SYSTEM AND DEVICES FOR COLLECTING AND TREATING WASTE WATER FROM ENGINE WASHING
The present invention relates to the field of washing engines, particularly using washing liquids such as water and detergent or water only, and more specifically to systems, apparatus and a mobile cart comprising such a system for collecting and treating the waste water from engine washing operations. The system comprises a collecting device for collecting waste liquid during a washing operation of the engine and a treatment device for treating waste liquid collected during said washing operation. According to an embodiment, the system is arranged on a mobile cart (50) for serving an engine (1) during a washing operation of the engine (1) comprising a chassis provided with wheels. The mobile cart also includes adjusting means (73) for adjusting the vertical position of the liquid separating means (31) and/or adjusting means for adjusting the vertical position of the liquid collecting means (302, 36) relative the engine (1).
Latest Patents:
The present invention generally relates to the field of washing jet engines, particularly using washing liquids such as water and detergent or water only, and more specifically to a system, and devices for collecting and treating the waste water from engine washing operations and a mobile cart comprising such a system.
BACKGROUND OF THE INVENTIONA gas turbine engine installed as an aircraft engine comprises a compressor compressing ambient air, a combustor burning fuel together with the compressed air and a turbine for driving the compressor. The expanding combustion gases drive the turbine and also result in thrust used for propelling the aircraft.
Air breathing machines like Jet engines consume large quantities of air. Air contains foreign particles in form of aerosols or larger particles which then enters the engine with the air stream. The majority of the particles will follow the gas path through the engine and exit with the exhaust gases. However, there are particles with properties of sticking on to components in the engine's gas path changing the aerodynamic properties of the engine and more particularly reducing engine performance. Typical contaminants found in the aviation environment are pollen, insects, engine exhaust, leaking engine oil, hydrocarbons coming from industrial activities, salt coming from nearby sea, chemicals coming from aircraft de-icing and airport ground material such as dust.
The contaminants sticking on to components in the engine gas path cause fouling of the engine. The consequence of gas path fouling is an engine operating less efficient. With the reduction in efficiency follows that the engine is less economic to operate and has higher emissions. Fouling will result in more fuel having to be burnt for achieving the same thrust as for the clean engine. Further, an environmental drawback is found with the higher fuel consumption in form of increased carbon dioxide emissions. In addition, more fuel being burnt results in higher temperatures in the engine's combustor. With this follows high temperature exposure to engine hot section components. The higher temperature exposures will shorten the life time of the engine. The higher firing temperature results in increased formation of NOx which is yet another environmental drawback. In summary, the operator of a fouled engine suffers from reduced engine lifetime, unfavourable operating economics and higher emissions. The airline operators have therefore a strong incentive keeping the engine clean.
It has been found that the only reasonable way to combat fouling is to wash the engine. Washing can be practiced by directing a water jet from a garden hose towards the engine inlet. However, this method has limited success due to the simple nature of the process. An alternative method is pumping the wash liquid through a manifold with special nozzles directed towards the engine inlet face. The manifold would be temporarily installed on the engine cowl or on the engine shaft bullet during the wash operation. Simultaneously with spraying the washing liquid towards the engine inlet, the engine shaft is cranked by the use of its starter motor. The shaft rotation enhances the wash result by the mechanical movements. The shaft rotation allows the wash liquid to move over greater surface area as well as enhancing liquid penetration into the interior of the engine. The method is proven successful on most gas turbine jet engines types such as turbojets, turboprop, turboshaft and mixed or un-mixed turbofan engines.
A proper wash operation of a gas turbine engine can be confirmed by an observation that the wash liquid exits the engine at the engine outlet. At the engine outlet the wash liquid has become a waste liquid. The waste liquid may leave the engine outlet as a stream of liquid pouring to the ground. Alternatively may the waste liquid be carried with the air stream as fine droplets where the air stream is the result of the rotation of the engine shaft. This air borne liquid can be carried a significant distance before falling to the ground. It is shown from actual wash operations that waste liquid will be spread on a large surface area, typically more than 20 meters downstream of the engine outlet. It is not desired to spread waste liquid on the ground. It is the purpose of this invention to provide a method and apparatus to collect the waste liquid exiting the engine.
The waste liquid exiting the engine at washing consists of the wash liquid entering the engine together with released fouling material, combustion solids, compressor and turbine coating material, and oil and fat products. This waste liquid may be hazardous. As an example, analysis of water collected from actual turbine engine washing operations showed to contain cadmium. The cadmium comes from compressor blade coating material released during washing operation. Cadmium is environmentally very sensitive and can not be allowed to be disposed to the effluent. This waste liquid would have to undergo treatment for separation of hazardous components before being disposed in a sewer.
Gas turbine aircraft engines can be of different types such as turbojets, turboprop, turbo-shaft and mixed or un-mixed turbofan engines. These engines cover a large performance range and may comprise of different design details by different manufactures. Aircrafts types for a defined service may be offered from different aircraft manufacturers thus the design of the aircraft and its engines may vary. Further, the aircraft manufacturer may offer different engine options for the same aircraft type. The large combined possibility of engines on aircraft types and from different aircraft manufacturers result in a practical problem in designing a system for collecting and treating of waste wash liquid that is generally applicable to most winged aircraft. U.S. Pat. No. 5,899,217 to Testman, Jr. discloses an engine wash recovery system that is limited to small and particularly turboprop engines as the container used in the invention is not applicable to the air flows emanating from e.g. large turbo-fan engines.
Collecting waste water from engine washing may be accomplished by hanging canvas like collectors under the engine nacelle. However, any operation resulting in anything being hooked on to an engine has the disadvantage that it may be subject to engine damage
SUMMARY OF THE INVENTIONThus, it is an object of this invention to provide a method and apparatus enabling collecting and treating waste water from engine washing for a large range of aircraft types including the largest aircraft types.
It is a further object of the present invention to provide a method and apparatus for removing hazardous components from the waste water before disposing it.
It is an additional object of the present invention to provide a method and apparatus for collecting and treating waste water from engine washing having no physical contact between the collector device and engine.
It is yet another object of the present invention to provide a method and apparatus for enabling clean engine operations.
These and other objects are achieved according to the present invention by providing devices and systems having the features defined in the independent claims. Preferred embodiments are defined in the dependent claims.
According to a first aspect of the present invention, there is provided a system for collecting and treating waste liquid from engine washing. The system comprises a collecting device for collecting waste liquid during a washing operation of an engine, wherein the collecting device comprises liquid separating means having an inlet face and an outlet face arranged to separate washing liquids from the air stream entering the inlet face, which air stream emanates from the engine during the washing operating of the engine; and liquid collecting means for collecting separated liquid from liquid separating means and liquid exiting the engine resulting from the washing operation. Furthermore, the system comprises a treatment device for treating waste liquid collected during the washing operation, wherein the treatment device comprises filter means arranged to remove particles and ions from the liquid, wherein the treatment device is connected to the collecting device such that waste liquid is directed from the liquid collecting means to the treatment device for treatment in the filter means.
According to a second aspect of the present invention, there is provided a collecting device for collecting waste liquid during a washing operation of an engine, wherein the collecting device comprises liquid separating means having an inlet face and an outlet face arranged to separate washing liquids from the air stream entering the inlet face, which air stream emanates from the engine during the washing operating of the engine; and liquid collecting means for collecting separated liquid from liquid separating means and liquid exiting the engine resulting from the washing operation.
According to a third aspect of the present invention, there is provided a treatment device for treating waste liquid collected during a washing operation, wherein the treatment device comprises filter means arranged to remove particles and ions from the liquid.
According to a further aspect of the present invention, there is provided a mobile cart for serving a engine during a washing operation of the engine comprising a chassis provided with wheels. The cart comprises a system according to the first aspect of the present invention arranged on the chassis; adjusting means for adjusting the position of the liquid separating means and/or liquid collecting means and/or the liquid storage means relative the engine.
The solution according to the present invention provides several advantages over the existing solutions. One advantage is that hazardous particles, substances, or other types of content, such as released fouling material, combustion solids, compressor and turbine coating material, heavy metals and oil and fat products, can be removed or separated from the waste liquid resulting from a washing operation in an efficient and environmentally friendly manner
Another advantage is the inventive devices and systems can be used with different types and designs of gas turbine aircraft engines, such as turbojets, turboprop, turbo-shaft and mixed or un-mixed turbofan engines, and, moreover, with different aircraft types and designs from different manufactures because the devices and systems can be accurately adjusted to a specific engine or aircraft. Accordingly, the present invention provides for a very high degree of flexibility since one system can be used for all types of engines and aircrafts, i.e. the present invention provides for a collecting and treating of waste wash liquid generally applicable to most winged aircraft. This also entails cost savings because one and the same system or mobile cart including the system can be used for all types of engines and aircrafts.
A further advantage is that there is no physical contact between the collector device and the engine, which entails that any damages of the engines can be avoided.
Further objects and advantages of the present invention will be discussed below by means exemplifying embodiments.
Preferred embodiments of the invention will now be described in greater detail with reference to the accompanying drawings, in which
The invention can be practised on several engine types such as turboshaft, turboprop, turbojet and mixed/un-mixed multi shaft turbo fan engines. The invention can be practised on under-wing mounted engines as well as tall mounted engines as further shown in
In
Liquid will exit the engine in at least five different ways as described in
Droplet separator 31 consists of a frame enclosing droplet separator profiles. Droplet separator 31 has an inlet face 32 directed towards air stream 201 and an outlet face 33 opposite to inlet face 32. Stream 201 enters the droplet separator at inlet face 32 and exits the droplet separator at outlet face 33. The liquid is trapped in separator 31 so that stream 301 is essentially free from liquid after passing through droplet separator 31. Droplet separator 31 consists of vertically arranged separator profiles (see
Droplet separator 31 consists of a frame enclosing droplet separator profiles.
The liquid that exits the engine during washing contain water, detergent and foreign matter. The foreign matter is in form of solids and ions dissolved in the water. What comes out of the engine at a specific wash occasion depends on a number of issues such as when washing was last conducted, the environment in which the engines operates, etc. Further, the waste liquid may at one wash occasion contain a high amount of solids while at another wash occasion be low on solids. Similarly, the waste liquid may at one wash occasion contain a high amount of ions while at another wash occasion be low on ions. This results in that the waste water treatment system must be flexible in its design so that the most appropriate treatment can be conducted at each occasion. The waste water treatment system described in
There may be wash occasions where the waste water is non-hazardous. In such a case processing for removal of hazardous components would be unnecessary. The non-hazardous waste liquid may then be directly disposed off into a sewer. To enable the operator of the unit to decide if the waste water should undergo further treatment before disposal or to be disposed off directly, the operator may conduct a test. A possible test for this purpose is to measure the water electric conductivity. This test allows for an on-the-spot decision for direct disposal to a sewer or allow for further processing of the waste water. A small portable and battery powered conductivity meter may be used. According to this embodiment, the test procedure would then include sticking the measurement probe into the waste water and record the conductivity reading. The recorded values would then be compared to a table of acceptable and not acceptable values representing experience gained from laboratory analysis of waste waters from engine washings. The use of a conductivity meter for measuring the electric conductivity is an example only. Depending on the engine type and the environment in which the engine operates the operator may find alternative test methods to be more appropriate.
In
Tank 303 is open at the top. After tank 303 has been drained from waste liquid, the material floating on the waste liquid surface together with the settled material at bottom 406 of tank 303 can be manually collected by wiping it out with a cloth or similar operation. This material is then allowed to be disposed off in a safe way.
If the liquid is non-hazardous it is not necessary with the processing as described above. The non-hazardous liquid may be disposed off into a sewer by opening valve 409.
The scheme in
The post processing or treatment method and device and the collection method and collection device according to the present invention can be used independently of each other.
Cart 50 comprises of a frame 51. Frame 51 rests on a chassis (not shown for clarity) equipped with wheels 52. Droplet separator 31 is supported by supports 53 installed on frame 51. Chute 302, trough (not shown for clarity), tank 303, pump 43, filter 47 and filter 49 are installed on frame 51. According to this embodiment tank 303 has a volume of 500 litres. A screen 55 on each left and right side of the cart prevents air borne waste liquid to escape to the sides. A handle 56 allows the cart to be hand pulled or pulled by a vehicle.
Although specific embodiments have been shown and described herein for purposes of illustration and exemplification, it is understood by those of ordinary skill in the art that the specific embodiments shown and described may be substituted for a wide variety of alternative and/or equivalent implementations without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Consequently, the present invention is defined by the wordings of the appended claims and equivalents thereof.
Claims
1-30. (canceled)
31. A method of washing any one of a plurality of engine types and sizes of engines and of collecting waste liquid as it exits the engine during the engine washing operation, the method comprising:
- injecting a washing liquid into an engine inlet while simultaneously cranking said engine in order to create an air stream through the engine, thereby entraining the washing liquid into the air stream as said washing liquid passes through said engine, wherein the air stream will have a velocity that ranges anywhere between low to high velocities according to the engine type and size of the engine; and
- positioning a collector relative to an engine outlet for receiving the entrained washing liquid as it exits the engine, said collector accommodating multiple engine types and sizes of engines, and all velocities of air streams exiting the engine, including low velocities, high velocities and all velocities between low and high velocities.
32. The method of claim 31, wherein the collector comprises a liquid separator and a liquid collector, the method further comprising:
- positioning the liquid separator for receiving the entrained washing liquid as it exits the engine and for separating the washing liquid from the air stream; and
- positioning the liquid collector to collect the separated washing liquid from the liquid separator and to collect washing liquid exiting any other portion of the engine.
33. The method of claim 31 further comprising:
- treating the collected washing liquid via a multi-filtering process for removing one or more selected from the group comprising particles, fuel solid residues, coked hydrocarbons, compressor fouling material, combustion solids, compressor and turbine coating material, heavy metals, oils, fats, pollen, insect residues, residues from bird strikes, ions and metal ions from said collected washing liquid.
34. The method of claim 33, further comprising reusing the treated washing liquid during the washing operation.
35. The method of claim 31, further comprising at least one of:
- mobilizing the liquid separator, the liquid collector, and the liquid storage component to an engine washing location via a mobile cart, said mobile cart comprising a wheeled chassis and an adjusting device; and
- adjusting at least one of said liquid separator, liquid collector, and liquid storage component relative to the engine prior to commencing a washing operation via said adjusting device.
36. A method of collecting wash liquid that is injected into an inlet of an engine as it exits the engine during an engine washing operation, the method comprising:
- positioning a liquid separator relative to an engine outlet for receiving washing liquid as it exits the engine, and for separating the washing liquid from an air stream;
- positioning a liquid collector relative to the liquid separator to collect the separated washing liquid from the liquid separator and to collect washing liquid exiting any other portion of the engine; and
- mobilizing at least one of the liquid separator or the liquid collector to facilitate positioning.
37. The method of claim 36, further comprising treating the collected washing liquid for removing particles and ions from said collected washing liquid.
38. The method of claim 36, further comprising reusing the treated washing liquid during the washing operation.
39. The method of claim 38, further comprising testing the collected washing liquid prior to the reuse.
40. The method of claim 36, further comprising:
- mobilizing the liquid separator and the liquid collector to an engine washing location via a mobile cart, said mobile cart comprising a wheeled chassis and an adjusting device; and
- adjusting at least one of said liquid separator or liquid collector relative to the engine prior to commencing a washing operation via said adjusting device.
41. A collecting device for collecting waste liquid from washing of an engine while the engine is being cranked comprising:
- a liquid separator positioned relative to an outlet of said engine, said liquid separator being configured to receive washing liquid entrained in an air stream exiting said engine outlet and to separate said washing liquid from said air stream; and
- a liquid collector positioned relative to the liquid separator to collect separated liquid from said liquid separator and liquid exiting the engine resulting from the washing operation.
42. The collecting device according to claim 41, wherein said liquid collector comprises:
- a funnel element arranged to collect separated liquid from said liquid separator; and
- a guide element arranged to be located below said engine during said washing operation in order to collect and guide liquid exiting from said engine to said funnel element.
43. The collecting device according to claim 41, further comprising an adjusting device for adjusting a position of at least one of said liquid separator and said liquid collector relative to said engine in order to accommodate multiple engine types and sizes of engines.
44. The collecting device according to claim 41, further comprising a mobile cart with a wheeled chassis for serving an engine during a washing operation of said engine, with at least one said liquid separator and said liquid collector being arranged on said chassis.
Type: Application
Filed: Oct 23, 2007
Publication Date: Sep 11, 2008
Applicant:
Inventors: Carl-Johan Hjerpe (Nacka), Peter Asplund (Hasselby)
Application Number: 11/877,173
International Classification: B08B 7/00 (20060101); B08B 7/04 (20060101);