SEMICONDUCTOR PACKAGE ACCOMPLISHING FAN-OUT STRUCTURE THROUGH WIRE BONDING
Provided is a semiconductor package accomplishing a fan-out structure through wire bonding in which a pad of a semiconductor chip is connected to a printed circuit board through wire bonding. A semiconductor package can be produced without a molding process and can be easily stacked on another semiconductor package while the appearance cracks and the warpage defects can be prevented.
Latest Samsung Electronics Patents:
This application is a Divisional of U.S. Ser. No. 11/954,707, filed on Dec. 12, 2007, which is a Divisional of U.S. Ser. No. 11/279,344, filed on Apr. 11, 2006, now issued as U.S. Pat. No. 7,327,032, which claims priority from Korean Patent Application No. 10-2005-0030736, filed on Apr. 13, 2005, all of which are hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor package, and more particularly, to a semiconductor package using solder balls as external connection terminals.
2. Description of the Related Art
Manufacturing a semiconductor package typically includes a series of operations coupling external connection terminals to a semiconductor chip and sealing the semiconductor chip as a package to protect, for example, against external impact.
Recently, as the electronics industry has grown, certain aspects of semiconductor packages have been developed to obtain miniaturization, lightness and reduction in manufacturing cost. Moreover, as semiconductor packages have been applied to digital image devices, MP3 players, mobile phones, massive storage units, etc., various kinds of semiconductor packages have been introduced. For example, a ball grid array (BGA) package and a wafer level chip scale package (WLCSP) are known forms of semiconductor packages.
Referring to
However, the BGA package 20 has drawbacks relating to the molding process. More particularly, the molding process imposes a minimum thickness limitation because of potential warpage defects. Moreover, it is known to be very difficult to fabricate a BGA package stack, e.g., a stack of BGA packages each having the same or similar structure.
In the case of the general WLCSP 40 shown in
A minimum thickness of a semiconductor package formed using the WLCSP 40 also exists due to a warpage defect constraint. Also, as with the BGA package 20 (
Presently, a significant concern regarding the WLCSP 40 is the interval between the solder balls 54, e.g., the interval cannot be further decreased due to the international standards established by the Joint Electron Device Engineering Council (JEDEC), even though the size of semiconductor chips has been gradually decreasing through ever greater integration obtained in manufacturing of semiconductor chips. As a result, for example, when the size of a semiconductor chip 42 reduces to two-thirds its original size, one or two solder balls 54 among six solder balls 54 (
Embodiments of the present invention provide a semiconductor package capable of manufacture without a molding process, stacking to obtain high integration, and having a fan-out structure accomplished through wire bonding. According to certain embodiments of the present invention, a semiconductor package includes a semiconductor chip having a first surface and a second surface, the first surface including a plurality of first solder ball pads and a plurality of first bond fingers. The package also includes a printed circuit board having a first surface and a second surface, the first surface including a plurality of second solder ball pads, a plurality of second bond fingers, and a chip recess to receive therein the semiconductor chip. The first bond fingers and the second bond fingers are electrically connectable to establish a fan-out structure. In some embodiments of the present invention, establishing additional solder ball pads on the second surface of the printed circuit board allows stacking of multiple semiconductor packages. In some embodiments of the present invention, establishing a heat transmitter on the second surface of the printed circuit board allows heat dissipation from the semiconductor chip.
The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
This disclosure will now be described more fully with reference to the accompanying drawings in which exemplary embodiments of the invention are shown. The invention should not be, however, construed as limited to the embodiments set forth herein; rather, these embodiments are provided to make this disclosure thorough and complete to those skilled in the art.
The first solder ball pads 126 (see
Furthermore, the semiconductor package 100 includes wires 118 connecting the first bond fingers 128 of the semiconductor chip 104 and the second bond fingers 130 on the printed circuit board 102. The semiconductor package 100 also includes an encapsulant 120 sealing and protecting the wires 118. The semiconductor package 100 also includes solder balls 116 attached to the first solder ball pads 126 and to the second solder ball pads 122. Collectively, the solder balls 116 extend beyond the footprint of the semiconductor chip 104 according to a fan-out arrangement.
Referring to
The semiconductor chip 104 thereby includes both the first bond fingers 128 as well as the first solder ball pads 126. In accordance with some embodiments of the present invention, as the semiconductor chip 104 reduces in size, e.g., due to greater integration, additional solder ball pads, e.g., solder ball pads 122, can be formed outside the footprint of the semiconductor chip 104.
Referring to
Accordingly, the bond pads 124 not connected to the first solder ball pads 126 in a fan-in structure, e.g., due to greater integration of the semiconductor chip 104, are connected to the second solder ball pads 122 in a fan-out structure. In detail, the bond pads 124 of the semiconductor chip 104 not connected to the first solder ball pads 126 are connected to the first bond fingers 128, e.g., through a bond pad redistribution pattern 112. In addition, the first bond fingers 128 are connected to the second bond fingers 130 by the bonding wires 118, and then to the second solder ball pads 122 by a wire pattern 134. Accordingly, in this particular embodiment the number of the second solder ball pads 122 can be equal to the number of each of the first and the second bond fingers 128 and 130, respectively.
In the first embodiment, the semiconductor chip 104 and the bottom of the chip recess in the printed circuit board 102 are attached by, for example, the adhesive tape 106. In a semiconductor package 101 according to the modification of
The semiconductor chip 204 is mounted at the bottom of the chip recess of the printed circuit board 202 with an adhesive, e.g., an adhesive tape 206. The semiconductor chip 204 may be a WLCSP having first solder ball pads 226 (see
In addition, the semiconductor package 200 includes a plurality of third solder ball pads 238. The third solder ball pads 238 connect to the first and second solder ball pads 226 and 222, respectively, through wires 234 in the multi-layered printed circuit board 202 and extending to a second surface 70 thereof. Furthermore, the semiconductor package 200 also includes wires 218 connecting first bond fingers 228 (see
The multi-layered printed circuit board 202 is used as the base frame and the third solder ball pads 238 are included as well as the first and second solder ball pads 226 and 222, respectively. Thus, it is possible to fabricate a stacked semiconductor package using the semiconductor package 200.
Referring to
Referring to
The bond pads 224 are electrically connected to the first bond fingers 228 directly or through the first solder ball pads 226 in the semiconductor package 200. The first bond fingers 228 are electrically connected to the second bond fingers 230 on the printed circuit board or the second solder ball pad 222 on the printed circuit board through the second bond fingers 230 (see
Referring to
Referring to
Referring to
Referring to
Then, referring to
The method of manufacturing the semiconductor package 200 is similar to that of the semiconductor package 100 in view of an overall packaging process despite there being some differences in the structures of the printed circuit board 202 and the semiconductor chip 204, differences a person of skill in the relevant art will understand. Accordingly further explanation thereof is omitted.
As will be appreciated, while certain particular electrical connections are shown between various elements to form particular circuits, e.g., connections between various chip pads, bonding pads, solder ball pads, printed circuit board elements and the like, it will be understood that many various configurations may be obtained by variation in such connections beyond those particular connections shown herein. Accordingly the present invention shall not be necessarily limited to any particular set of electrical connections shown herein.
According to some embodiments of the present invention, a solder ball can be mounted in a fan-out structure through wire bonding in spite of a relatively smaller sized WLCSP-type semiconductor chip. Due to the use of a sufficiently thick printed circuit board, the appearance of cracks and warp defects can be prevented and a molding process can be omitted. The additional use of a heat transmitter is helpful for dissipating heat when the semiconductor chip operates at high speed. In addition, an effective stacked semiconductor package can be realized to fabricate a system in package (SIP) or to enhance the degree of integration of a semiconductor device.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Claims
1. A semiconductor package comprising:
- a first semiconductor chip including a plurality of first solder ball pads and a plurality of first bond fingers formed on a first surface;
- a first multi-layered printed circuit board including: a plurality of second bond fingers and a plurality of second solder ball pads formed on a first surface, a chip recess configured to receive the semiconductor chip, and a plurality of third solder ball pads formed on a second surface, wherein the plurality of second bond fingers and the plurality of second solder ball pads are distributed about portions of the periphery of the chip recess, wherein the plurality of first bond pads and the plurality of second bond pads correspond in position to one another when the semiconductor chip is located in the chip recess;
- a plurality of wires to connect the first bond fingers and the second bond fingers;
- an encapsulant to seal the plurality of wires; and
- a first plurality of solder balls attached to the first plurality of solder ball pads and to the plurality of second solder ball pads.
2. The package of claim 1, wherein a number of each of the first plurality of bond fingers and the plurality of second bond fingers corresponds to a sum of a number of the plurality of first solder ball pads and the plurality of second solder ball pads.
3. The package of claim 1, wherein the number of the plurality of third solder ball pads corresponds to a sum of the plurality of first solder ball pads and the plurality of second solder ball pads.
4. The package of claim 1, further comprising an adhesive attached to the semiconductor chip and to a bottom of the chip recess.
5. The package of claim 1, wherein the respective positions of the third solder ball pads on the second surface of the multi-layered printed circuit board correspond to the collective positions of the plurality of first solder ball pads and the plurality of second solder ball pads.
6. The package of claim 5, further comprising a second semiconductor chip positioned in a second multi-layered printed circuit board stacked on the first multi-layer printed circuit board, wherein solder ball pads formed on a first surface of the second semiconductor chip and solder ball pads formed on first surface of the second multi-layered printed circuit board are electrically connected to the third solder ball pads of the first multi-layered printed circuit board via a second plurality of solder balls, respectively.
7. The package of claim 5, further comprising:
- a second semiconductor chip including a plurality of fourth solder ball pads and a plurality of fourth bond fingers formed on a first surface;
- a monolayer printed circuit board including: a plurality of fifth bond fingers corresponding to the plurality of fourth bond fingers, the fifth bond fingers formed on first surface of the monolayer printed circuit board, a plurality of fifth solder ball pads formed on the first surface of the monolayer printed circuit board, and a second chip recess configured to receive the second semiconductor chip, wherein the plurality of fourth bond fingers correspond in position to the plurality of fifth bond fingers when the second semiconductor chip is placed in the second chip recess;
- a second plurality of wires to connect the fourth bond fingers and the fifth bond fingers;
- a second encapsulant to seal the second plurality of wires; and
- a third plurality of solder balls attachable to the plurality of fourth solder ball pads and to the plurality of fifth solder ball pads.
8. The package of claim 7, further comprising an adhesive attachable to a second surface of the second semiconductor chip.
9. The package of claim 8, wherein the adhesive a thermal interface material.
10. The package of claim 9, further comprising a heat transmitter attachable to the thermal interface material.
Type: Application
Filed: May 1, 2009
Publication Date: Aug 27, 2009
Applicant: SAMSUNG ELECTRONICS CO., LTD. (Gyeonggi-do)
Inventor: Tae-Sung YOON (Chungcheongnam-do)
Application Number: 12/434,568
International Classification: H01L 23/498 (20060101);