BASE STATION RF DUPLEXER, RF MODULE, AND RF SYSTEM
The present disclosure relates to telecommunication, and in particular, to a base station Radio Frequency (RF) duplexer, an RF module, and an RF system. A base station RF apparatus provided herein includes: an enclosure, an intermediate RF processing unit, and a duplexer. The enclosure is located on the duplexer; the intermediate RF processing unit is located inside a cavity enclosed by the enclosure and the duplexer, or on the duplexer; a duplexer cavity and a heat dissipation part exist on the surface of the duplexer; the opening of the duplexer cavity is opposite to or against the enclosure; the heat dissipation part is designed to dissipate heat of the intermediate RF processing unit; and the duplexer is integrally molded. The foregoing technical solution requires no external fasteners, reduces the time of production and assembly. In addition, waterproof design and shielding design are not required, and thus improves the reliability.
Latest HUAWEI TECHNOLOGIES CO., LTD. Patents:
This application claims priority to Chinese Patent Application No. 200910105437.0, filed on Feb. 13, 2009, which is hereby incorporated by reference in its entirety.
FIELDThe present disclosure relates to telecommunication technology, and in particular, to a base station Radio Frequency (RF) duplexer, an RF module, and an RF system.
BACKGROUNDCurrently, the intermediate RF transceiver link duplexer and the heat sink in the industry are split. That is, the cavity structure of the duplexer and that of the heat sink are designed and manufactured separately, and then fastened together through screws. This solution increases the assembling time and the difficulties of waterproof and shielding design.
In one of the split-type technical solution in the prior art, the duplexer is located externally on the heat sink structure of the intermediate RF transceiver link. The duplexer cavity and the heat sink are generated through die casting separately. The duplexer cavity is fastened on the heat dissipation teeth side through screws, thus reducing the effective teeth area of the heat sink and affecting the heat dissipation result of the heat sink to some extent. In order to meet the reliability of the modules and prevent water and electromagnetic leak, waterproof design and shielding design need to be applied to the fastened area.
In the process of developing the present disclosure, the inventor finds at least these defects in the prior art: low reliability of modules in the integrated equipment, and long time of production and assembly.
SUMMARYThe embodiments of the present disclosure provide a base station RF apparatus, a base station RF duplexer, and an RF system to improve the reliability of the modules in the integrated equipment and shorten the time of production and assembly.
The base station RF apparatus includes:
an enclosure, located on a duplexer;
an intermediate RF processing unit, located inside a cavity enclosed by the enclosure and the duplexer and located on the duplexer; and
the duplexer, where: a duplexer cavity and a heat dissipation part exist on the surface of the duplexer, the opening of the duplexer cavity is opposite to or against the enclosure, the heat dissipation part is designed to dissipate heat of the intermediate RF processing unit, and the duplexer is integrally molded.
The base station RF duplexer includes a duplexer cavity and a heat dissipation part on the surface of the duplexer, where:
the duplexer cavity and the heat dissipation part are located on the same surface or different surfaces of the duplexer;
a partition wall and a tuning screw exist inside the duplexer cavity, the partition wall is designed to partition the duplexer cavity into chambers, and the tuning screw is designed to adjust the frequency of the duplexer; and
the duplexer is integrally molded.
The base station RF system includes an antenna, and the base station RF apparatus described above, where:
a signal connection is located between the duplexer and the antenna for exchanging signals; and
a signal connection is located between the duplexer and the RF processing unit for exchanging signals.
In the technical solution under the present disclosure, the duplexer cavity and the heat dissipation part are integrally molded through die casting. Therefore, the duplexer cavity and the heat dissipation part constitute an entirety, and no assembly plane is located between the duplexer cavity and the heat dissipation part, thus avoiding additional fasteners, shortening the time of production and assembly, In addition, additional waterproof design and shielding design are not required, and thus improving the reliability.
In order to make the technical solution under the present disclosure or the prior art clearer, the accompanying drawings for illustrating the embodiments of the present disclosure or the prior art are outlined below. Evidently, the accompanying drawings are for the exemplary purpose only, and those skilled in the art can derive other drawings from such accompanying drawings without making any creative effort.
The technical solution under the present disclosure is expounded below by reference to the accompanying drawings. Evidently, the embodiments provided herein are for the exemplary purpose only, and are not all of the embodiments of the present disclosure. Those skilled in the art can derive other embodiments from the embodiments provided herein without making any creative effort, and all such embodiments are covered in the protection scope of the present disclosure.
Embodiment 1As shown in
The enclosure 20 is located on the duplexer 22.
The intermediate RF processing unit 21 is located inside the enclosure 20 and located on the duplexer 22.
A duplexer cavity 222 is located on the inner lateral of the duplexer 22, and the duplexer cavity 222 faces toward the inside of the enclosure 20, namely, the opening of the duplexer cavity 222 is opposite to the enclosure 20. A heat dissipation part 221 is located on the outer lateral of the duplexer 22, and the heat dissipation part 221 is designed to dissipate heat of the intermediate RF processing unit 21. The duplexer 22 is integrally molded through die casting.
The enclosure 20 or the intermediate RF processing unit 21 may be located on the duplexer 22 in this way: The enclosure 20 and the intermediate RF processing unit 21 are fitted together through mechanical connection such as screws and fasteners, or through adhesive such as heat-conductive adhesive and sticky heat-conductive material. The heat dissipation part 221 may be implemented in multiple different modes, for example, cooling fins, or liquid cooling pipes. The accompanying drawing for this embodiment takes the cooling fin as an example. However, the present disclosure is not limited to such an implementation mode of the heat dissipation part. All the implementation modes of the heat dissipation part that can be derived by those skilled in the art are covered in the protection scope of the present disclosure.
A partition wall is located inside the duplexer cavity 222. The partition wall divides the duplexer cavity 222 into a plurality of chambers. Due to different working parameters, the modality of the chambers inside the duplexer cavity 222 may differ sharply. The embodiments of the present disclosure do not restrict the modes of the partition wall and the chambers inside the duplexer cavity 222. Those skilled in the art can located the partition wall and the chambers at their discretion according to the application environment.
A heat dissipation part 221 is located on the outer lateral of the duplexer 22. Specifically, a heat dissipation part 221 is located on the outer lateral of the duplexer 22 except the rear area of the duplexer cavity 222; or, as shown in
Optionally, a heat dissipation part 201 may be located on the outer lateral of the enclosure 20. As shown in
In the base station RF module apparatus provided in this embodiment, the duplexer cavity and the heat sink structure are integrally molded through die casting. Therefore, the duplexer cavity and the heat sink structure constitute an entirety, and no assembly plane is located between the duplexer cavity and the heat sink structure, thus avoiding additional fasteners, shortening the time of production and assembly. In addition, the additional waterproof design and shielding design are not required, and thus improving the reliability of the base station RF module. Because the duplexer is outside the enclosure, it does not occupy any internal space of the enclosure. Heat dissipation teeth of a certain height may be reserved on the rear area of the duplexer cavity as required, thus exerting the heat dissipation function to the utmost and improving the heat dissipation capability of the base station RF module.
Embodiment 2As shown in
The enclosure 40 is located on the duplexer 42.
The intermediate RF processing unit 41 is located inside the enclosure 40 and located on the duplexer 42.
A duplexer cavity 422 is located on the outer lateral of the duplexer 42, and the duplexer cavity 422 faces toward the outside of the enclosure 40, namely, the opening of the duplexer cavity 422 is back against the enclosure 40. A heat dissipation part 421 is located on the outer lateral of the duplexer 42, and the heat dissipation part 421 is designed to dissipate heat of the intermediate RF processing unit 41. The duplexer 42 is integrally molded through die casting.
The cover plate 43 is designed to cover the duplexer cavity 422 and protect the tuning screw in the duplexer cavity 422. The tuning screw is fastened into the screw hole inside the duplexer cavity 422.
The enclosure 40 or the intermediate RF processing unit 41 is located on the duplexer 42 in this way: They are fitted together through mechanical connection such as screws and fasteners, or through adhesive such as heat-conductive adhesive and sticky heat-conductive material. The heat dissipation part 421 may be implemented in multiple different modes, for example, cooling fins, or liquid cooling pipes. The accompanying drawing for this embodiment takes the cooling fin as an example. However, the present disclosure is not limited to such an implementation mode of the heat dissipation part. All the implementation modes of the heat dissipation part that can be derived by those skilled in the art are covered in the protection scope of the present disclosure.
A partition wall is located inside the duplexer cavity 422. The partition wall divides the duplexer cavity 422 into chambers. Due to different working parameters, the modality of the chambers inside the duplexer cavity 422 may differ sharply. The embodiments of the present disclosure do not restrict the modes of the partition wall and the chambers inside the duplexer cavity 422. Those skilled in the art can located the partition wall and the chambers at their discretion according to the application environment.
A heat dissipation part 421 is located on the outer lateral of the duplexer 42. The heat dissipation part 421 may be the part except the area of the duplexer cavity 422, as shown in
Optionally, a heat dissipation part 401 may be located on the outer lateral of the enclosure 40. As shown in
The cover plate 43 prevents the tuning screw in the duplexer cavity 422 from colliding with the outside. When other protective measures are available, the cover plate 43 is not necessary. After the cover plate 43 is located, it protects the tuning screw in the duplexer cavity, and ensures stability of the performance parameters of the duplexer.
In the base station RF module apparatus provided in this embodiment, the duplexer cavity and the heat sink structure are integrally molded through die casting. Therefore, the duplexer cavity and the heat sink structure constitute an entirety, and no assembly plane is located between the duplexer cavity and the heat sink structure, thus avoiding additional fasteners, shortening the time of production and assembly. In addition, the additional waterproof design and shielding design are not required, and thus improving the reliability of the base station RF module. Because the duplexer is outside the enclosure, it does not occupy any internal space of the enclosure. A cover plate with waterproof treatment may be added to prevent the tuning screw in the duplexer cavity from colliding with the outside and ensure stability of the performance parameters of the duplexer.
Embodiment 3As shown in
A partition wall and a tuning screw exist inside the duplexer cavity 61, the partition wall is designed to partition the duplexer cavity 61 into chambers, and the tuning screw is designed to adjust the frequency of the duplexer.
The heat dissipation part 62 is designed to dissipate heat of the intermediate RF processing unit.
The duplexer cavity 61 and the heat dissipation part 62 are located on the same surface (as shown in
Optionally, as shown in
Optionally, as shown in
The heat dissipation part 62 may be implemented in multiple different modes, for example, cooling fins and liquid cooling pipes. The accompanying drawing for this embodiment takes the cooling fin as an example. The present disclosure is not limited to such an implementation mode of the heat dissipation part. All the implementation modes of the heat dissipation part that can be derived by those skilled in the art are covered in the protection scope of the present disclosure.
In the base station RF duplexer provided in this embodiment, the duplexer cavity and the heat dissipation part are integrally molded through die casting. Therefore, the duplexer cavity and the heat dissipation part constitute an entirety, and no assembly plane is located between the duplexer cavity and the heat dissipation part, thus avoiding additional fasteners, shortening the time of production and assembly. In addition, the additional waterproof design and shielding design are not required, and thus improving the reliability. A heat dissipation part of a certain height may be reserved on the rear area of the duplexer cavity as required, thus exerting the heat dissipation function to the utmost and improving the heat dissipation capability. Alternatively, a cover plate with waterproof treatment may be added to prevent the tuning screw in the duplexer cavity from colliding with the outside and ensure stability of the performance parameters of the duplexer.
Embodiment 4As shown in
The RRU 71 includes an intermediate RF processing unit and a duplexer unit.
The antenna 70 is configured to interconnect with the duplexer unit to exchange signals. The antenna 70 is configured to transmit the received signals to the duplexer unit, and the duplexer unit processes the signals and then transmits the processed signals to the intermediate RF processing unit. The duplexer unit receives the signals from the intermediate RF processing unit, processes the signals and sends the signals to the antenna 70.
The intermediate RF processing unit receives signals from the duplexer unit, performs intermediate RF processing, and then sends the processed signals to a Base Band Unit (BBU) 72. The intermediate RF processing unit receives the signals from the BBU, performs intermediate RF processing, and then sends the processed signals to the duplexer unit.
The duplexer unit may be the base station RF duplexer described in the foregoing embodiments.
The RRU 71 may be the base station RF module described in the foregoing embodiments.
In the base station RF system provided in this embodiment, the duplexer cavity and the heat dissipation part are integrally molded through die casting. Therefore, the duplexer cavity and the heat dissipation part constitute an entirety, and no assembly plane is located between the duplexer cavity and the heat dissipation part, thus avoiding additional fasteners, shortening the time of production and assembly. In addition, the additional waterproof design and shielding design are not required, and thus improving the reliability.
Although the invention has been described through several preferred embodiments, the invention is not limited to such embodiments. It is apparent that those skilled in the art can make modifications and variations to the invention without departing from the spirit and scope of the invention. The invention is intended to cover the modifications and variations provided that they fall in the scope of protection defined by the following claims or their equivalents.
Claims
1. A base station Radio Frequency (RF) duplexer, comprising a first heat dissipation part formed in one surface of the duplexer, a duplexer cavity formed on the same surface or different surface of the duplexer, wherein the duplexer cavity and the first heat dissipation part are integrally molded.
2. The base station RF duplexer of the claim 1, wherein the duplexer cavity and the first heat dissipation part are located on the different surfaces of the duplexer, a second heat dissipation part is formed at the rear area of the duplexer cavity in the surface which first heat dissipation part located on.
3. The base station RF duplexer of claim 1, wherein the duplexer cavity and the first heat dissipation part are located on the same surface of the duplexer, the duplexer further comprises a cover plate, configured to cover the duplexer cavity to protect elements in the duplexer cavity.
4. The apparatus of claim 3, wherein a plurality of partition walls are defined to partition the duplexer cavity into a plurality of chambers, and a plurality of tuning screws
5. The apparatus of claim 4, wherein the elements in the duplexer cavity comprises a plurality of tuning screws, the plurality of tuning screws are located inside the plurality of chamber to adjust the frequency of the duplexer.
6. A base station Radio Frequency (RF) apparatus, comprising: an enclosure, an intermediate RF processing unit, and a duplexer according to claim 1, wherein, the intermediate RF processing unit is located on the duplexer so that the first heat dissipation part can dissipate heat of the intermediate RF processing unit, the enclosure is assembled on the duplexer to have the intermediate RF processing unit located inside a cavity enclosed by the enclosure and the duplexer.
7. The apparatus of claim 6, wherein a third heat dissipation part is designed on the outer lateral of the enclosure.
8. The apparatus of claim 6, wherein a waterproof or shielding treatment device is located between the enclosure and the duplexer.
9. A base station Radio Frequency (RF) system, comprising an antenna, and a base station RF apparatus according to claim 6, wherein:
- a signal connection is located between the duplexer and the antenna for exchanging signals; and
- a signal connection is located between the duplexer and the intermediate RF processing unit for exchanging signals.
10. The system of claim 9, further comprising a Base Band Unit, wherein a signal connection is located between the intermediate RF processing unit and the Base Band Unit for exchanging signals.
Type: Application
Filed: Feb 12, 2010
Publication Date: Aug 19, 2010
Applicant: HUAWEI TECHNOLOGIES CO., LTD. (Shenzhen)
Inventors: Haizhao Wang (Shenzhen), Guangfu Si (Shenzhen), Naier Meng (Shenzhen), Bo Yang (Shenzhen), Puke Zhou (Shenzhen), Shengxiang Gao (Shenzhen), Yi Zhang (Shenzhen), Weihua Sun (Shenzhen), Jianjun Zhou (Shenzhen), Ke Zhang (Shenzhen), Hao Li (Shenzhen), Zhiwei Shang (Shenzhen), Runxiao Zhang (Shenzhen)
Application Number: 12/704,716
International Classification: H01P 5/12 (20060101);