BALANCED ADAPTIVE BODY BIAS CONTROL

Systems and methods of balanced adaptive body bias control. In accordance with a first embodiment of the present invention, a method of balanced adaptive body bias control comprises determining a desirable dynamic condition for circuitry of an integrated circuit. A first dynamic indicator corresponding to the desirable dynamic condition is accessed. Second and third dynamic indicators of the integrated circuit are accessed. A first body biasing voltage is adjusted by an increment so as to change the first dynamic indicator in the direction of the desirable dynamic condition. A second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This Application is a Continuation Application of and claims priority to co-pending, commonly owned U.S. patent application No. 11/238,446, now U.S. Pat. No. 7,949,864, filed Sep. 28, 2005, which is hereby incorporated herein by reference in its entirety.

Which in turn was a continuation in part of co-pending, commonly owned U.S. patent application Ser. No. 10/334,918, now U.S. Pat. No. 7,941,675, filed Dec. 31, 2002, attorney docket TRAN-P126, entitled “Adaptive Power Control” to Burr et al., which is hereby incorporated herein by reference in its entirety.

Which in turn was a continuation in part of co-pending commonly-owned U.S. patent application Ser. No. 10/771,015, now U.S. Pat. No. 7,256,639, filed Feb. 2, 2004, attorney docket TRAN-P256, entitled “Systems and Methods for Adjusting Threshold Voltage” to Masleid and Burr, which is hereby incorporated herein by reference in its entirety.

Which in turn was a continuation in part of co-pending commonly-owned U.S. patent application Ser. No. 10/956,207, now U.S. Pat. No. 7,180,322, filed Sep. 30, 2004, attorney docket TRAN-P306, entitled “Closed Loop Feedback Control of Integrated Circuits” to Koniaris and Burr, which is hereby incorporated herein by reference in its entirety.

Co-pending, commonly owned U.S. patent application Ser. No. 10/124,152, now U.S. Pat. No. 6,882,172, attorney docket TRAN-P095, filed Apr. 16, 2002, entitled “System and Method for Measuring Transistor Leakage Current with a Ring Oscillator” to Suzuki and Burr, is hereby incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

Embodiments in accordance with the present invention relate to control of body bias. More specifically, embodiments in accordance with the present invention relate to balanced adaptive body bias control.

BACKGROUND

In order to operate an integrated circuit, e.g., a microprocessor, in an efficient manner, for example, to consume a low amount of energy to accomplish a task, it is known to adjust various controlling parameters. These parameters may include threshold voltage of active devices of the integrated circuit. It is known to adjust threshold voltage after manufacture of an integrated circuit by adjusting body biasing voltage(s) applied to body biasing wells of such active devices.

SUMMARY OF THE INVENTION

Systems and methods of adaptively controlling body biasing voltages to adjust threshold voltages while balancing characteristics of p type and n type devices are highly desired.

Accordingly, systems and methods of balanced adaptive body bias control are disclosed. In accordance with a first embodiment of the present invention, a method of balanced adaptive body bias control comprises determining a desirable dynamic condition for circuitry of an integrated circuit. A first dynamic indicator corresponding to the desirable dynamic condition is accessed. Second and third dynamic indicators of the integrated circuit are accessed. A first body biasing voltage is adjusted by an increment so as to change the first dynamic indicator in the direction of the desirable dynamic condition. A second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.

Advantageously, embodiments in accordance with the present invention control two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem. This reduces complexity of the control solution from an order two, e.g., quadratic, problem to an order one, e.g., linear, problem, greatly reducing computational resources required to implement such control solutions, while also reducing characterization time and complexity, which simplifies modeling of the control system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an integrated circuit, for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention.

FIG. 2 illustrates an exemplary computer controlled method of balanced adaptive body bias control, in accordance with embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the present invention, balanced adaptive body bias control, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.

NOTATION AND NOMENCLATURE

Some portions of the detailed descriptions that follow (e.g., process 200) are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “accessing” or “commanding” or “storing” or “dividing” or “computing” or “testing” or “calculating” or “determining” or “storing” or “measuring” or “adjusting” or “generating” or “performing” or “comparing” or “synchronizing” or “accessing” or “retrieving” or “conveying” or “sending” or “resuming” or “installing” or “gathering” or the like, refer to the action and processes of a computer system, or similar electronic computing device” that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.

BALANCED ADAPTIVE BODY BIAS CONTROL

Embodiments in accordance with the present invention are described in the context of design and operation of integrated semiconductors. More particularly, embodiments of the present invention relate to balanced adaptive body bias control. It is appreciated, however, that elements of the present invention may be utilized in other areas of semiconductor design and operation.

The following description of embodiments in accordance with the present invention is directed toward pFETs (or p-type metal oxide semiconductor field effect transistors (MOSFETS)) formed in surface N-wells and/or nFETs (or n-type MOSFETS) formed in surface P-wells when a p-type substrate and an N-well process are utilized. It is to be appreciated, however, that embodiments in accordance with the present invention are equally applicable to nFETs (e.g., n-type MOSFETS) formed in surface P-wells and/or pFETs (e.g., p-type MOSFETS) formed in surface N-wells when an n-type substrate and a P-well process are utilized. Embodiments in accordance with the present invention are well suited to a variety of types of semiconductors supporting electrically adjustable transistor threshold voltages and such embodiments are considered within the scope of the present invention. Examples of such semiconductors include a fully depleted body structure with back gate electrode separated from the body of a transistor by a buried insulator.

Several operational indicators of an integrated circuit, e.g., a microprocessor, can be measured dynamically, e.g., in-situ, while the integrated circuit is in operation. For example, the operating temperature of the integrated circuit can be measured. Such measurements can be external, e.g., via an applied thermocouple, or they can be made internally, e.g., via on-chip measurement circuits.

A wide variety of integrated circuit characteristics can be measured or determined, either directly or inferred from other characteristics, while the device is operating. For example, in addition to temperature, other characteristics such as gate delays, metal delays, leakage current, “on” current, relative behavior of NMOS and PMOS devices, maximum frequency and the like can be measured or determined for the instant operating conditions of an integrated circuit. Co-pending, commonly owned U.S. patent application Ser. No. 10/124,152, filed Apr. 16, 2002, entitled “System and Method for Measuring Transistor Leakage Current with a Ring Oscillator” and incorporated by reference herein, provides exemplary systems and methods of such dynamic determinations, or dynamic operating indicators, that are well suited to embodiments in accordance with the present invention.

Such measurements or indications are typically made available, e.g., to control circuitry, state machines and/or processor control software, via registers. Such register values frequently comprise a count of a number of events, e.g., oscillations of a ring oscillator in a given time interval. For the purpose of illustrating embodiments in accordance with the present invention, a model of a register reporting a value that is correlated to an operating characteristic of an integrated circuit is employed. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to a variety of systems and methods of determining and reporting dynamic operating conditions of an integrated circuit.

FIG. 1 illustrates an integrated circuit 100, for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention.

Dynamic condition reporting registers R1 101, R2 102 and R3 103 each indicate a dynamic condition metric of integrated circuit 100. For example, generally each dynamic condition reporting register is associated with a dynamic condition measuring circuit either as a part of the integrated circuit or external to the integrated circuit. Conversion of a measured quantity, e.g., oscillations of a ring oscillator, into a usable metric related to the measured quantity, e.g., a frequency measurement, e.g., in hertz, or a count of oscillations per unit time, can be embodied in either software or hardware, and all such embodiments are to be considered within the scope of the present invention. For example, logic circuitry can increment a counting register for each oscillation for a period of time. Alternatively, for example, a software timing loop, with or without hardware timing assistance, can count a number of oscillations per unit time. In accordance with embodiments of the present invention, dynamic condition reporting registers, e.g., dynamic condition reporting registers R1 101, R2 102 and R3 103, can refer to any memory location utilized to store such indications of a dynamic condition.

As operating conditions of integrated circuit 100 change, values reported by dynamic condition reporting registers R1 101, R2 102 and R3 103 will generally change. For example, operating voltage and operating temperature are strong influences on gate delay and/or leakage current within an integrated circuit. Likewise, body biasing voltage(s) applied to circuitry of integrated circuit 100 also strongly influence operating conditions such as gate delay and/or leakage current. As body biasing voltage(s) applied to circuitry of integrated circuit 100 vary, so too in general will the values reported by dynamic condition reporting registers R1 101, R2 102 and R3 103.

For example, dynamic condition reporting register R1 101 can indicate a number of oscillations per time of a ring oscillator comprising complementary metal oxide inverter gates. Such a circuit can be utilized to indicate gate delays for the microprocessor at the instant operating conditions, e.g., operating temperature, operating voltage, applied body biasing voltage(s) and the like. Similarly, other dynamic condition reporting registers can indicate other operational characteristics of integrated circuit 100. For example, device leakage, gate leakage, temperature, metal delays, “on” current, behavior of n type and p type devices and/or relative behavior of n type and p type devices can be reported by dynamic condition reporting registers.

Most useful dynamic conditions indications will have a correlation with maximum achievable operating frequency of an integrated circuit at those operating conditions. For example, an indication of operating temperature will generally have a correlation with maximum achievable operating frequency. For example, for operation above a thermal null voltage, as operating temperature increases, maximum achievable operating frequency decreases. Other dynamic condition indications may have other correlations with maximum achievable operating frequency. For example, the number of oscillations of a ring oscillator per unit time may generally increase as maximum achievable operating frequency of an integrated circuit increases.

Integrated circuit 100 further comprises adjustable body biasing voltage sources 110 and 120. For example, adjustable body biasing voltage source 110 is configured to supply a body biasing voltage to n type body wells of p type metal oxide semiconductors (PMOS). Similarly, adjustable body biasing voltage source 120 is configured to supply a body biasing voltage to p type body wells of n type metal oxide semiconductors (NMOS). It is to be appreciated that embodiments in accordance with the present invention are not dependent upon the location of such body biasing voltage sources, and are well suited to body biasing voltages applied to integrated circuit 100 from external sources, e.g., voltage supplies external to integrated circuit 100.

FIG. 2 illustrates an exemplary computer controlled method 200 of balanced adaptive body bias control, in accordance with embodiments of the present invention. In 210, a desirable dynamic condition for circuitry of an integrated circuit is determined. For example, software operating on a microprocessor may determine an operating frequency necessary to perform a particular task on the microprocessor. A desirable gate delay for circuitry of the microprocessor corresponding to such desirable operating frequency can be determined, e.g., via table lookup. Similarly, a desirable power condition of the integrated circuit can be determined.

In 220, a first dynamic indicator corresponding to the desirable dynamic condition, second and third dynamic indicators are accessed. For example, a second dynamic indicator can indicate leakage current of PMOS devices of the integrated circuit and a third dynamic indicator can indicate leakage current of NMOS devices of the integrated circuit. For example, dynamic condition reporting registers R1 101, R2 102 and R3 103 (FIG. 1) are accessed. Embodiments of the present invention are well suited to measurements of such dynamics indicators taking place prior to or during method 200.

In 230, a first body biasing voltage is adjusted to change the first dynamic indicator in the direction of the desirable dynamic condition. For example, if a measured gate delay is larger than a desirable gate delay, the first body biasing voltage can be decreased.

In general, the speed of operation of circuitry of an integrated circuit, e.g., maximum frequency of operation, is more sensitive to one transistor type, typically NMOS, while circuit leakage is more sensitive to the other transistor type, typically PMOS. A determination of which body biasing voltage to adjust first, e.g., in 230, should correspond to which body biasing voltage has a greater effect on the desirable dynamic condition. For example, if the desirable dynamic condition is maximum frequency of operation, body biasing voltage applied to NMOS devices, e.g., a p well voltage, should be adjusted first.

In 240, a second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.

In accordance with embodiments of the present invention, it is not necessary to specify a particular body biasing voltage to a body biasing voltage supply. Rather, method 200 can signal such body biasing voltage supply to increase or decrease the particular body biasing voltage relative to a previous condition of the body biasing voltage. Generally, such relative changes are beneficially less computationally intense than determining an absolute value for a body biasing voltage. In accordance with an embodiment of the present invention, the relative adjustment in body biasing voltage (230, 240) may be the minimum increment of adjustment available from the body biasing voltage supplies, e.g., adjustable body biasing voltage sources 110 and 120 of FIG. 1. An exemplary value of such minimum increments or step sizes is 20 mV. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to determining an absolute value, e.g., via table lookup, for a body biasing voltage based on a desirable adjustment to a dynamic indicator.

Relation 1, below, illustrates an exemplary relationship between a second dynamic indicator and a third dynamic indicator:


|(Ioffn−scale*Ioffp)|  (Relation 1)

where Ioffn is a dynamic indication of leakage current of n type devices, Ioffp is a dynamic indication of leakage current of p type devices, scale is a scaling factor and “|” indicates the absolute value operation.

The scaling factor used within Relation 1 can be used to adjust for variations between n type and p type devices within an integrated circuit. For example, n type devices are typically faster than p type devices, and may generally be designed to have less leakage current for a given maximum frequency of operation in comparison to p type devices. For example, such a scaling factor can be used to adjust for such variations in leakage current. It is appreciated that the scaling factor need not be linear and may be unity.

In accordance with one embodiment of the present invention, the second body biasing voltage is adjusted so as to minimize a value of Relation 1. For example, the second body biasing voltage is adjusted a minimum increment in a direction, e.g., increased or decreased, so as to minimize a value of Relation 1.

It is to be appreciated that other relationships among dynamic indicators may be used in 240, in accordance with embodiments of the present invention. For example, a quadratic relationship is well suited to embodiments of the present invention.

In optional 250, an interval, e.g., a settling delay, is delayed for changes in body biasing voltages to have an effect. An exemplary delay might be ten microseconds. In optional 260, control reverts to 210 and the method repeats.

It is to be appreciated that virtually any measurable dynamic condition, as well as relationships among such measurable dynamic conditions, can be used as the second and third dynamic indicators in method 200, in accordance with embodiments of the present invention. In addition to the previously described leakage currents, e.g., “off” currents, for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type and the like may be utilized as such second and third dynamic indicators, and are well suited to embodiments of the present invention.

Similarly, it is to be appreciated that virtually any measurable dynamic condition, as well as relationships among such measurable dynamic conditions, can be used as the desirable dynamic condition. In addition to the previously described gate delays and maximum operating frequency, for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type, power consumption, chip temperature, wire-dominated delays, critical path replicas and the like may be utilized as the desirable dynamic condition, and are well suited to embodiments of the present invention.

Advantageously, embodiments in accordance with the present invention are capable of controlling two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem. This reduces complexity of the control solution from an order two, e.g., quadratic, problem to an order one, e.g., linear, problem, greatly reducing computational resources required to implement such control solutions.

Embodiments in accordance with the present invention thus provide systems and methods of adaptively controlling body biasing voltages to adjust threshold voltages while balancing characteristics of p type and n type devices.

Embodiments in accordance with the present invention, balanced adaptive body bias control, are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.

Claims

1. An integrated circuit including:

a body bias distribution network comprising deep wells coupled to a plurality of bodies of transistors of said integrated circuit.

2. The integrated circuit of claim 1 further comprising a non-volatile storage for storing a representation of a body bias voltage.

3. The integrated circuit of claim 2 wherein said representation of a body bias voltage is stored in a digital format.

4. The integrated circuit of claim 2 wherein said representation of a body bias voltage is stored in an analog format.

5. The integrated circuit of claim 1 further comprising a body bias voltage source for generating a body bias voltage.

6. The integrated circuit of claim 1 further comprising an electrical contact for coupling a body bias voltage to said body bias distribution network from an external source.

7. The integrated circuit of claim 1 further configured such that application of a body bias voltage, via said body bias distribution network, to an integrated transistor corrects a difference between a nominal threshold voltage and a desired threshold voltage of said integrated transistor.

8. An integrated circuit comprising:

a variable voltage source for generating a body bias voltage;
a body bias voltage distribution network for coupling said variable voltage source to a plurality of transistor bodies of said integrated circuit; and
a processor for commanding said variable voltage source to generate said body bias voltage.

9. The integrated circuit of claim 8 further comprising a non-volatile storage for storing a representation of said body bias voltage.

10. The integrated circuit of claim 9 wherein said processor is further for accessing said representation of said body bias voltage.

11. The integrated circuit of claim 10 wherein said variable voltage source is commanded to generate said body bias voltage corresponding to said representation of said body bias voltage.

12. The integrated circuit of claim 8 further configured such that application of said body bias voltage to an integrated transistor corrects a difference between a nominal threshold voltage and a desired threshold voltage of said integrated transistor.

13. The integrated circuit of claim 12 wherein said transistor is a component of said processor.

14. The integrated circuit of claim 8 wherein said body bias voltage distribution network comprises deep well structures.

15. An integrated circuit comprising:

a substrate;
a non-volatile storage for storing a representation of a body bias voltage;
a variable voltage source for generating said body bias voltage; and
a body bias voltage distribution network,
wherein said body bias voltage distribution network is not configured to apply said body biasing voltage to said substrate.

16. The integrated circuit of claim 15 wherein said variable voltage source is configured to generate said body bias voltage corresponding to said representation of a body bias voltage.

17. The integrated circuit of claim 15 wherein said representation of a body bias voltage is stored in a digital format.

18. The integrated circuit of claim 15 wherein said representation of a body bias voltage is stored in an analog format.

19. The integrated circuit of claim 15 further configured such that application of said body bias voltage to an integrated transistor corrects a difference between a nominal threshold voltage and a desired threshold voltage of said integrated transistor.

20. The integrated circuit of claim 15 wherein said body bias voltage distribution network comprises deep well structures.

Patent History
Publication number: 20110221029
Type: Application
Filed: May 23, 2011
Publication Date: Sep 15, 2011
Inventors: Vjekoslav Svilan (Mountain View, CA), James B. Burr (Foster City, CA)
Application Number: 13/113,798