High Strength, High Density Carrier Plate
A carrier plate for supporting electronic components during processing includes hexagonally-arranged holes for supporting the components. Walls of the holes comprise a gripping resilient material. The hexagonal arrangement provides a strong carrier that improves production yield through an increase in per batch processing and improved locational accuracy over conventional carriers.
Latest ELECTRO SCIENTIFIC INDUSTRIES, INC. Patents:
- LASER-PROCESSING APPARATUS, METHODS OF OPERATING THE SAME, AND METHODS OF PROCESSING WORKPIECES USING THE SAME
- LASER PROCESSING APPARATUS INCLUDING BEAM ANALYSIS SYSTEM AND METHODS OF MEASUREMENT AND CONTROL OF BEAM CHARACTERISTICS
- Systems and methods for drilling vias in transparent materials
- Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
- Laser micromachining with tailored bursts of short laser pulses
This invention generally relates to processing miniature electronic components and more specifically to a high strength, high density carrier plate used in processing such components.
BACKGROUNDElectronic components are processed using a wide variety of different electronic component handlers. One such handler is described in, for example, U.S. Pat. No. 4,526,129, entitled Means for Processing Miniature Electronic Components such as Capacitors or Resistors. Therein, a plate is disclosed that supports a number of miniature electronic components for processing, such as applying conductive coatings to opposite ends of each component.
BRIEF SUMMARYOne embodiment of the invention taught herein is a method of manufacturing a carrier plate for supporting a plurality of electronic components. The method comprises supporting a carrier core between a first mold part and a second mold part. The first mold part includes a facing surface facing the carrier core and a first plurality of pins extending therefrom and the second mold part includes a facing surface facing the carrier core and a second plurality of pins extending therefrom. The carrier core includes a frame portion forming an outer peripheral edge of the carrier core, a web portion surrounded by core frame portion and recessed from opposing surfaces of the frame portion facing the facing surfaces of the first mold part and the second mold part and a plurality of hexagonally-arranged bores extending through the web portion and perpendicular to the facing surfaces of the first mold part and the second mold part. Each of the plurality of first and second pins extends through a respective one of the plurality of hexagonally-arranged bores. The method also comprises injecting a resilient material through gates in each of the first mold part and the second mold part to form a molded part and finishing opposing surfaces of the molded part to a desired thickness.
Another embodiment of the invention taught herein is a carrier plate formed according to this method. One carrier plate, for example, includes a carrier core having a frame portion forming an outer peripheral edge of the carrier core, a web portion surrounded by the frame portion and recessed from opposing surfaces of the frame portion and a plurality of hexagonally-arranged bores extending through the web portion. Resilient material lines the plurality of hexagonally-arranged bores and fills each recess formed between opposing surfaces of the web portion such that the resilient material is substantially flush with the opposing surfaces of the web portion.
Additional details and modifications of these and other embodiments of the invention are described in detail hereinafter.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Referring first to
Carrier plate 11 is formed of a core 20 as shown in
Frame portion 22 defines an inner recess, or web portion 26, of core 20. Web portion 26 comprises multiple bores 28 extending therethrough. Web portion 26 is thinner than frame portion 22. That is, web portion 26 is recessed from both the top and bottom surfaces of frame portion 22 to assist with holding resilient material 14 in place. Bores 28 are formed by, for example, machine or laser drilling according to known methods and techniques.
Carrier plate 11, and hence core 20, is not limited to a particular thickness. However, like the shape thereof, it is desirable if carrier plate 11 is sized to be used in existing processing equipment to reduce capital expenditures associated with using inventive carrier plate 11 in place of conventional plates. Moreover, support holes 12 must be sized to accommodate the length of parts mounted therein. Accordingly, one desirable thickness of carrier plate 11 after finishing is, for example, approximately 0.35 inches (i.e., within a 1% tolerance or less).
Existing part handling plates, such as that described in U.S. Pat. No. 4,526,129, include multiple part receiving passageways arranged in a square pattern. The inventors have noted a number of problems with such an arrangement. First, production rates in existing plate-based component processing are limited by the number of passageways that can be used at any one time to process components. However, increasing the size of such plates in order to process more parts at one time (e.g., increasing production rates) is not feasible due to the large capital investment in existing equipment. Further, maintaining the strength and/or rigidity of the plate would be a serious concern if the number of passageways were increased by merely spacing them closer together.
The inventors address these problems by forming a hexagonal arrangement of the bores 28, and hence a hexagonal arrangement of the support holes 12. In such an arrangement, as shown in
Manufacture of carrier plate 11 using core 20 is next described with reference to
The first step 30 in manufacturing carrier plate 11 is heating top mold part 44 and bottom mold part 46 using any known heating element 40 of an apparatus 38 for manufacturing a molded component. Mold parts 44, 46 are preferably formed of material to match the thermal expansion characteristics of core 20 and can be made of the same material as core 20. For example, mold parts 44, 46 are made of an aluminum alloy with a high tensile strength such as 7075-T651. Mold parts 44, 46 can be finished with a coating of electroless nickel with poly-tetrafluoroethylene (PTFE). One such material is sold under the tradename Poly-Ond® and is available from Poly-Plating, Inc. of Chicopee, Mass.. As is known in the industry, mold parts 44, 46 are mounted to movable supporting structures (not shown in
After heating mold parts 44, 46 using heating element 40, manufacture advances to step 32, where core 20 is placed between mold parts 44, 46, which are then moved together to enclose core 20.
As shown in
Web portion 26 is recessed as discussed previously. Therefore, even if mold parts 44, 46 extended along the same plane defined by surfaces 44a, 46a across the entire surface of core 20, a space would be provided between web portion 26 and mold parts 44, 46. In this case, however, it is desirable but not necessary to modify mold parts 44, 46 so that second surfaces 44b, 46b, which are sized for the surface area of web portion 26, are respectively recessed from surfaces 44a, 44a. In effect, this provides a gap 48 between top mold part 44 and core web portion 26 and a gap 50 between bottom mold part 46 and core web portion 26 such that resilient material 14 extends beyond top surface 22a of core frame portion 22 and beyond bottom surface 22b of core frame portion 22 after the completion of injection.
Top mold part 44 includes a plurality of pins 52 fittingly engaged therewith and extending downwardly in the closed arrangement through corresponding bores 28 of core web portion 26. Similarly, bottom mold part 46 includes a plurality of pins 54 fittingly engaged therewith and extending upwardly in the closed arrangement through corresponding bores 28 of core web portion 26. Each pin 52, 54 of a mold 44, 46 therefore extends through core 20, and each ends in a blind hole on the opposite mold. Generally pins 52, 54 are made of high-strength tool steel and are coated as described with respect to core 20. Only two pins are shown by example in
Arrangement of the pins 52, 54 is not particularly limited. However, it is desirable that pins 52, 54 be alternated in some manner across the surface area of core web portion 26 when in the closed arrangement and that the number of pins 52 is not significantly different from the number of pins 54. For example, the number of pins 52 and pins 54 could be even, and they could alternate from bore-to-bore. Alternating pins 52, 54 from bore-to-bore could make manufacture of mold parts 44, 46 difficult, so a more desirable arrangement may be to alternate groups of pins 52, 54 so that the groups lie in different regions of core web portion 26 in the closed arrangement. A goal of pin placement and number is to assist uniform flow of the resilient material 14 during injection. A large difference in the number of pins 52 and pins 54 could adversely affect this goal. The inventors have successfully prepared a carrier plate 11 where pins 52, 54 of mold parts 44, 46 were grouped in different regions and the ratio of the number of pins 52 to the number of pins 54 was 40/60.
Referring again to
As shown in
Due to the small size of bores 28, it is difficult to flow resilient material 14 to consistently fill the gap due to the presence of pin 52 or 54. Here, the inventors unexpectedly observed an appreciable improvement in flow of resilient material 14 with the hexagonal arrangement of bores 28 over a conventional square pattern arrangement. Without being bound by theory, it is believed that the increase in spacing to the next downstream mold pin 52 or 54 from its related upstream mold pin 52 or 54 in the hexagonal arrangement overcomes turbulence due to the existence of a low pressure area downstream of each mold pin 52, 54. That is, a resilient material 14 flows generally with respect to pin 52, 54 as shown in
In the illustrated embodiment of
Returning again to
After curing, mold parts 44, 46 can be pulled apart from the molded part 56 formed of core 20 and resilient material 14 so that the molded part 56 can be machined at step 36 to form carrier plate 11.
Namely, the molded part 56 formed of core 20 and resilient material 14 includes resilient material 14 in core web portion 26 that extends beyond surfaces 22a, 22b of core frame portion 22 as shown in
Embodiments of the carrier plate 11 allow more components to be processed in each batch of a process due to the use of a hexagonal arrangement of holes 12. That is, the holes 12 in carrier plate 11 are significantly greater in number than a carrier plate using a square pattern. For example, in an existing carrier plate sold by the Assignee has 7,668 holes with a surface area of the core web portion 26 of approximately 10.126 inches by 6.625 inches. The same size inventive carrier plate 11 includes 14,008 holes 12.
Surprisingly, despite the significant reduction in mass of core web portion 26 due to the large number of holes 12, strength and rigidity of core 20 is higher than if the core 20 were drilled with a square pattern of holes with the same spacing. That is, when the spacing between adjacent holes is S1, and the diameter of each hole is constant, core 20, and hence carrier plate 11, is stronger (as measured by a deflection load test) than a core of the same size using a square pattern with the same hole spacing and diameter despite the significant increase in the number of holes 12 in core 20. The increase in the number of holes is in the order of at least 40%. Upon consideration, and without being bound by theory, the inventors believe that since the drilled core gets its stiffness from the small amount of metal left after the holes are drilled, the hexagonal hole pattern provides three axes of this remaining metal instead of just two as with conventional plates.
The disclosed inventive carrier plate 11 includes a unit cell of a hexagonally-shaped regular polygon, each vertex of which has a bore, in addition to including a bore at the center of the polygon. Hence, there are three holes located in the area of each unit cell. This is in contrast to a conventional unit cell in the form of a square where only one hole is located in the area of the unit cell. Where the edge length is the same as shown in
Carrier plates 11 are used to retain small electronic components during processing, for example during the application of precise amounts of solder paste to the ends of the components. The rubber-lined holes 12 are sized to grip the components and retain them during processing, yet allow the components to be easily inserted and ejected from the rubber. One application in which the inventive carrier plate 11 can be used is as a replacement for part handling plate 10 in the conductive coating process apparatus disclosed in U.S. Pat. No. 4,526,129, which is incorporated herein in its entirety by reference.
Components so processed can range widely in size. When processing small parts, very good precision in the location of the holes through the rubber is desirable due to the sizes and tolerances necessary. The inventors believe that the surprising improvement in plate stiffness is likely responsible for an improved locational accuracy of the component-holding holes 12, which directly and favorably bears on production yield and the overall life of carrier plate 11.
While carrier plates for relatively large parts do not require as much precision in the location of the holes through the rubber, the inventive carrier plate 11 can be successfully used with such parts to improve production yield.
The above-described embodiments have been described in order to allow easy understanding of the invention and do not limit the invention. On the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structure as is permitted under the law.
Claims
1.-11. (canceled)
12. A carrier plate for supporting a plurality of electronic components, comprising:
- a carrier core including:
- a frame portion forming an outer peripheral edge of the carrier core;
- a web portion surrounded by the frame portion and recessed from opposing surfaces of the frame portion; and
- a plurality of hexagonally-arranged bores extending through the web portion; and
- a resilient material lining the plurality of hexagonally-arranged bores and filling each recess formed between opposing surfaces of the web portion such that the resilient material is substantially flush with the opposing surfaces of the web portion.
13. The carrier plate according to claim 12 wherein the carrier core is rectangular in shape and has a finished thickness of approximately 0.35 inches.
14. The carrier plate according to claim 12 wherein a distance between a bore and its equidistantly-spaced neighboring bores is 0.07 inches and a spacing between adjacent aligned rows of bores is approximately 0.123 inches.
Type: Application
Filed: May 24, 2011
Publication Date: Sep 15, 2011
Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC. (Portland, OR)
Inventors: Todd C. SeCoy (Beatty, OR), Dale S. Dougherty (Klamath Falls, OR), Mikel S. Cole (Klamath Falls, OR), Douglas J. Garcia (Beaverton, OR), Michelle Wernert (Portland, OR)
Application Number: 13/114,518
International Classification: F16M 13/00 (20060101);