnetization of the pinned layer is anti-parallel to that of the free layer, electrons moving from one layer into the other will suffer more scattering so the resistance of the structure will increase. The change in resistance of a spin valve is typically 8-20%.
Earlier GMR devices were designed so as to measure the resistance of the free layer for current flowing parallel to its two surfaces. However, as the quest for ever greater densities has progressed, devices that measure current flowing perpendicular to the plane (CPP) have also emerged. CPP GMR heads are considered to be promising candidates for the over 100 Gb/in2 recording density domain (see references 1-3 below).
A routine search of the prior art was performed with the following references of interest being found:
No references were found that disclosed a specific percentage of Fe in the free layer. In U.S. Pat. No. 6,680,831, Hiramoto et al. disclose a simplified SV structure with only a pinned layer and a free layer separated by an intermediate, non-magnetic, layer. The pinned layer could be FeCo containing at least 50% Fe or Co. In U.S. Pat. No. 6,529,353, Shimazawa et al. and in U.S. Pat. No. 6,519,124, Redon et al. teach that the free layer may be a laminate of FeCo and NiFe. US Patent Application 2002/0048127, Fukuzawa et al. teach a CoFeNi free layer for a higher rate of change in MR than CoFe/NiFe. Both Redon and Shimazawa disclose a laminated CoFe/NiFe free layer. Unless otherwise specified, CoFe usually means Co90Fe10; CoFe/NiFe composited free layers of this type are well known for spin valve applications.
An improved free layer in a CPP spin valve needs to achieve three objectives:
1) higher CPP GMR ratio;
2) low coercivity i.e., good magnetic softness; and
3) low positive magnetostriction.
None of the prior art inventions listed above achieve all three of these, particularly the low positive magnetostriction
REFERENCES
- [1] M. Lederman et al U.S. Pat. No. 5,627,704.
- [2] J. W. Dykes et al U.S. Pat. No. 5,668,688
- [3] Min Li et al patent application Ser. No. 10/886,288 filed Jul. 7, 2004.
It has been an object of at least one embodiment of the present invention to provide a CPP GMR magnetic read head having improved stability and performance.
Another object of at least one embodiment of the present invention has been to provide a process for manufacturing said read head.
Still another object of at least one embodiment of the present invention has been that said process be compatible with existing processes for the manufacture of CPP GMR devices.
These objects have been achieved by replacing the conventional free layer with a Fe25% Co/NiFe composite free layer for CPP GMR enhancement. The resulting CPP spin valve structure yields higher CPP GMR ratios, while maintaining both free layer softness and an acceptable magnetostriction constant. It is important to control the layer thicknesses so the FeCo layer is between about 5 and 15 Angstroms thick and the NiFe layer is between about 15 and 50 Angstroms thick.
BRIEF DESCRIPTION OF THE DRAWINGS
It is well known that besides the requirement of a reasonable RA (resistance-area product) and higher CPP GMR, the free layer of the CPP GMR structure has to be magnetically soft and its magnetostriction constant needs to be within the desirable range (positive 1-3×10−6). The present invention describes a new free layer design for a spin valve having enhanced CPP GMR.
While it is known that Fe rich CoFe can be used in CPP GMR spin valve structures for CPP GMR ratio improvement, this is offset by the fact that Fe rich CoFe also has too large an Hc (coercivity) value, as well as undesirable magnetostriction, to be useful as a free layer. To overcome this difficulty we have made use of the fact that the magnetic properties of a composite free layer made of CoFe and NiFe can be adjusted through control of the thickness ratio between the NiFe and the CoFe.
In conventional (standard) CPP spin valve structures, composite free layers made of CoFe(10%) and NiFe(19%) have been used. Single ferromagnetic films made of CoFe(10%) and NiFe(19%) are supposedly non magnetostrictive (i.e. the magnetostriction coefficient is around 10−7. For CoFe films, magnetostriction increases with higher Fe composition while for NiFe films, negative magnetostriction is obtained at lower Fe concentrations. The present invention takes advantage of these characteristics by laminating Fe(min. 25%)Co with NiFe(17%) to provide a replacement for CoFe(10%)/NiFe thereby improving the CPP GMR while still maintaining free layer softness and acceptable magnetostriction.
Referring now to
The process begins with the formation of lower lead 10 onto which is deposited seed layer 11 followed by pinning layer 12. Layer 12 comprises a suitable antiferromagnetic material such as IrMn and it is deposited to a thickness between 45 and 80 Angstroms. Layer 13 (AP2), the first of the two antiparallel layers that will form the synthetic AFM pinned layer, is then deposited onto layer 12. This is followed by layer of AFM coupling material 14 and then AP1 layer is deposited thereon. Next, copper spacer layer 16 is deposited on AP1 layer 15.
Note that although layer 16 is referred to simply as a “copper spacer” layer, in practice it is a multilayer structure that includes Cu/AICU/PIT/IAO/Cu, AICU is a discontinuous layer of alumina having Cu in the holes, PIT is an abbreviation for pre-ion treatment and IAO stands for ion assisted oxidation. For the sake of simplification, we will continue to refer to ‘copper spacers’ but it should be borne in mind that they are actually the more complicated structures described above.
Now follows a key feature of the invention which is the formation of the free layer as a bilayer of cobalt iron, containing at least 25 atomic percent iron, between about 5 and 15 Angstroms thick, and a layer of nickel iron (containing, typically, between about 15 and 20 atomic % iron), between about 15 and 50 Angstroms thick. These are shown as layers 21 and 22 in
The resulting free layer has a magnetostriction constant that is between 1 and 3×10−6 (positive) and a coercivity between about 5 and 10 Oe. Similar results are obtained with even greater iron concentrations, such as 50 and 75%, in the CoFe layer.
The process concludes with the deposition of upper lead layer 18, the completed structure being now ready to serve as a CPP GMR read head having a GMR ratio of at least 5.9%.
Confirmatory Results
To confirm the effectiveness of the invention, the following structures were formed and then evaluated as CPP GMR readers. The number after each named layer is thickness in Angstroms:
A. (prior art)Ta5/NiCr45/IrMn70/Fe(25%)Co36/Ru7.5/[Fe(25%)Co12/Cu3]2/Fe(25%)Co12/Cu2.6/AlCu8.0/Cu2.0/Co(90%)Fe12/NiFe35/Cu30/Ru200.
B. Ta5/NiCr45/IrMn70/Fe(25%)Co36/Ru7.5/[Fe25Co12/Cu3]2/Fe(25%)Co12/Cu2.6/AlCu8.0/Cu2.0/Fe(25%)Co10/NiFe35/Cu30/Ru200
The results are summarized in TABLE I below:
It can be seen that structure B with the Fe 25% Co10/NiFe35 free layer showed higher CPP GMR ratio than reference structure A. The free layer coercivity (Hc) and interlayer coupling (Hin) are similar between structure A and B and the magnetostriction of structure B is higher than that of reference structure A but is still within the desirable range.
Claims
1. A free layer for a CPP GMR device, comprising:
- a bilayer of cobalt iron and nickel iron;
- said cobalt iron layer containing at least 25 atomic percent iron; and
- said free layer having a magnetostriction constant that is between 1 and 3×10−6.
2. The free layer described in claim 1 wherein the cobalt iron layer contacts a non-magnetic spacer layer.
3. The free layer described in claim 1 wherein the nickel iron layer contacts a non-magnetic spacer layer.
4. The free layer described in claim 1 wherein said layer of nickel iron is between about 15 and 50 Angstroms.
5. The free layer described in claim 1 wherein said layer of cobalt iron is between about 5 and 15 Angstroms thick.
6. A CPP GMR read head, comprising:
- a pinning layer on a seed layer which is on a lower lead layer;
- on said pinning layer, an AP2 layer;
- a layer of AFM coupling material on said AP2 layer;
- an AP1 layer on said layer of AFM coupling material;
- a copper spacer layer on said AP1 layer;
- a layer of nickel iron on said copper spacer layer;
- a layer of cobalt iron, containing at least 25 atomic percent iron, on said layer of nickel iron, said layers of nickel iron and cobalt iron together forming a free layer having a magnetostriction constant that is between 1 and 3×10−6; and
- on said free layer, an upper lead layer.
7. The CPP GMR head described in claim 6 wherein said pinning layer is IrMn between 45 and 80 Angstroms.
8. The CPP GMR head described in claim 6 wherein said CPP GMR read head has a GMR ratio greater than 5.9%.
9. The CPP GMR head described in claim 6 wherein said cobalt iron layer contains between about 20 and 30 atomic percent iron.
10. The CPP GMR head described in claim 6 wherein said cobalt iron layer contains between about 40 and 60 atomic percent iron.
11. The CPP GMR head described in claim 6 wherein said cobalt iron layer contains between about 70 and 80 atomic percent iron.
12. The CPP GMR head described in claim 6 wherein said layer of nickel iron has a thickness of between about 15 and 50 Angstroms.
13. The CPP GMR head described in claim 6 wherein said layer of cobalt iron has a thickness of between about 5 and 15 Angstroms.
14. The CPP GMR head described in claim 6 wherein said free layer has a coercivity between about 5 and 10 Oe.
15. A CPP GMR read head, comprising:
- a pinning layer on a seed layer which is on a lower lead layer;
- on said pinning layer, an AP2 layer;
- a layer of AFM coupling material on said AP2 layer;
- an AP1 layer on said layer of AFM coupling material;
- a copper spacer layer on said AP1 layer;
- a layer of cobalt iron, containing at least 25 atomic percent iron, on said copper spacer layer;
- a layer of nickel iron on said layer of cobalt iron, said cobalt iron and nickel iron layers together forming a free layer having a magnetostriction constant that is between 1 and 3×10−6; and
- on said free layer, an upper lead layer.
16. The CPP GMR head described in claim 15 wherein said CPP GMR read head has a GMR ratio greater than 5.9%.
17. The CPP GMR head described in claim 15 wherein said layer of nickel iron has a thickness of between about 15 and 50 Angstroms.
18. The CPP GMR head described in claim 15 wherein said layer of cobalt iron has a thickness of between about 5 and 15 Angstroms.
19. The CPP GMR head described in claim 15 wherein said free layer has a coercivity between about 5 and 10 Oe.
Type: Application
Filed: Dec 14, 2007
Publication Date: Apr 24, 2008
Applicant:
Inventors: Min Li (Dublin, CA), Cheng Horng (San Jose, CA), Ru-Ying Tong (San Jose, CA)
Application Number: 12/002,031
International Classification: G11B 5/39 (20060101);