Microcolumn-based, high-throughput microfluidic device
A biological assay device for use in molecular biology, pharmaceutical research, genomic analysis, combinatorial chemistry, and in the general field of the analysis of molecules that may be deposited on supports of various kinds is provided. Specifically, the present invention includes a fluidic or microfluidic device, which integrates fluidic capability into existing multi-well plates of standard configuration, for performing either single or continuous fluidic manipulations in a high-throughout format. Methods for the use and manufacture of these devices are also provided.
The present Application is related to U.S. Provisional Patent Application No. 60/317,660, filed on Sep. 7, 2001.
TECHNICAL FIELD OF THE INVENTIONThe present invention relates to the field of high-throughput biological assay devices for use in molecular biology, pharmaceutical research, genomic analysis, combinatorial chemistry, and in the general field of the analysis of molecules that may be deposited on supports of various kinds. Specifically, the present invention includes a device for performing microfluidic manipulations in standard-configuration multiwell plates.
BACKGROUND OF THE INVENTIONManipulation of biological and/or chemical molecules in solution has become an essential aspect of various kinds of analysis. For instance, in biomedical or pharmaceutical assays, cellular components, proteins or nucleic acid (DNA) molecules are studied to ascertain particular genetic risk factors for disease or the efficacy of drug trials. Recently, a class of sample-receiving substrates has been developed for “microfluidic” bioassay devices, popularly called “lab-on-a-chip” devices. Lab-on-a-chip technology is exciting the interest of scientists in many areas. This technology can be used to carry out biological and clinical analyses, to perform combinatorial chemistry, and to carry out full-scale analyses from sample introduction to chemical separation and detection, on a single, miniaturized device efficiently and economically. Hence, microfluidic devices have recently gained great appeal in the biomedical, genomic, and pharmaceutical industries, where they offer the benefits for miniaturization, integration and automation. Substrates of these devices are integrated microfluidic assay systems with networks of chambers connected by channels, which have microscale dimensions, typically on the order of between 0.1 μm and 500 μm. These channels allow the movement of small volumes of reagent to assay stations. Such microfluidic substrates may be fabricated using photolithographic techniques similar to those used in the semi-conductor industry, and the resulting devices can be used to perform a variety of sophisticated chemical and biological analytical techniques.
Because of the variety of analytical techniques and potentially complex sample flow patterns that may be incorporated into particular microfluidic test substrates, significant demands may be placed on the analytical units, which support the test substrates. The analytical units not only have to manage the direction and timing of flow through the network of channels and reservoirs on the substrate, they may also have to provide one or more physical interactions with the samples at locations distributed around the substrate, including heating, cooling, exposure to light or other radiation, detection of light or other radiation or other emissions, measuring electrical/electrochemical signals, pH, and the like. The flow control management may also comprise a variety of interactions, including the patterned application of voltage, current, or power to the substrate (for electrokinetic flow control), or the application of pressure, vacuum, acoustic energy or other mechanical interventions for otherwise inducing flow.
As a consequence, a virtually infinite number of specific test formats may be incorporated into microfluidic test substrates. Because of such variety and complexity, many if not most of the test substrates will require specifically configured analyzers in order to perform a particular test. It is indeed possible that particular test substrates use more than one analyzer for performing different tests. The need to provide one dedicated analyzer for every substrate and test, however, will significantly reduce the flexibility and cost advantages of the microfluidic systems. Additionally, for a specifically configured analyzer, test substrates are generally only useful for performing a limited number of assay formats and functions. As the complexity and costs of test substrates increase, it becomes more desirable to increase the number of useful assay formats and functions for a particular test substrate-analyzer combination, or for a particular class of substrates in combination with a specifically configured analyzer.
For all their virtues, most current lab-on-a-chip devices, however, are inherently low throughput, allowing for only a small number of samples to be assayed at a time. Current microfluidic devices are limited typically to less than 40 or 50 assays per chip. Further, they are rather cumbersome to handle since they do not conform to standard robotics and often require manual processing. Therefore, it would be desirable to provide a high throughput microfluidic device that is configured to work with equipment for bio-chemical-genomic assays of an industry-standard format. Thus, as an aspect of the present invention, the device provides high-throughput microfluidic processing that is compatible with standard microtiter plate formats.
SUMMARY OF THE INVENTIONThe present invention pertains to a fluidic or microfluidic device, which integrates fluidic capability into existing multi-well plates of standard configuration, for performing either single or continuous fluidic manipulations in a high-throughout format. The device includes a number of fluidic modules extending at an angle, preferably orthogonal, from a support structure or plate. Each fluidic module is three-dimensional, has a major surface located remotely from the support structure, and at least one sidewall between the major surface and the support structure. Unlike current technologies that position fluidic channels in the fluidic substrate or plate itself, the present invention locates fluidic channels in each of the fluidic modules. Each of the fluidic modules can be inserted into an individual well of a microplate. This design brings high-throughput microfluidic capabilities to microplates of standard configuration without modification of the conventional microplate design, as it has been a frequent necessity with current microfluidic systems. This feature permits the invention to work with current robotic handlers and analysis, imaging or reading technologies.
In addition to the advantages already mentioned, the present invention has several other virtues. Not only is the present invention compatible with existing well plates but also solves the problems associated with evaporation and mixing without the need to modify existing 96-well plates. A capillary space is formed between the bottom surface of a well of a microplate and the fluidic module. By adjusting the capillary space between the top surface of each fluidic module and the bottom wall of the respective well, one can easily regulate the amount of space available to accommodate more or less volume of assay solution. Once inserted into a well, the fluidic module can function like a cover-slip on a conventional flat slide, which can overcome evaporation problems and prevent the sample from drying out.
Furthermore, the present invention has a capability for continuous fluidic movement. The arrangement of the fluidic channels in each fluidic module permits one to supply a continuous flow of fresh reagents and solutions into each microplate well. Continuous fluidic movement is useful for such functions as mixing, flow-through washes or filtration, as well as real-time assay interactions. For instance, using the fluidic modules, one may perform multi-analyte assays on porous substrates with continuous flow-through. To transport and mix fluidic samples, in some embodiments, a set of at least first and second microchannels, each with inlet and outlet ports, runs through the body of each fluidic module. By means of an automated pumping system or a manual pipette through the fluidic network, an interface for mixing fluidic samples may easily be created inside the zone or chamber defined by the top surface of the fluidic module and the bottom of the well. Moreover, microfluidic analytical technology has a number of advantages, including the ability to use very small sample sizes.
While employing small volumes of assay solution, the present fluidic device can significantly improve binding (e.g., hybridization) efficiency for arrays of analytes, which may be contained on the surface of the microcolumns. Further, electrochemical sensor or a biosensor with gratings or optical waveguides is include for real-time monitoring (e.g., pH, binding or dissociation) of reactions on remote surface of each microcolumn or in the microplate well.
In another aspect, the present invention relates to a method of using the fluidic device with a microplate. The method includes providing a fluidic device, according to the present invention, and analytes on either the remote major surface of each fluidic module or a bottom wall surface of a well in the microplate. The fluidic modules can be formatted to perform numerous specific analytical operations including mixing, dispensing, reacting, and detecting.
Other features and advantages of the present device will become evident from the following detailed description. It is understood that both the foregoing general description and the following detailed description and examples are merely representative of the invention, and are intended to provide an overview for understanding the invention as claimed.
The current gold standard in high-throughput, bio-chemical assay devices is the 96-well microplate as illustrated in
The present invention solves the evaporation, mixing and fluidic manipulation problems without the need of additional wells. As noted above, the present invention relates to a device for performing biological or chemical analysis, and provides a simple and convenient means of perform low-volume fluidic-integrated bioassays within standard-format microplates. This capability is a very attractive, advantageous feature of the present invention. The device makes use of a fluidic or microfluidic system that is adapted to be compatible with microplates of industry-standard matrix formats, and conforms to current robotics. In its broadest sense, as used herein, “fluid” relates to liquid or gaseous media, or both.
The present device is an extension and further incarnation of the so-called microcolumn or micropillar device described in U.S. Provisional Patent Application No. 60/317,660, the content of which is incorporated herein by reference. As illustrated in
The present device may further include at least a second fluidic channel, which extends at least partially through either the microcolumn 22 or support structure 10 from a terminus 35 on the remote major surface 26 to a second outlet portal 37. Thus, each of the two fluidic channels in the microcolumn may have a separate inlet and outlet at their respective termini. Embodiments with two channels are depicted in the accompanying figures for simplicity of illustration. This, however, is not to be limiting of the invention, since each microcolumn may, depending on the desired use, have any number (e.g., 6, 7, or 8) of hollow conduits located around the periphery or through the center of the microcolumn.
In an alternate embodiment,
For high-throughput capacity, the fluidic modules are arrayed in a dense matrix (e.g., 96-, 192-, 384-, 576-, or 1536-well) format, although other less dense formats (e.g., 6, 8, 12, 24, or 48-well) are also contemplated as part of the present invention. As illustrated in
As illustrated in
In some embodiments, the microcolumns each have a separate first 32 and second channels 34. A fluidic transfer interface for the inlets and outlets is included to convey simultaneously different samples or reagents through the microcolumns into each well of the plate. One may introduce fluid through an inlet port 31 and first fluidic channel 32 into the reaction chamber 50 and push the fluid out through the second fluidic channel 34, when additional fluid enters through the first microchannel 32. The direction of flow can also be reversed or cycled back and forth to provide fluidic agitation in certain applications. This type of configuration is conducive for performing high-throughput analysis and other uses, such as relatively large-scale combinatorial chemistry. Sample or reagent is injected, using either a standard automated pipette or valving systems with a syringe pump, through the inlet microchannel and spreads across the thin reaction zone 50a between the remote major surface of the microcolumn and the bottom wall of the well. Commercially available male luer adapters (Upchurch Scientific, Oak Harbor, Wash.) or similar components connected to tubing can be attached to the inlet.
The second microchannel 34 can be integrated to a waste solution chamber or passages 60 located within the substrate of the support structure 10, such as shown in
The present fluidic system can also enhance array-based assays. Development of effective analytical tools for genomics and proteomics is very challenging. An established major assay platform is the microarray chip, which has found wide applications. One of the limitations of arrays on flat solid surfaces, however, is that hybridization efficiency (i.e., the binding of the probe molecule to its immobilized target molecule) is limited by the diffusion of the probe molecule to the target. For instance, mRNA expression profiling using DNA index arrays normally requires relatively high probe concentrations and long incubation times, from a few hours up to overnight, for efficient hybridization to occur. Sometimes slight surface difference in flatness can cause dramatic change in the hybridization results because of the different diffusion pattern.
In microarray applications, rectilinear arrays of biological or chemical materials (e.g., cDNA, oligonucleotide, and proteins) can be first deposited or printed onto either the remote, major surface of each microcolumn or the bottom wall of microplate wells, or both. Then, the plate of microfluidic modules is inverted. With remote surface facing downward, each microcolumns is inserted into a well of a microplate. An assay solution 15 can be introduced into the well 1 through the fluidic channel 30a, as shown in
Various means can be used to maintain a constant capillary space 50a between the remote surface of a microcolumn 22 and the opposing bottom surface wall 7 of a micro-titer well 1. For instance, in alternate embodiments, a set of spacer elements 90 such as depicted in
Alternatively, as shown in
A pressure gradient or suction can propel the assay mixture up and down. The movement promotes microfluidic mixing during nucleic acid hybridization and incubation. This ability to mix the reaction either continuously or periodically may provide for greater improved assay kinetics, particularly for array-based assays, such as microarray hybridization applications. After incubation, wash steps can be performed within the present invention without disassemble it by injecting wash solutions through the inlets. The ability to perform continuous flow-through fluidics allows this device to be used for ligand binding kinetic studies and other real-time assay applications. The fluidic device may be used in conjunction with other equipment to perform both single and multiple target detection. Other potential array applications based on the present flow-through device include, in part: cDNA arrays for RNA expression profiling, oligonucleotide array for SNP scoring and RNA expression profiling, protein array, antibody array for protein profiling or solid phase ELISA, or chemical array for pharmaceutical screening, etc.
To test the efficacy of the present fluidic device, nucleic acid (DNA) arrays were prepared using polymerase-chain-reaction (PCR) amplified human gene sequences.
For each assay performed without fluidic movement, we placed about 9 μL of the hybridization mixture into a well printed with a test array, then inserted a microcolumn. The assembly was then incubated at 42° C. for 4 hours. For hybridization performed with fluidic movement, a fluidic device was first inserted. About 6 μL of the assay solution was injected through a microfluidic channel for each array in the second group and about 3 μL was used for fluidic movement back and forth, at a flow rate of 10 μL/min. during a 4-hour incubation at 42° C. Following hybridization the arrays were washed to remove non-hybridized probes, dried, and scanned.
Comparative hybridization results of the two examples are summarized in the accompanying graphs A-D of
Recent developments in the field of microarray technology suggest that porous surfaces for DNA microarrays can improve the signal to noise ratio. The developments indicate that porous surfaces yield an increase in hybridization signal intensity, but requires longer washings. A porous microarray surface, such as fabricated from a glass-fritted disc (e.g., aluminoborosilicates, borosilicates, Pyrex® or Vycor® by Corning Inc.), may provide dramatically improved hybridization efficiency because fluids can flow through the substrate. The hybridization solution passes back and forth through the porous surface, essentially eliminating the diffusion limitation of conventional hybridization processes. In addition, the flow-through nature of the glass disc will allow efficient washing of the array, leading to lower background signal.
As described before, to create movement of the assay solution through the porous substrate array, a pressure gradient or, as mentioned before, pipettes or syringes, or tubing attached by male luer adapters can be used to inject samples through the inlet to the remote major surface or into the reaction chamber. A pressure gradient also can be generated through a pipette (either a manual or robotic pipetting system) to be inserted into the inlet portal in the microcolumn. Drawing the fluid up and down with a pipette 11 mixes the solution and forces the liquid through the porous substrate 70 and over the array 5, as shown
In a further embodiment, so as to be able to incorporate a porous substrate, membrane, or other filter, the top or remote major surface 26 of the microcolumn 22 may have a recess 80, like that shown in
A fluidic module with a filter can be used for various applications that involve either high-throughput or continuous flow-through. Potential applications for high throughput sample preparations may include: PCR-product, DNA or RNA purification; specific protein capture using antibody-linked membranes; protein digest sample clean-up by C18 surface, Poly-A capture for mRNA purification, Protein A capture for antibody purification, or specific antibody for protein purification, protein sample clean-up or purification using chromatography (reverse phase, ion exchange, etc.); sample desalting, etc.
In general, the fluidic modules may be manufactured at a relatively low cost, such as mentioned above by injection molding of polymer materials. Metals such as gold can be vapor deposited onto the top of the microcolumns, which will allow attachment of biological molecules like DNA, peptides, proteins, etc., onto the gold surface through self assembled monolayer. The biological applications of the present invention may be similar to those described in U.S. Provisional Patent Application No. 60/317,660. According to other embodiments, the present invention may contain an electrochemical sensor, which may be inserted through a hollow conduit into the reaction chamber.
In another aspect, the present invention includes a method of using an array of fluidic modules like that described above. The method comprises providing fluidic modules each with a set of at least one fluidic microchannel formed in a three-dimensional body. An inlet located in a surface of a support structure and extends through the support structure to the remote major surface of the module. Next, provide analytes on either the major surface of each module or the bottom surface of a well in a microplate, or both. Invert the device and insert the fluidic module into a corresponding well of the microplate, and introduce an assay medium through the inlet into the first fluidic microchannel. Create a reaction chamber or zone between the major surface of the module and the bottom surface of the well. The reaction zone has controlled fluid-flow direction. Introduce assay fluids into the well. The amount of assay mixture required to fill the assay reaction chamber can be adjusted by changing the gap distance (e.g., ˜5 microns to ˜5 mm) between the bottom of the well and the top of the microcolumns. Preferably present is a second microfluidic channel, which extends at least partially through the support structure or the body of the fluidic module from the remote major surface an outlet port, to permit reaction medium to exit through after interaction with the analytes. As mentioned before, assay fluids can be pumped continuously, either forwards or backwards, through the device to the reaction chamber.
Also as part of the invention, the inventors envision a kit for high-throughput biological or chemical assays. The kit includes a fluidic device, according to the present invention, and a well plate having in each well a bottom wall with a depression around the center of the bottom for receiving fluids and acting as a reaction chamber once corresponding microcolumns are secured against the plate. The kit may also have grating structures for biosensing uses.
The present invention has been described in detail by way of examples. Persons skilled in the art, however, may appreciate that modifications and variations may be made to the present device without departing from the scope of the invention, as defined by the appended claims and their equivalents.
Claims
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. A multiplexed microfluidic device comprising: a plurality of three-dimensional fluidic modules; a common plate from which each module extends; wherein each of said modules has a surface remote from said common plate, and a set of at least a first fluidic channel and a second fluidic channel formed therein.
28. An upper plate of a microfluidic device, said plate comprising: a structure with at least one fluidic module, said fluidic module comprises a three-dimensional body with a set of at least one fluidic channel extending from a first surface of said plate through the body to a surface remote from the plate structure.
29. The upper plate according to claim 27, wherein said fluidic module further comprises a second fluidic channel, which extends at least partially through the plate structure and body of the fluidic module from the remote major surface to an outlet portal.
30. The upper plate according to claim 27, wherein an array of biological or chemical analytes is disposed on said remote major surface.
31. The upper plate according to claim 27, wherein at least a part of said remote surface of said fluidic module is configured with a porous substrate.
32. The upper plate according to claim 27, wherein each fluidic module is sized to be introduced into a corresponding well of a lower plate.
33. The upper plate according to claim 1, wherein said plate further includes an electrochemical sensor.
34. A method for performing high-throughput biological or chemical assays in a microfluidic system, the method including:
- providing an array of three-dimensional fluidic modules, each comprising a body with a set of at least one fluidic channel formed therein, of which at least a first channel has an inlet port located in a surface of a support structure and extending through said support structure and fluidic module to a surface thereof remote to said support structure;
- providing analytes on either said remote surface or a bottom of a well in a plate, or both;
- creating a reaction zone between each fluidic module and a corresponding well in said plate; and
- introducing an assay solution through said first fluidic channel.
35. The method according to claim 34, further comprising:
- providing a second fluidic channel, which extends at least partially through said support structure or fluidic module from said remote surface thereof to an outlet portal; and
- exiting said assay solution through said second fluidic channel after interaction with said analytes.
36. The method according to claim 34, wherein assay solution is pumped continuously through said fluidic channels and said reaction zone.
37. The method according to claim 34, wherein said assay solution is pumped back and forth through said fluidic channels.
38. A kit for high-throughput biological or chemical assays in a microfluidic system, the kit includes: a fluidic device and a well plate, wherein said fluidic device has a three-dimensional fluidic module with at least one fluidic channel formed therein terminating at a remote surface, said three-dimensional body is capable of being inserted a well, and each well in said plate has a bottom wall.
39. The kit according to claim 38, further comprising biological or chemical analytes on said remote surface, a bottom of a well in a plate, or both.
40. The kit according to claim 38, wherein the bottom wall of the plate has a depression at the center of the bottom.
41. The kit according to claim 38, wherein said fluidic device further comprises a second fluidic channel in said fluidic module.
42. The kit according to claim 38, wherein said fluidic device or well plate further includes an electrochemical sensor.
43. The kit according to claim 38, wherein gratings are formed on said remote surface.
44. The kit according to claim 38, wherein a grating is disposed on the bottom wall of the plate.
45. The kit according to claim 38, wherein a grating is disposed on both said remote surface and the bottom wall of the plate.
46. The kit according to claim 38, wherein a number of said fluidic modules is arranged in a 24-, 48-, 96-, 384-, or 576-unit format.
47. The kit according to claim 38, wherein a number of said fluidic modules is arrayed in an 8- or 12- unit strip.
48. The kit according to claim 38, wherein a gap distance between said remote surface and said bottom wall ranges from ˜1 microns to ˜5 mm.
49. The kit according to claim 48, wherein said gap distance ranges from ˜1-500 microns.
50. The kit according to claim 49, wherein said gap distance ranges from ˜5-150 microns.
51. A high-throughput fluidic device comprising: a well plate having a number of wells, each well having a sidewall and a bottom surface; a plurality of three-dimensional fluidic modules; a common structure from which each module extends; wherein each of said modules has a surface remote from said common structure, and a set of at least a first fluidic channel formed therein.
52. The device according to claim 51, wherein said device further comprises a second fluidic channel in said fluidic module.
53. The device according to claim 51, wherein said fluidic device or well plate further includes an electrochemical sensor.
54. The device according to claim 51, wherein gratings are formed on said remote surface.
55. The device according to claim 51, wherein a grating is disposed on the bottom wall of the plate.
56. The device according to claim 51, wherein a grating is disposed on both said remote surface and the bottom wall of the plate.
57. The device according to claim 51, wherein biological or chemical analytes are located on said remote surface, a bottom of a well in a plate, or both.
58. The device according to claim 57, wherein said analytes include DNA, RNA, oligonucleotides, proteins, peptides, cells, cellular components, small chemical molecules, and drugs.
59. The device according to claim 51, wherein a number of said fluidic modules is arranged in a 24-, 48-, 96-, 384-, or 576-unit format.
60. The device according to claim 51, wherein a number of said fluidic modules is arrayed in an 8- or 12- unit strip.
61. The device according to claim 51, wherein said fluidic modules have a size that can be inserted into each well.
62. The device according to claim 51, wherein either said remote surface or said bottom surface of said well plate has a spacer element to provide a gap between said remote surface and said bottom surface.
63. The device according to claim 62, wherein said gap distance between said remote surface and said bottom surface ranges from ˜1 microns to ˜5 mm.
64. The device according to claim 63, wherein said gap distance ranges from ˜1-500 microns.
65. The device according to claim 64, wherein said gap distance ranges from ˜5-150 microns.
Type: Application
Filed: Dec 18, 2007
Publication Date: Jul 3, 2008
Inventors: Lin He (Horseheads, NY), Jinlin Peng (Painted Post, NY), Youchun Shi (Horseheads, NY), Brian L. Webb (Painted Post, NY), Po Ki Yuen (Corning, NY)
Application Number: 12/002,656
International Classification: C12M 1/34 (20060101);