METHOD FOR SUPPLYING FUEL TO FUEL CELL
The present invention provides a method for supplying fuel to a fuel cell, in which a monitoring period is determined for monitoring the fuel cell, and then a feeding amount of fuel is determined by integrating characteristic value generated from the fuel cell in the monitoring period. In another embodiment, it is further comprising a step of determining the variation profile associated with the characteristic value during the period so as to judge whether it is necessary to feed the fuel into the fuel cell or not. By means of the present invention, the supplying of fuel to the fuel cell under dynamic loadings can be effectively controlled for optimizing the performance of the fuel cell as well as reducing the cost without installing any fuel sensor.
Latest Institute of Nuclear Energy Research Atomic Energy Council , Executive Yuan Patents:
- Method of optimizing surface of carbon electrode for flow battery
- Assisting device for blade detection
- Electrolytic reduction system and method of vanadium electrolyte
- F-18 POSITRON DIAGNOSTIC CONTRAST AGENT PRECURSOR AND METHOD OF MANUFACTURING THE SAME
- Complex, contrast agent and method for treating a disease related to CXCR4 receptor
The present invention relates to a method for supplying fuel to fuel cell, and more particularly, to a fuel supplying method capable of determining a specific amount of a fuel to be injected into a fuel cell according to the measurement of a function relating to the time integral of a specific characteristic value resulting from the reaction of the fuel cell.
BACKGROUND OF THE INVENTIONA fuel cell is an electrochemical energy conversion device, similar to a battery in that it provides continuous DC power, which converts the chemical energy from a fuel directly into electricity and heat. For example, one type of fuel cell includes a proton exchange membrane (PEM), often called a polymer electrolyte membrane, that permits only protons to pass from anode to cathode of the fuel cell. At the anode, diatomic hydrogen (a fuel) is reacted to produce protons that pass through the PEM. The electrons produced by this reaction travel through circuitry that is external to the fuel cell to form an electrical current. At the cathode, oxygen is reduced and reacts with the protons to form water. When operated directly on hydrogen, the fuel cell produces this energy with clean water as the only by-product. Unlike a battery, which is limited to the stored energy within, a fuel cell is capable of generating power as long as fuel is supplied continuously. Although hydrogen is the primary fuel source for fuel cells, the process of fuel reforming allows for the extraction of hydrogen from more widely available fuels such as natural gas and propane or any other hydrogen containing fuel. For a growing number of power generators and users, fuel cells are the key to the future since it is an environment-friendly power source with high energy conversion efficiency.
Among the fuel cells, a direct methanol fuel cell or so called DMFC is a promising candidate for portable applications in recently years. The difference between DMFC and other power generating devices, such as PEMFC, is that the DMFC takes methanol as fuel in substitution for hydrogen. Because of utilizing liquid methanol as fuel for reaction, the DMFC eliminates the on board H2 storage problem so that the risk of explosion in the use of fuel cells is avoided, which substantially enhances the convenience and safety of fuel cells and makes DMFC more adaptable to portable electronic appliances such as Laptop, PDA, GPS and etc, in the future.
During the electrochemical reaction occurred in the fuel cell, the fuel concentration is a vital parameter affecting the performance of the liquid feed fuel cell system. However, DMFC suffers from a problem that is well known to those skilled in the art: methanol cross-over from anode to cathode through the membrane of electrolyte, which causes significant loss in efficiency. It is important to regulate the supplying of fuel appropriately to keep methanol concentration in a predetermined range whereby DMFCs system can operate optimally. For example, a fuel sensor, such as methanol concentration sensor disclosed in the prior art, is utilized to detect the concentration of methanol so as to provide information for controlling system to judge a suitable timing to supply methanol. Although the foregoing method is capable of controlling the concentration of the fuel, it still has the drawbacks as following: (1) the complexity and cost of the fuel cell system are increased; (2) considering the aging of the membrane electrode assembly (MEA) of the fuel cell, the fuel concentration sensor used therein will have to be calibrated in a regular base for maintaining a specific level of accuracy so that a lot of experimental effort like calibration is necessary through the use of concentration sensor. Moreover, the control complexity of the fuel cell using fuel concentration sensor is increased as the measurement of the fuel concentration sensor can be easily affected by temperature variation.
In order to reduce the cost and complexity caused by the additional concentration sensor in the prior arts, a couple of fuel sensor-less control for DMFCs approaches have been disclosed to decrease the cost and complexity of the fuel cells system and improve the stability of fuel cell operation by monitoring one or more of the fuel cells' operating characteristics. For instance, in U.S. Pat. No. 6,824,899, a method is provided to optimize the fuel concentration by detecting the short circuit current or open circuit potential. However, since the method requires to short circuit the fuel cell in periodical manner for current detection, it is easily to cause damage to the fuel cells and thus affects the stability and lifespan of the fuel cells system.
According to the drawbacks of the prior arts described above, it deserves to provide a method for supplying fuel to fuel cells to solve
the problem of the prior arts.
SUMMARY OF THE INVENTIONThe primary object of the present invention is to provide a fuel supplying method, capable of determining a specific amount of a fuel to be injected into the fuel cell according to the measurement of a function relating to the time integral of a specific characteristic value resulting from the reaction of the fuel cell within a specific monitoring period for optimizing the performance of the fuel cell.
It is another object of the invention to provide a method for supplying fuel to fuel cell, which performs a numerical operation/comparison upon a characteristic value measured from a fuel cell when the fuel cell is subjected to a load for using the result of the numerical operation/comparison to determine when to inject fuel into the fuel cell, and thereby, since the timing and quantity for fuel injection is determined without the use of any fuel sensor, not only the manufacturing cost of the fuel cell is reduced, but also the control precision and system reliability of the fuel cell as well as its durability are all being enhanced.
It is further another object of the invention to provide a method for supplying fuel to fuel cell, capable of enabling the fuel cell to operate under a comparatively wider fuel concentration range without being affected by temperature variation and the aging of its membrane electrode assembly (MEA), and thereby, not only the fuel efficiency of the fuel cell is increased, but also its system response time to load
variation is shortened. Moreover, since the aforesaid method enables a fuel cell to function without the need for any fuel concentration sensor, not only the volume and weight of the fuel cell is reduced so that the power density of the fuel cell is increased, but also the manufacturing cost and the system complexity are reduced, as well as its durability and reliability are enhanced.
To achieve the above object, the present invention provides a method for supplying fuel to fuel cell, which comprises the steps of: (a) determining a specific monitoring period for a fuel cell when the fuel cell is subjected to a load; (b) determining a specific amount of a fuel to be injected into the fuel cell according to the measurement of a function relating to the time integral of a specific characteristic value resulting from the reaction of the fuel cell within the monitoring period.
In an exemplary embodiment, the present invention provides a method for supplying fuel to fuel cell, which comprises the steps of: (a) determining a specific monitoring period for a fuel cell when the fuel cell is subjected to a load; (b) measuring the variation of a specific characteristic value of the fuel cell within the monitoring period; and (c) evaluating the variation trend of the specific characteristic value at the end of the specific monitoring period to be used as a reference for determining whether to feed fuel to the fuel cell or not; if so, a specific amount of a fuel to be injected into the fuel cell is determined according to the measurement of a function relating to the time integral of the characteristic values resulting from the reaction of the fuel cell during the monitoring period.
Further scope of applicability of the present application will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention and wherein:
For your esteemed members of reviewing committee to further understand and recognize the fulfilled functions and structural characteristics of the invention, several exemplary embodiments cooperating with detailed description are presented as the follows.
Please refer to
No matter the fuel cell is structured the same as the one shown in
Preferably, the fuel provided by the fuel supplying unit 53 can be a hydrogen-rich fuel suitable for the fuel cell. For instance, the hydrogen-rich fuel for polymer electrolyte fuel cell (PEFC) should be a material selected from the group consisting of methanol, ethanol, and boron hydride. In addition, the hydrogen-rich fuel is not limited to be liquid as hydrogen can be used as fuel for proton membrane fuel cell (PEMFC) for instance. That is, the fuel used in the invention can be any fuel only if it is suitable for fuel cells. As in this embodiment the direct methanol fuel cell (DMFC) is used for illustration, methanol is used as the fuel in this embodiment.
Back to the step 11 of
wherein M(I2) represents the amount of fuel to be injected at load I2, in unit of g;
-
- t is the monitoring period, in unit of sec, as the boundary conditions for defining T4, T6, T8 are illustrated in
FIG. 4A andFIG. 7A hereinafter; - I is the characteristic value, in unit of amp as it is the current of the fuel cell, in which I1 is high load, I2 is low load;
- u is a unit weight for sustaining high load I1, in unit of g;
- ηfuel(I) represents fuel efficiency at load I;
- R is the modification factor of fuel efficiency;
- K is a compensation factor which can be a constant;
- NW (Normalize Factor) is a function related to the electron transfer number n of the fuel cell's electrochemical reaction, the Faraday constant F (96480 A s mol−1), and system configurations of the fuel cell such as MEA, channel types, output wattage, the amount of each injection, and the duration of the monitoring period, and so on.
Although current is used as the characteristic value in this embodiment, it is not limited thereby and thus can be voltage or power of the fuel cell. As for the duration of the monitoring period is often being determined according to actual requirement and thus being determined according to experimental results. Therefore, the duration of the monitoring period can be determined by those skilled in the art according to actual requirement without any limitation. In addition, the value u, being a unit weight for sustaining the high load I1, is obtained by experimenting how much fuel the fuel cell is required for sustaining the same to operate smoothly while subjecting to a load of I1.
- t is the monitoring period, in unit of sec, as the boundary conditions for defining T4, T6, T8 are illustrated in
Please refer to
At step 21, a specific amount of a fuel to be injected into the fuel cell; and then the flow proceeds to step 22. Moreover, the fuel cell in this embodiment is structured similar to that shown in
For clarifying the happening in the step 23, please refer to
At step 231, a second characteristic value of the fuel cell is obtained at the end of the specific monitoring period Tmon; and then the flow proceeds to step 232. It is noted that the second characteristic value can be selected from the group consisting of current measured from the fuel cell, voltage measured from the fuel cell, power measured from the fuel cell, and the combination thereof. In the embodiment shown in
After injecting fuel into the fuel cell, the flow is directed back to perform the step 21, step 22 and then the step 23 again for lasting another monitoring period Tmon, in which the step 230 and the step 231 are performed before the end of the new monitoring period Tmon. In this embodiment, the first characteristic value is defined to be the minimum power measured during the second monitoring period, which is substantially the power P3 measured at point 503; and the second characteristic value is defined to be the power P4 measured at point 504. Thereafter, the two obtained characteristic value is compared in the step 232 for evaluating whether the second characteristic value is smaller than the first characteristic value. As shown in
At step 233, a third characteristic value of the fuel cell is obtained at a time point T5 before a specific point of time T6 after the end of the second monitoring period, which is defined as the power P5 measured at point 505; and then the flow proceeds to step 234. At step 234, a fourth characteristic value of the fuel cell is obtained at the specific point of time T6, which is defined as the power P6 measured at point 506; and then the flow proceeds to step 235. At the step 235, an evaluation is made to determine whether the fourth characteristic value is small than the third characteristic value; if so, the flow proceeds to step 236; otherwise, the flow proceeds to step 233. In the embodiment shown in
Please refer to
The aforesaid embodiments only illustrates the conditions when the load is varying within a small range, the present invention also provide a fuel supplying method adapted for the fuel cell subjecting to a load of large variation. Please refer to
At step 42, the variation of specific characteristic values measured from the fuel cell within the monitoring period are registered; and then the flow proceeds to step 43. At step 43, an evaluation is made to determine whether the percentage of variation of the characteristic value exceeds a threshold value; if so. The flow proceeds to step 44; otherwise, the flow proceeds to step 460. It is noted that the threshold value in this embodiment is defined to be 20%, so that when the percentage of variation, calculated by the formula as following: (I2−I1)/I1*100%, is larger than 20%, the flow will be directed to the step 44. Moreover, the threshold value can be determined according to actual condition and experience, and thus is not limited to be 20%. In
In
At step 460, a first characteristic value is obtained which is the power P3 measured at the point 503; and then the flow proceeds to step 461. At step 461, a second characteristic value is obtained which is the power P4 measured at the point 504; and then the flow proceeds to step 462. At step 462, an evaluation is made to determine whether the second characteristic value is small than the first characteristic value; if so, the flow proceeds to step 466; otherwise, the flow proceeds to step 463. As shown in
As the embodiment shown in
Please refer to
When the slope is positive, the step 462a will be performed as the positive slope is measured at the point P6 of the curve shown in the embodiment of
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Claims
1. A method for supplying fuel to fuel cell, comprising the steps of:
- (a) determining a specific monitoring period for a fuel cell when the fuel cell is subjected to a load and is composed of at least a fuel cell, each comprising an anode, a cathode and a proton exchange membrane; and
- (b) determining a specific amount of a fuel to be injected into the fuel cell according to the measurement of a function relating to the time integral of a specific characteristic value resulting from the reaction of the fuel cell within the specific monitoring period.
2. The method of claim 1, wherein the characteristic value is selected from the group consisting of current measured from the fuel cell, voltage measured from the fuel cell, power measured from the fuel cell, and the combination thereof.
3. The method of claim 1, wherein the characteristic value is generated from a power unit of the fuel cell and the poser unit is a device selected from the group consisting of: a unit being composed of the whole fuel cell stack; and a unit composed of a portion of the fuel cells in the whole fuel cell stack.
4. A method for supplying fuel to fuel cell, comprising the steps of:
- (a) determining a specific monitoring period for a fuel cell when the fuel cell is subjected to a load and is composed of at least a fuel cell, each comprising an anode, a cathode and a proton exchange membrane;
- (b) measuring the variation of a specific characteristic value of the fuel cell within the monitoring period; and
- (c) evaluating the variation trend of the specific characteristic value at the end of the specific monitoring period to be used as a reference for determining whether to feed fuel to the fuel cell or not; if so, a specific amount of a fuel to be injected into the fuel cell is determined according to the measurement of a function relating to the time integral of the characteristic values resulting from the reaction of the fuel cell during the monitoring period.
5. The method of claim 4, wherein the evaluating of the variation trend of the specific characteristic value further comprising the steps of:
- (c1) obtaining a first characteristic value from the specific characteristic value of the fuel cell before the end of the specific monitoring period;
- (c2) obtaining a second characteristic value from the specific characteristic value of the fuel cell at the end of the specific monitoring period; and
- (c3) making a comparison between the second characteristic value and the first characteristic value for performing a fuel supplying operation to inject fuel into the fuel cell if the second characteristic value is smaller than or equal to the first characteristic value; otherwise, performing a judgment operation if the second characteristic value is larger than the first characteristic value.
6. The method of claim 5, wherein the first characteristic value is a value selected from the group consisting of the minimum voltage measured during the specific monitoring period, the minimum current measured during the specific monitoring period, the minimum power measured during the specific monitoring period, and the combination thereof.
7. The method of claim 5, wherein any one of the first characteristic value and the second characteristic value is generated from a power unit of the fuel cell and the poser unit is a device selected from the group consisting of: a unit being composed of the whole fuel cell stack; and a unit composed of a portion of the fuel cells in the whole fuel cell stack.
8. The method of claim 5, wherein the first characteristic value is a moving average of characteristic values associated with a time zone in the specific monitoring period.
9. The method of claim 5, wherein the first characteristic value is a root mean square (RMS) of the characteristic values associated with a time zone in the specific monitoring period.
10. The method of claim 5, wherein the judgment operation further comprises the steps of:
- (c4) obtaining a third characteristic value from the specific characteristic value of the fuel cell before a specific point of time after the end of the specific monitoring period;
- (c5) obtaining a fourth characteristic value from the specific characteristic value of the fuel cell at the specific point of time;
- (c6) making a comparison between the third characteristic value and the fourth characteristic value for performing a fuel supplying operation to inject fuel into the fuel cell if the fourth characteristic value is small than or equal to the third characteristic value; and
- (c7) proceeding back to step (c4) when the fourth characteristic value is larger than the third characteristic value.
11. The method of claim 10, wherein the third characteristic value is a moving average of characteristic values associated with a time zone before the specific point of time.
12. The method of claim 10, wherein the third characteristic value is a root mean square (RMS) of the characteristic values associated with a time zone before the specific point of time.
13. The method of claim 10, wherein the third characteristic value is the minimum of the characteristic value measured from the fuel cell associated with a time zone before the specific point of time.
14. The method of claim 10, wherein the amount of fuel being injected into the fuel cell performed in the step (c6) is determined according to the measurement of a function relating to the time integral of the characteristic values resulting from the reaction of the fuel cell during the monitoring period in addition to the monitoring time up to the proceeding of step (c6).
15. The method of claim 10, wherein any one of the third characteristic value and the fourth characteristic value is generated from a power unit of the fuel cell and the poser unit is a device selected from the group consisting of: a unit being composed of the whole fuel cell stack; and a unit composed of a portion of the fuel cells in the whole fuel cell stack.
16. The method of claim 4, wherein the characteristic value is selected from the group consisting of current measured from the fuel cell, voltage measured from the fuel cell, power measured from the fuel cell, and the combination thereof.
17. The method of claim 4, wherein the evaluating of the variation trend of the specific characteristic value further comprising the steps of:
- (c1) obtaining a first slope from a curve profiling characteristic value of the fuel cell at the end of the specific monitoring period;
- (c2) performing a fuel supplying operation to inject fuel into the fuel cell if the first slope is a negative value; otherwise, proceeding to step (c3) when the first slope is a positive value;
- (c3) obtaining a second slope from the characteristic curve of the fuel cell before a specific point of time after the end of the monitoring period; and
- (c4) determining whether the second slope is a negative value while performing the fuel supplying operation to inject fuel into the fuel cell when the second slope is negative; otherwise, the flow proceeds back to step (c3) when the second slope is positive.
18. The method of claim 4, wherein the fuel is a hydrogen-rich fuel.
19. The method of claim 18, wherein the hydrogen-rich fuel is a fuel selected from the group consisting of: methanol, ethanol, and boron hydride.
20. The method of claim 18, wherein the hydrogen-rich fuel is hydrogen.
21. The method of claim 4, wherein the measuring of the variation of the specific characteristic value in the step (b) further comprises the steps of:
- (b 1) making an evaluation to determine whether the specific characteristic value is varied; and
- (b2) determining whether to perform the fuel supplying operation to inject fuel into the fuel cell according to the variation of the load when the specific characteristic value is varied.
22. The method of claim 21, wherein the load is determined to be varied when the characteristic value of the fuel cell changes from low to high.
23. The method of claim 22, wherein the changing of the characteristic value is determined by a means selected from the group consisting of: the characteristic value changes from low to high when a slope obtained from a curve profiling the variation of the characteristic value is a positive value; the characteristic value changes from high to low when the slope obtained from the curve profiling the variation of the characteristic value is a negative value; the characteristic value from high to low is determined by evaluating whether the difference of characteristic values measured before a specific point of time and at the specific point of time is positive; and the characteristic value from low to high is determined by evaluating whether the difference of characteristic values measured before a specific point of time and at the specific point of time is negative.
24. The method of claim 21, wherein the amount of fuel to be injected into the fuel cell is dependent upon the variation of the load.
Type: Application
Filed: Sep 10, 2008
Publication Date: Jan 7, 2010
Patent Grant number: 7910256
Applicant: Institute of Nuclear Energy Research Atomic Energy Council , Executive Yuan (Taoyuan County)
Inventors: CHARN-YING CHEN (Taoyuan County), CHUN-LUNG CHANG (Taoyuan County), DER-HSING LIOU (Taoyuan County), CHIH-YUAN HSU (Taoyuan County), RUI-XIANG WANG (Taoyuan County)
Application Number: 12/207,603
International Classification: H01M 8/00 (20060101);