High-Power Ultracapacitor Energy Storage Pack and Method of Use
In an energy storage cell pack including at least one energy storage cell that radiates heat in a longitudinal axial direction outwards, towards opposite electrically conductive and heat conductive terminals, a terminal heat sink includes a receiving section for structurally receiving a terminal of the opposite electrically conductive and heat conductive terminals, and more than one heat conductive cooling fin radiating outwardly from the receiving section, wherein the more than one cooling fin radiates outwardly from the terminal when the receiving section structurally receives the terminal for dissipating heat from the terminal to cool the at least one energy storage cell.
Latest ISE CORPORATION Patents:
- Expandable Energy Storage Control System and Method
- Location Based Vehicle Data Logging and Diagnostic System and Method
- Remote Vehicle Monitoring and Diagnostic System and Method
- Location Based Vehicle Data Logging and Diagnostic System and Method
- Propulsion Energy Storage Control System and Method of Control
The field of the invention generally relates to an energy storage specially adapted for a hybrid electric vehicle. In particular, the invention relates to a high-voltage, high-power ultracapacitor energy storage pack composed of a large number of serially connected individual low-voltage ultracapacitor cells that store propulsion energy.
BACKGROUND OF THE INVENTIONThe connecting together of individual battery cells for high-voltage, high-energy applications is well known. However, the chemical reaction that occurs internal to a battery during charging and discharging typically limits deep-cycle battery life to hundreds of charge/discharge cycles. This characteristic means that the battery pack has to be replaced at a high cost one or more times during the life of a hybrid-electric or all-electric vehicle.
Batteries are somewhat power-limited because the chemical reaction therein limits the rate at which batteries can accept energy during charging and supply energy during discharging. In a hybrid-electric vehicle application, the battery power limitation manifests itself as an internal series resistance that restricts the drive system efficiency in capturing braking energy through regeneration and supplying power for acceleration.
Ultracapacitors are attractive because they can be connected together, similar to batteries, for high-voltage applications; have an extended life of hundreds of thousands of charge/discharge cycles; and have a low equivalent internal series resistance that allows an ultracapacitor pack to accept and supply much higher power than similar battery packs. Although ultracapacitor packs may be more expensive than battery packs for the same applications and currently cannot store as much energy as battery packs, ultracapacitor packs are projected to last the life of the vehicle and offer better fuel-efficient operation through braking regeneration energy capture and supplying of vehicle acceleration power. Furthermore, the price of an ultracapacitor pack has the potential to decrease significantly because of economies of scale in known manufacturing techniques.
During charging and discharging operation of the ultracapacitors, parasitic effects, as modeled by the equivalent series resistance, cause the cell temperature to increase. Cooling is required to minimize increased temperature operation that would degrade the energy storage and useful life of each ultracapacitor.
Other than operation/performance, the key consideration for ultracapacitor packs in a heavy duty hybrid-electric vehicle is heat dissipation. The ultracapacitor cells used in ultracapacitor packs are constructed as layered sheets of conductive material and dielectric, wrapped around a central axis and forming a cylinder. Terminals are placed on each end of the cell. The terminals are typically threaded and provide both an electrical coupling point and a support point. The thermal characteristics of this construction are such that most of heat generated by the cell is transferred to the environment via the two ends of the cell. Currently, heat dissipation is accomplished by blowing cooling air across the cylindrical bodies/cases of the cells.
Ultracapacitor packs in vehicles, especially heavy-duty vehicles, reside in a harsh operating environment and face unique challenges not present in non-vehicular applications. In particular, the vehicular environment is dirty, hot, and subject to vibration. Current implementations attempt to address these problems, but leave room for improvement and innovation.
In heavy-duty transit bus applications and other heavy duty vehicle applications higher performance and smaller size ultracapacitor packs are required, especially where ultracapacitor packs are required to be placed on the roof of the heavy-duty transit bus or other heavy duty vehicle.
SUMMARY OF THE INVENTIONAn aspect of the invention involves a terminal heat sink for use with a terminal of opposite electrically conductive and heat conductive terminals of an energy storage cell of an energy storage cell pack. The energy storage cell radiates heat in a longitudinal axial direction outwards, towards the opposite electrically conductive and heat conductive terminals. The terminal heat sink includes a receiving section for structurally receiving a terminal of the opposite electrically conductive and heat conductive terminals and more than one heat conductive cooling fin radiating outwardly from the receiving section, wherein the more than one cooling fin radiates outwardly from the terminal when the receiving section structurally receives the terminal for dissipating heat from the terminal to cool the at least one energy storage cell.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of this invention.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
With reference to
With reference to
Referring to
With reference to
One of the many advantages of the cradle assembly 160 is that it enables the ultracapacitors 150 to be placed closer together than was possible in the past, making for a more compact ultracapacitor pack assembly 140. To this end, the slots 330 are disposed very close to one another. An additional advantage of disposing the slots 330 so close together is that the annular walls 330 are disposed close enough together so that the plastic material that forms structural support for one annular wall 330 adds to the structural support and rigidity of an adjacent annular wall 330. This increases the structural support provided by the slots/cups 330, increasing the structural support of the cradle assembly 160 (i.e., the plastic material forming the annular walls 330 doubles in on itself to form the additional structural support.
The annular wall 330 terminates at a proximal end in the wall/partition 340 and terminates at a distal end in annular flange 380. Annular flange 380 extends radially inwardly from the annular wall 330 and includes a central hole 390 with a diameter larger than an outer diameter of the terminal 240 (so the terminal 240 can pass there through) and smaller than the outer diameter of the ultracapacitor 150 so that the end portions 250, 260 of the ultracapacitor 150 abut the annular flange 380 while the terminal 240 passes through the hole 390. Thus, the circular slots 330 form cups for securably receiving end portions 250, 260 of the ultracapacitors 150.
Preferably the ultracapacitors 150 are oriented along the dominant axis of vibration (See
With reference to
In an alternative embodiment, the ultracapacitors 150 are laterally supported or slid into a middle support structure between the cradle members 280, 290 (or other top/bottom support plates/structures). The middle support structure may be used for fire suppression, stress relief for the cradle assembly, vibration dampening, additional structure, and/or stability.
With reference to
The ultracapacitor pack assembly 140 is advantageous because it is quick, easy, and inexpensive to assemble/manufacture, includes fewer components that ultracapacitor pack assemblies in the past, relieves the terminals 240 from supporting the ultracapacitors 150, is vibration resistant, forms a streamlined, compact ultracapacitor pack assembly, offers excellent high voltage isolation protection, provides robust environmental protection of components, particularly the ultracapacitors 150, for heavy duty applications, and provides excellent thermal insulation to reduce system heat rejection requirements. Its modularity gives vehicle manufacturers and integrators flexibility in configuring the energy storage on the vehicle. In addition, it provides for a single, uniform module that can be used in varying numbers to meet diverse energy storage requirements.
As illustrated in
With reference to
With reference to
The ultracapacitor holders 475 function as extension devices, one for each end of the ultracapacitor 150. Moreover, the ultracapacitors 150 are supported by their cylindrical body/case 434 rather than by their terminals 240. As illustrated, the ultracapacitor holders 475 include annular cuffs 477 that are akin to cup holders and slidably receive end portions of the ultracapacitors 150. The support pegs 474 extend from the annular cuff 477 and are circumferentially spaced along the annular cuff 477. When assembled as shown in
Preferably, the ultracapacitor holders 475 and the support plates 472, 473 are interfaced so that the ultracapacitor holders 475 can not rotate, translate, or pass through the support plates 472, 473. In this way coolant flow can be better controlled in a predictably way. Once the ultracapacitors 150 are positioned, the support plates 472, 473 are fastened together, thus holding the ultracapacitors 150 by their cylindrical bodies/cases 434 only. The unified structure can then be supported by a housing of the ultracapacitor pack assembly 471. This embodiment lends itself well to low cost mass production wherein the uniform end holders are placed on both ends of the ultracapacitors 150 and inserted into machined slots in the support plates. Preferably, the machined slots are keyed such that the resultant flow path is made in an optimal predetermined manner.
With reference to
The ultracapacitors 150 are supported by their cylindrical body/case 434 rather than by their terminals 240. In particular, the ultracapacitors 150 may be held in position by friction force applied to the external surface/sides of the cylindrical body/case 434. For example, where multiple ultracapacitors 150 are supported, the ultracapacitors 150 may be held by a pressure-fit within a supporting structure (e.g., a foam core support matrix 510, a grid support structure having a friction interface (not shown), etc.). In the embodiment shown, the cylindrical holes of the support matrix 510 are slightly smaller than the external diameter of the ultracapacitors 150; the ultracapacitors 150 may be supported primarily laterally by their casings.
Alternately, the ultracapacitors 150 may be positioned and held in place by injecting foam (or other setting material) between the ultracapacitors 150 and a supporting structure. Preferably, the multiple ultracapacitors 150 are positioned in a structural grid, and then the filler material is applied. In this way, individual ultracapacitors 150 may be removed without disturbing the balance of the array. In an alternative embodiment, the structural grid may be supported by a housing of the entire energy storage pack. Alternately, when using the structural grid, the filler material may be a non-expanding friction material (e.g., rubber, epoxy, etc.) that is fixed to the grid and holds the canister in place.
Alternately, where the diameter of the cylindrical holes of the support matrix 510 are slightly larger than the external diameter of the ultracapacitors 150, the ultracapacitors 150 may be supported primarily by their end portions via end brackets fixed to the support matrix 510. For example, as illustrated and similar to
In this and the abovementioned embodiments, support matrix 510, the filler material, and/or the grid are preferably made from a flame resistant material. Similarly, here and above, vertical support posts 520 may be used to support the support matrix 510 within the rest of the ultracapacitor pack assembly 500.
With reference to
Each terminal heat sink 170 forms a thermally conductive path away from the terminal 240 of ultracapacitor cell 150 that it is mechanically coupled to. In particular, terminal heat sink 170 axially transfers heat more efficiently through the ultracapacitor terminals, instead of radially across the internal dielectric layers and through the canister walls. Further terminal heat sink 170 may include a heat exchanger having a thermal performance sufficiently high that the terminal heat sink 170 provides at least half of the required cooling of the ultracapacitor cell 150. Preferably, terminal heat sink 170 will be made of a material similar to that of the cell terminals. For example, since ultracapacitor terminals are often made of aluminum, terminal heat sink 170 could also be made of aluminum. There are several benefits of using the terminal heat sink 170 as disclosed herein. For example, while some heat exchange takes place via interconnect 270, the incorporation of cooling surfaces (e.g., fins) would tend to stiffen the interconnect and induce stress in the terminals. In addition, the omnidirectional orientation of terminal heat sink 170, as illustrated, provides for a single component/device for use on each cell, independent of the cell's orientation in the series string and further provides for simple installation.
The thermal performance required of terminal heat sink 170 will vary according to each application. In particular, it may vary depending on parameters such as the performance desired of the cell, the convection mode and media, the flow rate of the convection media, the thermal gradient between the cell and coolant, etc. Once the parameters are known, the systemic heat transfer coefficient and terminal heat sink thermal performance may be determined as a result of a standard computational fluid dynamics (CFD) analysis. By cooling axially at the terminals, the cells may be cooled much more efficiently and/or the cells may have higher performance, making the energy storage better suited for hybrid-electric propulsion applications.
As illustrated in
According to one exemplary construction, and as illustrated in
With reference to
As shown in
According to one exemplary construction, the terminal heat sink 610 may be simply, quickly, and easily manufactured by sliding L-type annular washer(s) 580 along the outside of the tube 630 into desired positions and enlarging the outer diameter of the tube 630 relative to an inner diameter of annular L-type washers (e.g., by forcing a ball bearing having a larger diameter than an inner diameter of the tube 630 through the tube 630) so that the washers are fixed to the tube 630. Alternatively, the washer(s) 580 may then be welded (or otherwise fixed) to the end of the tube 630. Alternatively, terminal heat sink 610 is manufactured by sliding L-type annular washers along the outside of the tube 630 into desired positions and fixing the inner annular portion of annular L-type washers to the outer circumference of the tube 630 and fixing the nut 620 to end of the tube 630. Fixing the components together may be performed by brazing, welding, and/or other fixing techniques.
In alternative embodiments of the terminal heat sink 170, 610, the number and/or configuration(s) of the heat fins 580 may vary/differ from that shown. For example, but not by way of limitation, in one or more embodiments, terminal heat sink 170, 610 includes one or more of the following features, the terminal heat sink 170, 610 radiates outwardly in a symmetric configuration from the receiving section, the symmetric configuration is annular, and/or the symmetric configuration is at least one of curvilinear (e.g., circular, annular, oval) and rectilinear (e.g., square, rectangular, rhomboid, parallelogram). However the fins are preferably circular, in this way the terminal heat sink 170, 610 provides omnidirectional cooling and may be installed in any direction, thus making installation quicker. Also, the dimensions of the heat fins 580 are preferably less than the diameter/dimensions of the ultracapacitors 150. For example, but not by way of limitation, the outer diameter of the heat fins 580 is less than the outer diameter of the ultracapacitor 150. This minimizes the separation of adjacent cells and interaction between adjacent terminal heat sinks 170, 610. Additionally, the first fin (closest to the ultracapacitor 150 end may be in direct contact with the end of the cell for increased heat transfer, or alternately may stand off the end of the cell for increased coolant flow and convection.
The terminal heat sink 170, 610 is advantageous because, but not by way of limitation, it extracts heat from the ultracapacitor cell in a thermally efficient manner and without the need for a high flow cooling system. The terminal heat sink 170, 610 provides a low-cost, simple solution for transferring heat from the ultracapacitors 150. The terminal heat sink 170, 610 provides cooling for individual ultracapacitors 150, and provides maximum cooling at the points (i.e., terminal ends) of highest heat. The terminal heat sink 170, 610 also allows for a more compact form factor in the ultracapacitor pack assembly because the ultracapacitors 150 can be placed closer together since cooling occurs at the terminals 240 and not at the cylindrical body/case 434. Similarly, since the cells are cooled more efficiently, less cooling air is required and consequently much less energy is required to perform the same cooling.
With reference to
Coolant flow or a coolant flow path 680 flows over and through the upper terminal heat sinks 170, causing convective cooling of the cooling fins 580 (transferring heat from the upper terminals 240) to cool the ultracapacitors 150. Air flows around an opposite end of the ultracapacitor energy storage cell pack 140 and back to the heat exchanger 230 via a return flow or return flow path 690. Similar to the convective cooling that occurs in the coolant flow path 680, the return flow 690 flows over and through the lower terminal heat sinks 170, causing convective cooling of the cooling fins 580 (transferring heat from the lower terminals 240) to cool the ultracapacitors 150. Generally, air flow will be substantially or completely blocked from crossing/bleeding over the side of the ultracapacitor energy storage cell pack 140. This may be accomplished with dedicated ducting/blockage/sealants and/or configuring structures such as the housing 180 or cradle assembly 160 to perform this task
According to the illustrated embodiment, the temperature of the return flow 690 is higher than the temperature of the coolant flow path 680 because the return flow 690 includes the heat removed from upstream flow across the terminal heat sinks 170. Thus, the temperature gradient associated with the air flow above the first row 692 of ultracapacitors 150 is the highest and the temperature gradient associated with the air flow below the first row 692 of ultracapacitors 150 is the lowest. Since, heat transfer occurs in a longitudinal axial direction outwards, towards the terminals 240, in the direction of the arrows shown in
The heat exchanger 230 removes the added heat from the return flow 690 from the energy storage cell pack 110. Heat exchanger 230 may utilize an external cooling supply as well. For example, preferably heat exchanger 230 will be integrated in a vehicle cooling system. In particular, a coolant will pass through the energy storage cell pack 110 extracting heat from the hotter air flow. This may be accomplished by passing the coolant through a finned tube and passing the heated air flow across it. With reference additionally to
According to the preferred embodiment shown, both the cross flow fan/flow source 220 and the heat exchanger 230 are integrated into the ultracapacitor energy storage cell pack 110. Preferably, the heat exchanger 230 is cooled externally using coolant from either the vehicle cooling system (not shown) or a central water chiller or cooling supply 120 (
According to the embodiment shown, the ultracapacitors 150 are vertically arranged in a single-level array, and the coolant (e.g., air) will pass over the top (and/or or bottom) of the ultracapacitors 150, wrap around, and enter the heat exchanger 230 to extract heat. The terminal heat sinks 170 on the terminals 240 form mini heat exchangers (e.g., finned nuts) so as to improve the transfer of heat from the terminals 240 to the coolant. This design is particularly good with ultracapacitors 150 because the internal construction of the ultracapacitors 150 makes it far more efficient to extract heat from the terminals 240 rather than the cases/cylindrical body 434 of the ultracapacitors 150. This is true even though there is much more surface area around the external surface of the cases/cylindrical body 434 than the external surface of the terminal 240, making this cooling approach counterintuitive, especially since one would think that enclosing the hot ultracapacitors 150 in a sealed, enclosed box would raise the temperature of the ultracapacitors 150. As shown in
As used in a hybrid electric vehicle, some of the characteristics of the ultracapacitor energy storage cell pack 110 may include a rated voltage of 2.3×48=110.4 V, a recommended max voltage of 2.5×48=120 V, a surge voltage of 2.7×48=129.6 V, an isolation voltage of 2500 V, a rated continuous current of 150 A (peak of 300 A), a leakage current of <5 mA, a number of 48 cells (each rated at 3000 F) in the module, a lifetime of 40000 hrs (based on a continuous 33 kW cycle), 1 million Cycles (50% DoD), capacitance of 62.5 F, total energy stored nominal of 105.8 Wh (2.3 V/cell), total energy stored peak of 125 Wh (2.5 V/cell), DC ESR of 16.5 mOhms, heat rejection of 3 kW, cooling water of 30-35 degrees C. at 10 gpm (plumbed in parallel), a storage temperature of −40 degrees C. to 70 degrees C., an operating ambient temperature of −40 degrees C. to 50 degrees C., and a vibration meeting SAE J2380 & J244, an IP rating of IP67, an IEC rating of iec 529 (Type 5), a height dimension of no more than 13 in., a length dimension of no more than 15 in., and a width dimension of no more than 17 in., and a total dimension/volume that does not exceed 13 in.×15 in.×17 in. In addition, while there is no maximum limit to the spacing between the ultracapacitors, preferably there should be no more that 0.25 in.-0.50 in. between the casings of the cells.
Some of the characteristics of the ultracapacitor pack system 100 include a supply voltage of 230 VAC, a rated voltage of 110.4×6=662 V, a recommended max voltage of 120×6=720 V, a surge voltage of 129.6×6=777 V, an isolation voltage of 2500 V, a rated continuous current of 150 A, a rated peak current of 300 A, a leakage current of <5 mA, a number of modules/ultracapacitor energy storage cell packs 110 of 6 modules in the ultracapacitor pack system 100, a lifetime of 40000 hrs (based on a continuous 33 kW cycle), 1 million Cycles (50% DoD), capacitance of 10.4 F, total energy stored nominal of 634 Wh (2.3 V/cell), total energy stored peak of 750 Wh (2.5 V/cell), DC ESR of 98 mOhms, heat rejection of 3 kW (10236 BTU/hr), cooling water of 30-35 degrees C. at 10 gpm (0.758 L/s), a storage temperature of −40 degrees C. to 70 degrees C., an operating ambient temperature of −40 degrees C. to 50 degrees C., a maximum ambient temperature range inlet of 60 degrees C., vibration meeting SAE J2380 & J244, 144 temperature sensors, an IP rating of IP67, an IEC rating of iec 529 (Type 5), a Beginning of Life (BOL) power loss of no more than 2251 W, and an End of Life (EOL) power loss of no more than 2701 W.
The ultracapacitor pack system 100 preferably includes ground fault circuit protection, a CAN vehicle interface, contactor protection hardware/software, microprocessor controlled cell equalization and monitoring, integral DC Bus precharge resistor(s), fast-acting fuse that reduces damage to DC bus components in event of a short circuit, diagnostic and prognostic functions to predict faults before they occur, and a monitoring system that monitors the voltage and temperature of every capacitor 150 to eliminate hidden cell failures.
With reference to
The above figures may depict exemplary configurations for the invention, which is done to aid in understanding the features and functionality that can be included in the invention. The invention is not restricted to the illustrated architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, although the invention is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features and functionality described in one or more of the individual embodiments with which they are described, but instead can be applied, alone or in some combination, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present invention, especially in the following claims, should not be limited by any of the above-described exemplary embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as mean “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; and adjectives such as “conventional,” “traditional,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, a group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although item, elements or components of the disclosure may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated. The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent.
Claims
1. A device for cooling an energy storage cell in a hybrid electric vehicle, the energy storage cell having a first terminal, the device comprising:
- a terminal interface configured to mechanically and thermally couple the device to the first terminal; and,
- a heat exchanger radiating outwardly from the first terminal and configured to convectively transfer heat away from the first terminal.
2. The device of claim 1, wherein the terminal interface is further configured to fix the device to the first terminal.
3. The device of claim 2, wherein the terminal interface comprises a threaded cavity.
4. The device of claim 1, wherein the heat exchanger comprises at least one fin radiating around the first terminal.
5. The device of claim 1, wherein the heat exchanger has a sufficiently high thermal performance that the energy storage cell requires terminal cooling only.
6. The device of claim 5, wherein the energy storage cell has a second terminal; and,
- wherein the thermal performance of the heat exchanger is sufficiently high that the device may provide at least half of the terminal cooling of the energy storage cell.
7. The device of claim 1, wherein the heat exchanger does not extend beyond the perimeter of the energy storage cell as viewed perpendicular to the first terminal.
8. The device of claim 1, wherein the heat exchanger comprises a plurality of round fins.
9. The device of claim 1, further comprising a tool interface configured to couple to an installation/removal tool.
10. The device of claim 9, wherein the tool interface comprises a recessed tool interface.
11. The device of claim 1, wherein the terminal interface is further configured to fix an electrical bridging device to the first terminal.
12. The device of claim 11, further comprising a tool interface configured to couple to an installation/removal tool;
- wherein the terminal interface comprises a threaded cavity;
- wherein the heat exchanger comprises a plurality of circular fins, the fins not extending beyond the perimeter of the energy storage cell, as viewed perpendicular to the first terminal; and,
- wherein the terminal interface comprises a surface configured to press the electrical bridging device against the energy storage cell as the device is screwed on.
13. A system for cooling a plurality of energy storage cells in a hybrid electric vehicle, the plurality of energy storage cells configured to store propulsion energy of the hybrid electric vehicle, each of the plurality of energy storage cells having a first terminal, the system comprising:
- a plurality of terminal cooling devices, each having a terminal interface configured to mechanically and thermally couple the terminal cooling device to the first terminal of one of the plurality of energy storage cells, each terminal cooling device also having a heat exchanger configured to convectively transfer heat away from the first terminal of its respective coupled energy storage cell; and,
- a coolant flowing across each of the heat exchangers.
14. The system of claim 13, wherein each terminal interface comprises a threaded cavity and is configured to fix each terminal cooling device to the first terminal of its respective coupled energy storage cell.
15. The system of claim 13, wherein each heat exchanger comprises at least one fin radiating from the first terminal of its respective coupled energy storage cell.
16. The system of claim 13, wherein each heat exchanger has a sufficiently high thermal performance that its respective coupled energy storage cell requires terminal cooling only.
17 The system of claim 16, wherein each of plurality of energy storage cells has a second terminal, the system further comprising
- wherein the thermal performance of the each heat exchanger is sufficiently high that each of the plurality of terminal cooling devices may provide at least half of the terminal cooling of its respective coupled energy storage cell.
18. The system of claim 13, wherein each heat exchanger does not extend beyond the perimeter of its respective coupled energy storage cell as viewed perpendicular to the first terminal.
19. The system of claim 13, wherein one of the plurality of terminal cooling devices is further configured to fix one end of an electrical bridging device to a first energy storage cell; and,
- wherein another of the plurality of terminal cooling devices is further configured to fix another end of the electrical bridging device to a second energy storage cell.
20. The system of claim 19, wherein the plurality of terminal cooling devices each further comprise a tool interface configured to couple to an installation/removal tool;
- wherein the terminal interface of each of the plurality of terminal cooling devices comprises a threaded cavity, and further comprises a surface configured to press the electrical bridging device against the energy storage cell as the device is screwed on; and,
- wherein the heat exchanger of each of the plurality of terminal cooling devices comprises a plurality of circular fins, the fins not extending beyond the perimeter of the energy storage cell, as viewed perpendicular to the first terminal.
21. A method for cooling a plurality of ultracapacitors in a hybrid electric vehicle, the plurality of ultracapacitors configured to store propulsion energy of the hybrid electric vehicle, each of the plurality of ultracapacitors having a first terminal, the method comprising:
- providing a plurality of terminal cooling devices, each terminal cooling device having a terminal interface and a heat exchanger;
- mechanically and thermally coupling each terminal cooling device to the first terminal of one of the plurality of ultracapacitors respectively;
- providing a coolant flow across each of the terminal cooling devices; and,
- convecting heat away from the plurality of terminal cooling devices.
Type: Application
Filed: Dec 23, 2008
Publication Date: Jun 24, 2010
Applicant: ISE CORPORATION (Poway, CA)
Inventor: Alfonso O. Medina (San Diego, CA)
Application Number: 12/343,271
International Classification: H05K 7/20 (20060101);