SECURITY LAMINATES WITH INTERLAMINATED TRANSPARENT EMBOSSED POLYMER HOLOGRAM

- AGFA-GEVAERT N.V.

A method for interlaminating a transparent embossed hologram, the transparent embossed hologram comprising a support having two sides, at least one of the two sides either itself being embossed or having a layer thereon which is embossed and a layer of a HRI-material contiguous with the embossed side or embossed layer, comprising the steps of: a) providing the outermost surface of the layer of inorganic HRI-material with a layer of an adhesive composition containing a solution or dispersion of at least one polymer in an organic solvent medium; b) drying the layer of the adhesive composition on the outermost surface of the HRI-material thereby providing a conditioned outermost surface of the layer of inorganic HRI-material with a transparent continuous adhesive layer; and c) laminating the transparent continuous laminatable layer to a foil, wherein the organic solvent medium is selected from the group consisting of ketones, ethers, heterocyclic ethers, lactams, amides, halo-aliphatic compounds, nitriles and esters; wherein at least one of the support and the foil is transparent; and wherein the HRI material is a material with a refractive index of at least 0.3 higher than that of the embossed material. A laminate and a security document comprising the laminate obtainable by the above-disclosed process are also disclosed.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF INVENTION

This invention relates to security laminates with interlaminated transparent embossed polymer hologram with an inorganic HRI-material-coating and a method for realizing same.

BACKGROUND OF THE INVENTION

Security laminates are traditionally used to protect documents or packages to ensure that the underlying items are not altered by containing an authentification feature making them difficult to counterfeit. Security laminates are particularly useful on identification cards such as driver's licenses, ID-cards and passports, and on other important documents such as certificates of title. Security laminates are also useful as tamper proof seals on medications, video cassettes, and compact discs. Five features are particularly important when producing and using security laminates. First, once applied to an article it is important that the laminate is difficult to remove to ensure that the underlying item is not altered or subjected to tampering. Second, a desirable laminate is difficult if not impossible to duplicate by counterfeiters. Third, if tampering occurs it is important to quickly and accurately recognize an altered or counterfeit laminate. Fourth, it is important that manufacturing costs of the laminates are not prohibitively expensive. Fifth, when used on articles such as identification cards, it is important that the laminate has sufficient durability to withstand harsh treatment.

Holograms have, due to the difficulty in making and reproducing them, become a common authentication feature on items like credit cards, driver's licenses and access cards. Holograms have also been used as security features on high end products, making it harder to counterfeit these products.

A major advance in display holography occurred in 1968 when A. Benton invented white-light transmission holography. This type of hologram can be viewed in ordinary white light creating a “rainbow” image from the seven colours which make up white light. Benton's invention made mass production of holograms possible using an embossing technique. With this technique holographic information is transferred from light sensitive glass plates to nickel embossing shims. The holographic images are “printed” by stamping the interference pattern onto plastic. The resulting hologram can be duplicated millions of times inexpensively, although master-shim rolls will need to be regularly replaced. Consequently, embossed holograms are now being used by the publishing, advertising, banking and security industries. The difficulty in making and reproducing holograms has made them a common authentication feature on security items such as credit cards, driver's licenses and access (identification) cards. Transparent holograms are often used for security applications such as identification or access cards, where it is desired that information positioned behind the hologram remains visible to the unaided eye.

The most common method of creating a hologram is to create a grating pattern in a surface so that particular structures become visible upon diffraction of light in the grating. U.S. Pat. No. 3,578,845 describes how diffraction gratings are typically generated. Typically, the diffraction patterns are embossed into a thermo-formable substrate such as an embossable polymer film. This process is performed by pressing a heated stamp made from a hard material to engrave the desired grating from the contact surface of the stamp onto the embossable substrate.

Diffraction requires that the medium the grating is made of and the media bordering the grating have a difference in refractive index index. The larger this difference, the brighter the diffraction will appear. To create the highest diffraction in transparent holograms, the grating is coated with a thin film of transparent material having a high refractive index (HRI).

While the grating can be embossed into the substrate material with a stamp, a more common, economical method, is the use of continuous embossing systems. Such embossing system are described for example in U.S. Pat. Nos. 4,913,858 and 5,164,227. In these methods the grating structure is engraved into the surface of a roll, which continuously presses its surface pattern into the web type substrate passing between the embossing roll and a backside roll. In order to obtain the grating in the substrate's surface, the thermo-formable layer on this surface is heated. This can be achieved either by preheating the substrate to the required temperature, or by heating the embossing roll.

WO 2007/027619A2 discloses a translucent holographic film comprising: an adhesive layer; an embossed layer, the embossed layer including an embossed side defining ridges having peaks pointing toward the adhesive layer.

Transparent holograms are commonly produced by using vacuum evaporation techniques to coat an embossed polymer with a transparent HRI-coating. Moreover, to prevent tampering the resulting hologram is often embedded by lamination within multiplex identity documents. This requires that not only the support/base of the hologram adhere to a contiguous film or layer within the multiplex system making up the identity document, but also that outermost surface of the HRI-layer also adhere to a contiguous film or layer within the multiplex system making up the identity document.

Moreover, adhesion of the outermost surface of the HRI-layer to a contiguous film, layer or card should occur without substantial loss of the brilliance of the hologram to prevent loss of contrast.

Commercially available transparent embossed holograms coated with an inorganic HRI-material do not lend themselves to tamper-proof interlamination in the multiplex system making up a multiplex identity document.

ASPECTS OF THE INVENTION

It is therefore an aspect of the present invention to provide a tamper-proof means of laminating a transparent embossed polymer hologram coated with an inorganic HRI-material within the multiplex system making up an identity document without substantial loss of brilliance.

It is therefore a further aspect of the present invention to provide a multiplex identity document comprising an interlaminated tamper-proof embossed polymer hologram coated with an inorganic HRI-material.

Further aspects of the present invention will become apparent from the description hereinafter.

SUMMARY OF THE INVENTION

Commercially available transparent embossed holograms coated with an inorganic HRI-material do not lend themselves to tamper-proof interlamination in the multiplex system making up a multiplex identity document. Typically such embossed holograms are produced by coating an embossable polymer layer on a support followed by locally embossing the layer and vacuum evaporation of a HRI-layer over the whole surface of the embossable polymer layer. Using standard adhesives it was found impossible to obtain sufficient adhesion of the outermost surface of the HRI-layer, e.g. a ZnS- or a TiO2-layer, to a polyethylene or PETG film to avoid integral delamination.

The HRI layer is typically 100 nm thick and follows the contours of the embossed polymer layer to which it is applied. The brilliance of the hologram is adversely affected by penetration of a lower refractive index entity into the pores of this ultrathin HRI-layer. Such porous layers are intrinsically weak. Moreover, adhesion to an undulating layer, such as the HRI layer, will be subject to different stresses than is the case with adhesion to a planar layer. Macroscopic delamination of the HRI layer includes both a failure of the bond between the HRI-layer and foil to which it is laminated and the HRI being unable to resist splitting under the conditions of the standard delamination tests.

Moreover, adhesion to a microporous surface would conventionally be viewed as requiring a degree of penetration of the microporous layer to provide anchor points for the layer, which as pointed out above will inevitably reduce the brilliance of the hologram.

Surprisingly it has been found that a transparent polymeric coating applied from a solution of a polymer in a theta solvent for that polymer or polymer mixture not only provides good adhesion to a polyethylene, polyethylene terephthalate, PET, PVC or polycarbonate foil, but also at least maintains the brilliance of the hologram a thoroughly counter-intuitive observation i.e. an adhesion is realized between the HRI-layer and the adjoining polyethylene foil which resists delamination in the standard delamination tests according to ISO 10373-1 and the cohesion of the HRI-layer is also able to resist splitting under the conditions of the standard delamination tests and a visually perceivable increase in brilliance is observed.

Aspects of the present invention have been realized by a method for interlaminating a transparent embossed hologram as defined by claim 1.

Aspects of the present invention have also been realized by a security document comprising the above-disclosed laminate or a laminate obtainable by the above-disclosed process.

Preferred embodiments are disclosed in the dependent claims.

DETAILED DESCRIPTION OF THE INVENTION Definitions

Commonly the art differentiates between “Soft Embossing” and “Hard Embossing”. Soft Embossing describes the process where the embossing is performed before a high reflective index (HRI) layer is applied. “Hard Embossing” is performed by creating the grating through the HRI layer. While Hard Embossing is done on substrates coated with “soft” metals like aluminum, copper or gold, it is not typically done through semi-transparent reflection enhancement HRI layers like ZnS or TiO2.

The term interlamination, as used in disclosing the present invention, means the lamination of a foil, label or other substantially flat object between two films.

The term film, as used in disclosing the present invention, means a self-supporting polymer-based sheet, which may vary in thickness from several microns thick, e.g. the foils used in thermal sublimation printing (TSP) and in the production of multiplex identification documents, to several mm thick.

The term transparent hologram, as used in disclosing the present invention, means a hologram contiguous with a transparent HRI-material.

The term non-transparent hologram, as used in disclosing the present invention, means a hologram contiguous with a non-transparent HRI-material e.g. a metal.

The term high refractive index (HRI) material, as used in disclosing the present invention, means a material with a refractive index of at least 0.3 higher than that of the embossed material and preferably at least 0.6 higher than that of the embossed material.

Method for Interlaminating a Transparent Embossed Hologram

Aspects of the present invention have been realized by a method for interlaminating a transparent embossed hologram, said transparent embossed hologram comprising a support having two sides, at least one of the two sides either itself being embossed or having a layer thereon which is embossed and a layer of a HRI-material contiguous with said embossed side or embossed layer, comprising the steps of:

a) providing the outermost surface of the layer of inorganic HRI-material with a layer of an adhesive composition containing a solution or dispersion of at least one polymer in an organic solvent medium;
b) drying the layer of the adhesive composition on said outermost surface of the HRI-material thereby providing a conditioned outermost surface of the layer of inorganic HRI-material with a transparent continuous adhesive layer; and
c) laminating the transparent continuous laminatable layer to a foil, wherein the organic solvent medium is selected from the group consisting of ketones, ethers, heterocyclic ethers, lactams, amides, halo-aliphatic compounds, nitriles and esters;
wherein at least one of said support and said foil is transparent; and
wherein the HRI material is a material with a refractive index of at least 0.3 higher than that of the embossed material.

In one embodiment of the method according to the present invention, the solvent medium is a theta solvent medium at 25° C. for said at least one polymer.

In an embodiment of the method according to the present invention, the method further comprises the steps of: applying an adhesive layer to the outermost surface on the side of said support with the HRI-layer not above the embossed layer and laminating a transparent foil to said adhesive layer so that the adhesive at least provides a seal round said transparent embossed hologram or holograms.

In an embodiment of the method according to the present invention, the peel strength of the HRI-layer is at least 6 N/cm as measured according to ISO Norm 10373-1-1978. If the foil breaks during the peel strength test the peel strength is above the measurable range of peel strength values.

In an embodiment of the method according to the present invention, the lamination of the transparent foil to the outermost surface of the HRI-layer has a peel strength of at least 6 N/cm as measured according to ISO Norm 10373-1-1978. If the foil breaks during the peel strength test the peel strength is above the measurable range of peel strength values.

In an embodiment of the method according to the present invention, the embossed layer has a refractive index within 0.2 of the refractive index of the support

In an embodiment of the method according to the present invention, the support is transparent.

In an embodiment of the method according to the present invention, the support has a border and the high refractive index material optionally present as a pattern is located inside of the border. The moisture driven corrosion of the high refractive index materials typically starts from the edges of the laminated sheet. An area without the corrosion sensitive high refractive index coating at the edges of the laminate provides an improved moisture barrier and reduces the corrosion and degradation of the high refractive index material.

In an embodiment of the method according to the present invention, the transparent embossed hologram further comprises a base layer and an adhesive layer that binds the base layer to the support.

In an embodiment of the method according to the present invention, a surface of the support is embossed with a uniform grating, commonly referred to as a “rainbow” grating, and the transparent high refractive index material is applied in a defined pattern on top of the grating. With this embodiment subsequent processing, such as application of a heat or pressure sensitive adhesive, covers the complete areas including those areas that are coated with the high refractive index coating and those areas that are not coated with a high refractive index coating. The refractive index of the adhesive is preferably about the same as the embossed substrate, which causes the elimination of the diffractive effect in those areas that are not coated with a high refractive index coating.

In an embodiment of the method according to the present invention, the embossed layer or embossed support is surface treated. The surface treatment activates a side of the hologram for the deposition of the transparent HRI layer. Exposing the surface of the embossable multi-layer film to an ionized gas, i.e. plasma, or a corona discharge is a preferable surface treatment.

In an embodiment of the method according to the present invention, the embossing is performed prior to vacuum coating thereby exposing the layer or surface of the support to the additional heat and pressure of the embossing process resulting is greater removal of entrapped moisture and solvents.

Embossable Layer

Preferably, the embossable layer is made from a low crystalline polymer of the same kind as the support. Preferably, the embossable layer is made from a polymer that has a melting point that is at least about 10° C., but preferably at least about 20° C., lower than the associated polymer of the support.

The thickness of the embossable layer is preferably between about 1 μm and about 10 μm, more preferably between about 2 μm and about 8 μm, most preferable between about 3 μm and about 7 μm. A layer that is too thin can result in poor embossed image quality. A layer that is too thick is inefficient.

Suitable polymers for the embossable low crystalline layer include polyethylene terephthalate (PET), polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, cellophane, acetate, nylon, polyvinyl alcohol, polyamide, polyamide-imide, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyether sulfone, or polyether ether ketone and mixtures thereof.

Preferably, the embossable layer includes a low crystalline variation of the polymer of the substrate film selected from the following group of polymers: polyethylene terephthalate (PET), polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, cellophane, acetate, nylon, polyvinyl alcohol, polyamide, polyamide-imide, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyether sulfone, or polyether ether ketone. The low crystalline polymer becomes pliable at a lower temperature than the core polymer.

A common process for producing an embossable layer, such as an embossable poly(ethylene terephthalate) (PET) or polypropylene (PP), onto the support is to apply a thermo-formable embossable coating onto at least one surface of the support. This process is done off-line, i.e. after manufacturing the support. Embossable coatings typically are applied either as a water-based or as a solvent-based solution using coating systems well known in the art such as roll coating, gravure coating, air knife coating and rod coating.

Embossing is performed by pressing a shim with the desired grating embedded in its surface onto the embossable substrate, with the HRI coating and the embossable layer facing the embossing shim. For the embossing process the film can either be preheated to allow the embossable layer polymer to be pliable under the embossing shim, or the shim itself is heated and transfers the heat into the embossable layer making it pliable.

Support

Any polymer film is a suitable support. Preferred support films include polyethylene terephthalate (PET), polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, cellophane, acetate, nylon, polyamide, polyamide-imide, polymethyl methacrylate, polyether sulfone, and polyether ether ketone films.

The support should be sufficiently thick to be self-supporting, but thin enough to be flexed, folded or creased without cracking. Preferably, the base substrate film has a thickness of between about 7 μm and about 120 μm, more preferably between about 10 μm and about 60 μm, most preferably between about 10 μm and about 30 μm.

Inorganic HRI-Materials

A transparent inorganic HRI coating is applied on top of the embossable surface or layer. In order to achieve sufficient reflectivity, the difference in refractive index between the embossed material and the HRI coating is preferably at least 0.3, more preferably more than 0.6.

In a preferred embodiment, the refractive index of the HRI material is at least 2.0, more preferably at least 2.2.

Suitable transparent high refractive index (HRI)-materials include zinc sulphide (ZnS), antimony(III) sulphide, iron(III) oxide (Fe2O3), lead(II) oxide (PbO), zinc selenide (ZnSe), cadmium sulphide (CdS), titanium dioxide (TiO2), lead(II) chloride (PbCl2), cerium(IV) oxide (CeO2), tantalum oxide (Ta2O5), zinc oxide (ZnO), cadmium oxide (CdO), neodymium oxide (Nd2O3) and aluminium oxide (Al2O3). Currently, the use of ZnS as a transparent reflection enhancement layer in transparent holograms is the most widely used technology. Mixtures of materials are used as well. U.S. Pat. No. 5,513,019 discloses mixtures of zinc sulphide (ZnS) and tungsten-oxide (WO3) for holograms.

The transparent inorganic HRI-material can be deposited on the layer or support surface in which the embossing with a holographic shim has or will take place by standard deposition techniques such as evaporation, reactive or non-reactive vacuum vapour deposition, physical vapour deposition (PVD), chemical vapour deposition (CVD), sputtering, electron beam deposition and ion beam assisted deposition.

The thickness of the transparent HRI coating is preferably thick enough to provide good refractive properties (refract light) but not so thick as to inhibit its transparent properties. Preferably, the transparent HRI-material is deposited with a thickness of about 20 to about 250 nm with a thickness of about 5 to about 150 nm being particularly preferred, a thickness of about 5 to about 100 nm being especially preferred and a thickness of 10 nm to 80 nm being most especially preferred. In the case of embossing prior to deposition, the deposited HRI-material follows the profile of the embossing.

In vapour deposition techniques, the coating material is evaporated at low pressure, typically in the 1×10−3 Pa region, at elevated temperature. By passing the substrate through the vapour, the evaporated material condenses on the embossed substrate surface creating a thin layer of reflection enhancing material. The thickness of the deposited layer depends on several factors, for example, evaporation rate, vapour pressure and dwell time of the substrate in the vapour cloud.

The deposition technique can result in loss of stoichiometry resulting in reduction of the refractive index difference on which the effect is based, loss of transparency and loss of brilliance.

Zinc Sulphide tends to be a soft porous coating but can be deposited at metallizing speeds (100's m/min). Moreover, the ZnS can be thermally evaporated from a slot source that spans the whole web width. Furthermore, the ZnS can dissociate and recombine easily and so stoichiometry is generally not an issue. It is also possible to emboss into the polymer through the ZnS and still obtain a good hologram and ZnS has the advantage that the wear on the holographic shims is less than harder materials such as titanium dioxide. Operators may not be so happy with the material as it can smell when the system is vented because of the residual sulphur.

Titanium dioxide tends to be denser, harder and is usually deposited by slower techniques (1-10's m/min). If a hard wearing, highest quality hologram is required then titanium dioxide will probably be the preferred material. Part of the problem of depositing titanium dioxide is getting the stoichiometry right. Sputtering from a titanium target and reacting the coating with oxygen to produce titanium dioxide is not necessarily easy. The oxygen cannot be controlled selectively to reach the growing coating and not the sputtering cathode and so the cathode gets poisoned. The sputtering rate of titanium dioxide is 20× slower than for the metal and so the process tends to avalanche to sputtering slowly from an oxide target. There are methods of correcting for this runaway process but they all push up the deposition costs. Ideally if the coating is to be deposited by sputtering a dual cathode with an AC power supply including arc control would be preferred. It is possible to deposit titanium dioxide from electron beam deposition sources but getting a consistent stoichiometry is not trivial. Often an additional oxygen plasma is used both to densify the coating to make it more like a sputtered coating but also as a method of reducing the excess oxygen that is required to convert the metal to titanium dioxide.

Uniformity of the HRI-coating can also be an issue. Sputtering has a deposition rate fall off towards the ends of the cathode so that to get high uniformity across the whole web width requires a cathode length wider than the web width. For electron beam sources it depends on whether you have a series of individual sources that have their deposition flux integrated across the width or whether there is a single sweeping electron beam with a single crucible that spans the web width.

Critical to all vacuum deposition techniques is the position of the pumping system in the system and the method of feeding in the oxygen gas. Ideally the pumping will be symmetric about the web centreline (including any cryopumps) if this is not the case there are additional problems in achieving uniformity. Moisture from the webs can be a source of oxygen to the coating as well as the oxygen added to control the process. If there is asymmetric pumping then there will be a pressure gradient across the web and it then becomes difficult to deliver sufficient oxygen, and no more, to all parts of the sputtering cathode or vapour flux from the e-beam source. Any imbalance will lead to non-stoichiometric coatings.

Plasma post treatment can be used to clean the outermost HRI-layer surface to remove surface contamination. The choice of power, time and gas composition can all affect the effectiveness of any plasma treatment. Argon plasma can roughen the surface and sputter efficiently but there is no mechanism for converting any hydrocarbons into gaseous species that can be pumped away and hence whatever is sputtered from the surface may well fall back and still be a contaminant on the surface even though it has been plasma treated. Thus plasma treatment with an oxygen/argon mixture is often preferred. However, if the surface is over-treated a weak boundary layer on the surface will result due to too much polymer chain scission.

Polymers

The polymers used in the laminate, according to the present invention, comprises at least one monomer selected from the group consisting of vinyl alcohol, vinyl esters, vinyl acetals, vinylidene chloride, acrylates and methacrylates.

Formation of a latex film arises from coalescence (i.e. compaction, deformation, cohesion and polymer chain interdiffusion) of the individual latex particles, which are normally held apart by stabilising forces resulting from the charged polymer chain endgroups or adsorbed surfactant/polymer. These forces can be overcome upon evaporation of the continuous phase. The formation of a continuous film (i.e. transparent and crack-free) is then dependent on the minimum film formation temperature (MFFT) of the polymer. If the film is cast above its MFFT, then deformation and cohesion of the latex particles can occur. If water does not plasticize the polymer, then the MFFT may coincide with the glass transition temperature of the polymer. The presence of small quantities of solvent can assist the latex coalescence process.

In an embodiment of the method according to the present invention, the at least one polymer is a latex or latexes with minimum film formation temperatures at or below 25° C.

In an embodiment of the method according to the present invention, the solution or dispersion is exclusive of a polyhydroxy polymer.

Suitable polymers with at least one monomer selected from the group consisting of vinyl alcohol, vinyl esters, vinyl acetals, vinylidene chloride, acrylates and methacrylates include acrylate homo- and co-polymers, methacrylate homo- and co-polymers, vinylester homo- and co-polymers, copolymers of vinylidene chloride and acrylates, copolymers of vinylidene chloride and vinylesters, acrylate-urethane polymers and vinylester-urethane polymers, hydrolysed polyvinylesters, polyvinylacetals, copolymers of vinylidene chloride, acrylates and itaconic acid, hydrolysed copolymers of vinylidene chloride and vinylesters, polyvinyl alcohols with silanol groups e.g. POVAL® R-3109, POVAL® R-2105 and POVAL® R-1130 from KURARAY and modified polyvinyl alcohols with a cationic group (quaternary ammonium salt) on its side chain e.g. GOHSEFIMER® K210 from NIPPON GOHSEI.

Organic Solvent Medium

The organic solvent medium used in the method, according to the present invention, may comprise a single organic liquid or a mixture of organic liquids, the organic liquids being selected from the group consisting of ketones, ethers, heterocyclic ethers, lactams, amides, halo-aliphatic compounds, nitriles and esters.

The organic solvent medium used in the method, according to the present invention, is a theta solvent medium for the at least one polymer at 25° C. Theta solvents mark the boundary between good and bad solvents for a polymer at a particular temperature.

Suitable ketones include acetone, methyl ethyl ketone and cyclohexanone.

Suitable ethers include diglyme (2-methoxyethyl ether), tetrahydrofuran and dioxane.

Suitable heterocyclic ethers include tetrahydrofuran and dioxane.

Suitable lactams include 2-pyrrolidinone, N-methyl-2-pyrrolidinone and caprolactam.

Suitable amides include formamide, acetamide, N-methyl formamide and diethyl acetamide.

Suitable halo-aliphatic compounds include chloro-aliphatic compounds, bromo-aliphatic compounds, fluoro-aliphatic compounds, chloro-bromo-aliphatic compounds and chloro-fluoro-aliphatic compounds.

Suitable chloro-aliphatic compounds include methylene chloride, chloroform, dichloroethanes, trichloroethanes, tetrachloroethane and trichloroethylene.

Suitable nitriles include acetonitrile and butyronitrile.

Suitable esters include aliphatic esters, aromatic esters and heterocylic esters.

Suitable aliphatic esters include methyl acetate, ethyl acetate, propyl acetate and butyl acetate.

Suitable aromatic esters include methyl benzoate, ethyl benzoate dimethyl phthalates, diethyl phthalates, dibutyl phthalates and di-(2-ethylhexyl)phthalates.

Suitable heterocyclic esters include γ-butyrolactone, β-butyrolactone, γ-caprolactone and ε-caprolactone.

Treatment of HRI-surfaces with ketones, ethers, heterocyclic ethers, esters and heterocyclic esters of themselves promote adhesion with adhesives of the outermost surface of the HRI-layer of a hologram to the polyethylene side of an identity-card simulating transparent laminate consisting of a 500 μm PETG sheet which had been laminated with a 12 μm gelatin layer to a 35 μm thick polyethylene foil. However, these solvents also adversely affect the brilliance of the hologram.

Treatment of HRI-surfaces with aromatic solvents and alcohols, however, neither promote the adhesion with adhesives of the outermost surface of the HRI-layer of a hologram to the polyethylene side of an identity-card simulating transparent laminate consisting of a 500 μm PETG sheet which had been laminated with a 12 μm gelatin layer to a 35 μm thick polyethylene foil nor adversely affect the brilliance of the hologram.

Adhesives

The adhesive composition used in the processes, according to the present invention, preferably comprises a polymer having a plurality of hydroxyl-groups and a curing agent selected from the group consisting of polyisocyanates, polyepoxides and hydrolysed polyalkoxysilanes e.g. tetraalkyl orthosilicates.

In an embodiment of the method according to the present invention, the adhesive is an adhesive which self-cures ionically.

In an embodiment of the method according to the present invention, the adhesive is an adhesive which cures thermally.

In an embodiment of the method according to the present invention, the adhesive is an adhesive which self-cures via the release of water.

In an embodiment of the method according to the present invention, the adhesive is an adhesive which self-cures under ambient conditions.

In an embodiment of the method according to the present invention, the adhesive is an adhesive which self-cures at temperatures below 100° C., preferably below 80° C. and particularly preferably below 50° C.

Suitable polymers having a plurality of hydroxyl-groups include hydroxyl urethane prepolymers, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate and gelatin.

Suitable polyisocyanate compounds include aromatic and aliphatic polyisocyanates or polycyanate precursors, see section disclosing polyisocyanates and polyisocyanate precursors.

The curing reaction is mainly based on the reaction between the isocyanate groups or the thermo-generated isocyanate groups and the free hydroxyl groups of the polymers comprising a plurality of hydroxyl-groups, but is also based on the formation of allophanate groups in a reaction of already formed urethane groups in the resin with isocyanate groups of the polyisocyanate [D. H. Solomon “The Chemistry of Organic Film Formers”—John Wiley & Sons, Inc. New York, (1967) p. 203].

Suitable polyalkoxysilanes include tetramethyl orthosilicate and tetraethyl orthosilicate.

Suitable ingredients for polyurethane adhesives are:

  • Liofol UK 3640=a polyurethane solvent (ethyl acetate) adhesive from Henkel
  • Liofol UK 6800=a hardener from Henkel for use with Liofol UK 3640
  • Liofol UR 7750=a polyurethane prepolymer with isocyanate groups from Henkel
  • Liofol UR 6071=a hydroxyl hardener from Henkel for use with Liofol UR 7750
  • Liofol UR 7780=a polyurethane prepolymer with isocyanate groups from Henkel
  • Liofol UR 6080=a hardener from Henkel for use with Liofol UR 7780

Polyisocyanates

Polyisocyanate crosslinking agents suitable for use in the adhesives used in the process of the present invention are aliphatic polyisocyanates, such as hexa-methylene diisocyanate derivatives (HDI) including hexamethylene diisocyanate derivatives (HDI), cyclohexane diisocyanate (CHDI) and isophorondiisocyanate (IPDI); and aromatic polyisocyanates, such as 4,4′-diisocyanatodiphenyl-methane (MDI), 2,4-toluene diisocyanate (2,4-TDI), 2,6-toluene diisocyanate (2,6-TDI) and toluene(2,4/2,6)-diisocyanate derivatives (TDI), naphthylene 1,5-diisocyanate (NDI), p-phenylene diisocyanate (PPDI), triphenyl-methane triisocyanate (e.g. DESMODUR™ R), triphenylmethane-p,p′,p″-trityl triisocyanate and thiophosphoric acid tris(p-isocyanatophenyl ester).

Suitable polyisocyanates available from BAYER MATERIAL SCIENCE include:

DESMODUR H monomeric aliphatic diisocyanate based on hexamethylene diisocyanate (HDI) DESMODUR HL BA aliphatic/aromatic polyisocyanate copolymer based on toluene diisocyanate (TDI) and hexamethylene diisocyanate (HDI) DESMODUR I monomeric cycloaliphatic diisocyanate copolymer based on IPDI DESMODUR IL a TDI-isocyanurate DESMODUR IL BA aromatic polyisocyanate based on toluene diisocyanate (TDI) DESMODUR IL 1351 a TDI-isocyanurate DESMODUR IL 1451 aromatic polyisocyanate based on toluene diisocyanate (TDI); for two-pack polyurethane coatings DESMODUR L 67 BA aromatic polyisocyanate based on toluene diisocyanate (TDI) DESMODUR L 67 MPA/X aromatic polyisocyanate based on toluene diisocyanate (TDI) DESMODUR L 75 aromatic polyisocyanate, which is a 75% solution of a reaction product of toluene diisocyanate (TDI) and trimethylolpropane DESMODUR N 75 BA aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); a 75% solution of a biuret HDI DESMODUR N 75 BA/X aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); a 75% solution of a HDI biuret DESMODUR N 100 solvent-free aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); HDI biuret DESMODUR N 300 an HDI isocyanurate DESMODUR N 3200 solvent-free aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); HDI biuret with a lower viscosity than DESMODUR N100 DESMODUR N 3300A solvent-free aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); HDI trimer DESMODUR N 3390A aliphatic polyisocyanate resin based on hexamethylene BA/SN diisocyanate (HDI); HDI trimer; a 90% solution of an HDI isocyanurate DESMODUR N 3400 solvent-free aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); low-viscosity HDI trimer DESMODUR N 3600 solvent-free polyfunctional aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); low- viscosity HDI trimer DESMODUR N 3790 BA aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); HDI trimer DESMODUR N 3800 solvent-free, flexibilizing aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI); HDI trimer DESMODUR NZ 1 solvent-free aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI) DESMODUR VL aromatic polyisocyanate based on diphenylmethane diisocyanate (MDI) DESMODUR W liquid cycloaliphatic diisocyanate DESMODUR XO 672 solvent-free aromatic polyisocyanate based on 4,4′- diphenylmethane diisocyanate (MDI); water-dispersible crosslinker for aqueous polymeric dispersions, such as polyurethanes, polyvinyl acetate and its copolymers, polychloroprene, reactive acrylics and others DESMODUR XP 2410 low-viscosity HDI trimer; aliphatic polyisocyanate resin based on hexamethylene diisocyanate (HDI) DESMODUR XP 2580 aliphatic polyisocyanate based on hexamethylene diisocyanate (HDI) DESMODUR XP 2619 aromatic isocyanate based on diphenylmethane diisocyanate (MDI); for solvent-free, two-pack polyurethane coatings DESMODUR XP 7144 aromatic polyisocyanate prepolymer based on diphenylmethane diisocyanate (MDI); for 1 K and 2 K polyurethane coatings and sealants DESMODUR Z 4470 BA aliphatic polyisocyanate based on isophorone diisocyanate (IPDI) DESMODUR Z 4470 aliphatic polyisocyanate based on isophorone MPA/X diisocyanate (IPDI) DESMODUR Z 4470 SN aliphatic polyisocyanate based on isophorone diisocyanate (IPDI) DESMODUR Z 4470 aliphatic polyisocyanate based on isophorone SN/BA diisocyanate (IPDI)

Thermally Activatable Crosslinking Agents

In an embodiment of the method according to the present invention, the adhesive composition further comprises a crosslinking agent which is thermally activatable at a temperature above the temperature at which the layer is dried.

In an embodiment of the method according to the present invention, the adhesive composition further comprises a blocked polyisocyanate which is thermally activatable at a temperature above the temperature at which the layer is dried.

In an embodiment of the method according to the present invention, a solution or dispersion of a crosslinking agent and at least one polyhydroxy binder is applied to the adhesive layer as a layer either simultaneously to the application of the adhesive layer or subsequent to the application of the adhesive layer and the crosslinking agent is thermally activatable at a temperature above the temperature at which the layer is dried.

In an embodiment of the method according to the present invention, a solution or dispersion of a crosslinking agent and at least one polyhydroxy binder is applied to the adhesive layer as a layer either simultaneously to the application of layer or subsequent to the application of layer and the crosslinking agent is a blocked polyisocyanate which is thermally activatable at a temperature above the temperature at which the layer is dried.

Polyisocyanate Precursors

Polyisocyanate precursors such as polyisocyanates with a blocking group to prevent reaction at room temperature which upon unblocking react with the polyhydroxy binders and polyhydroxy binders may be used in the adhesives used in the process and laminate according to the present invention.

Polyisocyanates are thermally reversibly “blocked” with H-acidic components. A proper selection of the “blocking agent” determines the reactivity, i.e. the splitting temperature of the blocked polyisocyanate and therefore the curing conditions of such an aliphatic, 1-component thermosetting polyurethane system. The following blocking agents are of commercial and technological interest: more important are 2-Butanone-oxime (methyl ethyl ketoxime, MEKO), ε-caprolactam and to a limited extend 3,5-dimethylpyrazole. In specific areas, especially in powder coatings, the uretdion/dimer structure is used to deactivate isocyanate groups thermally reversible without using blocking agents.

Temperatures between 120 and 250° C. are necessary to release the blocking groups which usually volatilize from the coating. The resulting polyisocyanates can react with other active hydrogen-containing compounds to form more thermally stable urethane or urea linkages. The dissociation temperatures of the labile bond of a blocked polyisocyanate depend on the structures of the polyisocyanates and the blocking groups utilized. Blocked polyisocyanates based on aromatic polyisocyanates dissociate at lower temperatures than those based on aliphatic ones. The dissociation temperatures of blocked polyisocyanates based on commercially utilized blocking agents decrease in this order: alcohols>ε-caprolactam>phenols>methyl ethyl ketoxime>active methylene compounds.

The blocked polyisocyanates offer wide formulation latitude. They can be added to the coreactant resins providing one-package coatings with excellent shelf life. These combinations result in cross-linked films within reasonable curing cycles. Coatings obtained show high-performance with the unique combination of high hardness and good flexibility.

Suitable polyisocyanate precusors supplied by BAYER MATERIAL SCIENCE include:

DESMODUR a blocked TDI-type crosslinking stoving urethane BL 100 resin DESMODUR aliphatic blocked polyisocyanate based on BL 3175A hexamethylene diisocyanate (HDI); for light-stable, 1 K baking systems with relatively low curing temperatures DESMODUR aliphatic blocked polyisocyanate based on BL 3272 hexamethylene diisocyanate (HDI); hardener for MPA lightfast one-pack baking polyurethane coatings DESMODUR aliphatic blocked polyisocyanate based on BL 3370 hexamethylene diisocyanate (HDI); light-stable one- MPA component baking polyurethane coatings with relatively low curing temps DESMODUR aliphatic blocked polyisocyanate based on BL 3475 hexamethylene diisocyanate (HDI) and isophorone BA/SN diisocyanate (IPDI); hardener for lightfast one-pack baking polyurethane coatings with a low baking temp DESMODUR aliphatic blocked polyisocyanate based on isophorone BL 4265 diisocyanate (IPDI); for light-stable, 1 K baking SN polyurethane coating systems with relatively low curing temperatures DESMODUR hydrophylic aliphatic polyisocyanate adduct based on DA-L hexamethylene diisocyanate (HDI); solvent-free, water-dispersible crosslinking agent for aqueous polymeric dispersions DESMODUR hydrophylic aliphatic polyisocyanate adduct based on DN hexamethylene diisocyanate (HDI); lower viscosity grade; solvent-free, water-dispersible crosslinking agent for aqueous polymeric dispersions DESMODUR aromatic polyisocyanate; solvent-free linear E-14 aromatic prepolymer based on toluene diisocyanate (TDI) DESMODUR aromatic polyisocyanate; solvent-free E 23 A aromatic polyisocyanate prepolymer based on diphenylmethane diisocyanate (MDI) DESMODUR aromatic polyisocyanate prepolymer based on E 28 diphenylmethane diisocyanate (MDI) DESMODUR aromatic polyisocyanate; solvent-free E 210 aromatic prepolymer based on diphenylmethane diisocyanate (MDI) DESMODUR aromatic polyisocyanate prepolymer based on E 743 diphenylmethane diisocyanate (MDI DESMODUR aromatic polyisocyanate prepolymer based on E 744 diphenylmethane diisocyanate (MDI) DESMODUR aromatic polyisocyanate prepolymer based on toluene E 1160 diisocyanate (TDI) MPA/X DESMODUR aliphatic polyisocyanate prepolymer based on E-3265 hexamethylene diisocyanate (HDI); for moisture- curing 1 K polyurethane coatings with good gloss retention DESMODUR blocked aliphatic polyisocyanate based on isophorone PL 340 diisocyanate (IPDI); for 1-pack polyurethane baking coatings DESMODUR blocked aliphatic polyisocyanate based on PL 350 hexamethylene diisocyanate (HDI); HDI trimer; for 1- pack polyurethane baking coatings DESMODUR blocked aliphatic polyisocyanate; blocked aliphatic VP LS 2078 crosslinking stoving urethane resin based on IPDI DESMODUR blocked aliphatic polyisocyanate based on VP LS 2117 HMDI; blocked aliphatic urethane stoving resin DESMODUR blocked aliphatic polyisocyanate based on VP LS 2253 hexamethylene diisocyanate (HDI); for light-stable, 1 K baking systems with relatively low curing temperatures DESMODUR IPDI polyether prepolymer; for elastic coatings and VP LS 2371 surface sealer compounds COLONATE ® a phenol blocked TDI prepolymer AP* ADESTER 200# a blocked polyisocyanate *Nippon Polyurethane Industries #Mitsubishi Kasei Corp.

Laminate

Aspects of the present invention have been realized by a laminate comprising an interlaminated transparent embossed hologram, said transparent embossed hologram comprising an optionally transparent support having two sides, at least one of the two sides either itself being embossed or having a layer thereon which is embossed and a layer of a HRI-material applied by a vacuum technique contiguous with said embossed side or embossed layer having an adhesive layer between said layer of HRI-material and an optionally transparent foil, wherein said adhesive layer comprises at least one polymer comprising at least one monomer selected from the group consisting of vinyl alcohol, vinyl esters, vinyl acetals, vinylidene chloride, acrylates and methacrylates and wherein at least one of said support and said foil is transparent.

Polymer Films

The polymer film used in the method according to the present invention, is preferably a polyethylene, polyethylene terephthalate, PET, PVC or polycarbonate film.

The polymer film used in the method according to the present invention, is preferably a polymer foil. The polymer foil preferably has a thickness between about 5 μm and about 120 μm, more preferably between about 10 μm and about 60 μm, most preferably between about 10 μm and about 30 μm.

Suitable polymer films and foils which are laminated include cellulose acetate propionate or cellulose acetate butyrate, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, polyimides, polyolefins, poly(vinylacetals), polyethers and polysulphonamides.

In a preferred embodiment of the security document according to the present invention, the polymer film is polyvinyl chloride, polycarbonate or polyester. The polyester is preferably polyethylene terephthalate (PET) or polyethylene terephthalate glycol (PETG).

Security Documents

The security document according to the present invention is preferably an identification card selected from the group consisting of an identity card, a security card, a driver's license card, a social security card, a membership card, a time registration card, a bank card, a pay card and a credit card. In a preferred embodiment, the security document according to the present invention is a personal identity card.

INDUSTRIAL APPLICATION

The process according to the present invention can be used for preparing security laminates which can be used in identity documents such as driver's licenses, ID-cards and passports, and on other important documents such as certificates of title. Security laminates are also useful as tamper proof seals on medications, video cassettes, and compact discs.

The invention is illustrated hereinafter by way of EXAMPLES. The percentages and ratios given in these examples are by weight unless otherwise indicated.
MEK=methyl ethyl ketone
THF=tetrahydrofuran

The holograms used in the COMPARATIVE SAMPLES and INVENTIVE SAMPLES consisting of a 12 μm or 23 μm thick poly(ethylene terphthalate) support coated with an embossed ca. 5 μm thick embossable layer vacuum-coated with a ca. 100 nm thick layer of zinc sulphide, a HRI-material to produce holograms corresponding to the embossing are available from Centro Grafico, FASVER and OVD. The ca. 100 nm thick layer of zinc sulphide material applied by a vacuum technique such as vacuum evaporation or sputtering is amorphous and porous.

Example 1

This example illustrates that only certain organic solvents are capable of conditioning a HRI layer to a state wherein the adhesion of the HRI layer via an adhesive layer to a foil can be improved while maintaining the brilliance of the hologram.

In INVENTIVE SAMPLES 1 to 4 and COMPARATIVE SAMPLES 2 and 3 a hologram as described above was mounted on a 23 μm thick poly(ethylene terephthalate) support. The outermost surface of the ca. 100 nm evaporated zinc sulphide layer was conditioned by spreading different organic liquids thereon using a Braive® coating apparatus with a wire-rod with a contact time of 200 s before the liquids evaporated and drying at 60° C. for 5 minutes and in COMPARATIVE SAMPLE 1 no conditioning was performed.

An adhesive composition was prepared by mixing 50 g of Liofol UK 3640, a polyurethane solvent (ethyl acetate) adhesive, with 1 g of Hardener Liofol UK 6800 layer and this composition was applied using a Braive coating apparatus with a 10 μm wire-rod to the outermost surface of the foil of INVENTIVE SAMPLES 1 to 4 conditioned with different organic liquids, COMPARATIVE SAMPLE 1 without conditioning and COMPARATIVE SAMPLES 1 and 2 with conditioning with organic liquids outside the scope of the present invention on the zinc sulphide-coated side of the support and was dried for 5 minutes at 50° C.

The adhesive layer-coated side of the foils was then laminated to the polyethylene side of an identity-card simulating transparent laminate consisting of a 500 μm PETG sheet which had been laminated with a 12 μm gelatin layer to a 35 μm thick polyethylene foil with a EXECELAM 655Q laminator (from GMP Co. Ltd, Korea) at a temperature of 160° C. at speed position 1.

The delamination resistance of the resulting laminates of INVENTIVE SAMPLES 1 to 4 and COMPARATIVE SAMPLES 1 to 3 was evaluated dry according to ISO/IEC 7810:1995 with an Instron in terms of peel strength. The dry peel strength values for the laminates were measured and the values given in Table 1.

The effect of the solvent conditioning and adhesive layer on the hologram brilliance was also assessed. There are no standard techniques for assessing the brilliance of holograms and therefore visual inspection in comparison with the uncoated hologram was the only option. The brilliance was assessed by awarding numerical scores according to the following criteria:

5=increased brilliance over that of the uncoated hologram

4=comparable brilliance to that of the uncoated hologram

3=noticeably lower brilliance than that of the uncoated hologram

2=substantially lower brilliance than that of the uncoated hologram

1=hologram disappeared

The numerical scores for the laminates of INVENTIVE SAMPLES 1 to 4 and COMPARATIVE SAMPLES 1 to 3 are given in Table 1.

TABLE 1 visual evaluation of hologram brilliance Peel Peel organic prior to coating strength strength liquid pre- with adhesive after dry wet treatment composition lamination [N/cm] [N/cm] Inventive sample nr 1 MEK 2 2 >6 >6 2 ethyl acetate 2 2 >6 >6 3 THF 2 2 >6 >6 4 acetone 2 2 >6 >6 Comparative sample nr 1 4 3 4 <1 2 methanol 3 3 <6 <6 3 toluene 3 3 <6 <6

The peel strength for the laminates of INVENTIVE SAMPLE 1 to 4 with holograms conditioned with methylethylketone, ethyl acetate, tetrahydrofuran or acetone exceeded the target value of ≧6 N/cm for identification cards, but that for the laminate of COMPARATIVE SAMPLE 1 with the uncoated hologram and those for the laminates of COMPARATIVE SAMPLES 2 to 3 with toluene and methanol exhibited peel strengths well below the target value of ≧6 N/cm (the norm laid down in ISO 10373-1 is ≧3.5 N/cm). The peel strength of the wetted laminates of INVENTIVE SAMPLES 1 to 4 also fulfilled the target value of ≧6 N/cm for identification cards.

The low brilliance observed is principally due to the brilliance lowering effect of the conditioning solvents and the long contact time. This effect can be reduced by reducing the contact time e.g. by applying a 3 μm thick solvent layer with a gravure roll the brilliance is increased to 3 without loss of adhesion or alternatively the conditioning solvent can be mixed with a non-conditioning solvent such as an alcohol or an aromatic solvent, thereby reducing the exposure of the HRI-layer to the brilliance-reducing methylethylketone.

Example 2

This example illustrates that the addition of certain organic solvents to the adhesive composition result in excellent adhesion while even improving the brilliance. The combination of the solvent in the adhesion composition also has the advantage that the laminate is obtained in a faster and more economical way due to the abolition of the organic solvent pretreatment steps.

In INVENTIVE SAMPLES 5 to 8 a hologram as described above was mounted on a 23 μm thick poly(ethylene terephthalate) support. An adhesive composition was prepared by mixing 50 g of Liofol UK 3640, a polyurethane solvent (ethyl acetate) adhesive, with 1 g of Hardener Liofol UK 6800 layer and 20 g of diluent given in table 2 and this composition was applied to the hologram foil as supplied using a Braive® coating apparatus with a 10 μm wire-rod to the solvent-conditioned outermost surface of the foil of INVENTIVE SAMPLE 1 with an adhesive layer coating and to the non-conditioned outermost surface of the foil of COMPARATIVE SAMPLE 1 with an adhesive layer coating each on the zinc sulphide-coated side of the support and was dried for 5 minutes at 50° C.

The adhesive layer-coated side of the foils was then laminated to the polyethylene side of an identity-card simulating transparent laminate consisting of a 500 μm PETG sheet which had been laminated with a 12 μm gelatin layer to a 35 μm thick polyethylene foil with a EXECELAM 655Q laminator (from GMP Co. Ltd, Korea) at a temperature of 160° C. at speed position 1.

The delamination resistance of the resulting laminates and the brilliance of the interlaminated holograms of INVENTIVE SAMPLES 5 to 8 were evaluated as described for INVENTIVE SAMPLES 1 to 4 and COMPARATIVE SAMPLES 1 to 3 and the results are given in Table 2.

The peel strength for the laminates of INVENTIVE SAMPLE 5 to 8 with holograms directed conditioned with methylethylketone, ethyl acetate, tetrahydrofuran or acetone exceeded the target value of 6 N/cm for identification cards, but that for the laminate of COMPARATIVE SAMPLE 1 with the uncoated hologram and those for the laminates of COMPARATIVE SAMPLES 2 to 3 with toluene and methanol exhibited peel strengths well below the target value of ≧6 N/cm (the norm laid down in ISO 10373-1 is ≧3.5 N/cm). The peel strength of the wetted laminates of INVENTIVE SAMPLES 1 to 4 also fulfilled the target value of ≧6 N/cm for identification cards.

TABLE 2 visual evaluation of hologram brilliance Peel Peel diluent for prior to coating strength strength Liofol UK with adhesive after dry wet 3640* composition lamination [N/cm] [N/cm] Inventive sample nr 5 MEK 4 3 >6 >6 6 ethyl acetate 4 3 >6 >6 7 THF 4 3 >6 >6 8 acetone 4 3 >6 >6 Comparative sample nr 1 4 3 4.07 <1 *Liofol UK 3640 as delivered contains ethyl acetate

The higher brilliance observed by adding the solvent to the adhesive composition rather than conditioning with the solvent and then applying a layer of the undiluted adhesive composition is due to the reduced exposure of the zinc sulphide HRI-layer to the brilliance lowering conditioning solvents and the shorter contact time.

Example 3

In INVENTIVE SAMPLE 9 and COMPARATIVE SAMPLE 4 a hologram foil as described above was produced on a 23 μm thick poly(ethylene terephthalate) support. The outermost surface of the ca. 100 nm evaporated zinc sulphide layer was coated with a 3.5% by weight solution of S-LEC BL5HP, a polyvinyl butyral from Sekisui Chemical, in methylethylketone using a Braive coating apparatus with a 10 μm wire-rod integrally over the whole foil and the layer dried for 10 minutes at 50° C. giving a surface coverage of 0.35 g/m2.

An adhesive composition was prepared by mixing 50 g of Liofol UK 3640, a polyurethane solvent (ethyl acetate) adhesive, with 1 g of Hardener Liofol UK 6800 layer and this composition was applied using a Braive coating apparatus with a 10 μm wire-rod to the outermost surface of the foil of INVENTIVE SAMPLE 9 with a poly(vinyl butyal)-coating and COMPARATIVE SAMPLE 4 without a poly(vinyl butyral)-coating on the zinc sulphide-coated side of the support and was dried for 5 minutes at 50° C.

The adhesive layer-coated side of the foils was then laminated to the polyethylene side of an identity-card simulating transparent laminate consisting of a 500 μm PETG sheet which had been laminated with a 12 μm gelatin layer to a 35 μm thick polyethylene foil with a EXECELAM 655Q laminator at a temperature of 160° C. at speed position 1. The delamination resistance of the resulting laminates was evaluated dry under ISO/IEC 7810:1995 in terms of peel strength. The dry peel strength values were measured for the laminates of INVENTIVE SAMPLES 9 and COMPARATIVE SAMPLE 4 and the values given in Table 1.

The effect of the poly(vinyl butyral)-coating and adhesive layer on the hologram brilliance was also assessed. There are no standard techniques for assessing the brilliance of holograms and therefore visual inspection in comparison with the uncoated hologram was the only option. The brilliance was assessed by awarding numerical scores according to the following criteria:

5=increased brilliance over that of the uncoated hologram

4=comparable brilliance to that of the uncoated hologram

3=noticeably lower brilliance than that of the uncoated hologram

2=substantially lower brilliance than that of the uncoated hologram

1=hologram disappeared

The brilliance scores are given in Table 1 both prior to coating with the adhesive composition and after lamination for the configurations of INVENTIVE SAMPLE 9 and COMPARATIVE SAMPLE 4.

TABLE 1 Peel visual evaluation of strength hologram brilliance wet with prior to Peel patchwise coating with strength applied protective adhesive after dry layers layer composition lamination [N/cm] [N/cm] Inventive Sample nr 1 S-LEC 2 2 >10* >6 BL5HP Comparative sample nr 1 4 3  4 *strip being pulled tore before maximum peel strength was registered

The peel strength for the laminate of INVENTIVE SAMPLE 4 with poly(vinyl butyral)-coated holograms exceeded the target value of ≧6 N/cm for identification cards, but that for the laminate of COMPARATIVE SAMPLE 4 with the uncoated hologram was well below the target of ≧6 N/cm (the norm laid down in ISO 10373-1 is ≧3.5 N/cm). The peel strength of the wetted laminate also fulfilled the target of ≧6 N/cm for identification cards in the case of foils integrally coated with poly(vinyl butyral) (the norm laid down in ISO 10373-1 is ≧3.5 N/cm). The low brilliance observed is principally due to the brilliance lowering effect of methylethyl ketone. However, the replacement of much of the methylethylketone with a solvent which does not reduce the brilliance of HRI-layers such as aromatic solvents and alcohols, will reduce the exposure of the HRI-layer to the brilliance-reducing methylethylketone, thereby significantly reducing the reduction in brilliance. Alternatively the excellent wet resistance of the poly(vinyl butyral)-layer could be exploited by applying polyvinyl butyral to non-hologram areas of the outermost surface of the zinc sulphide HRI-layer which upon coating with the adhesive composition and lamination to the polyethylene side of the above-mentioned identity-card simulating transparent laminate provides a seal against moisture penetration.

Claims

1-14. (canceled)

15. A method for interlaminating a transparent embossed hologram, said transparent embossed hologram comprising a support having two sides, at least one of the two sides either itself being embossed or having a layer thereon which is embossed and a layer of a HRI-material contiguous with the embossed side or embossed layer, the method comprising the steps of:

a) providing the outermost surface of the layer of inorganic HRI-material with a layer of an adhesive composition containing a solution or dispersion of at least one polymer in an organic solvent medium;
b) drying the layer of the adhesive composition on the outermost surface of the HRI-material thereby providing a conditioned outermost surface of the layer of inorganic HRI-material with a transparent continuous adhesive layer; and
c) laminating the transparent continuous laminatable layer to a polymer film,
wherein the organic solvent medium is selected from the group consisting of ketones, ethers, heterocyclic ethers, lactams, amides, halo-aliphatic compounds, nitriles and esters; wherein at least one of the support and the polymer film is transparent; and wherein the HRI-material is a material with a refractive index of at least 0.3 higher than that of the embossed material.

16. The method according to claim 15, wherein the organic solvent medium is a theta solvent medium at 25° C. for the at least one polymer.

17. The method according to claim 15, wherein the at least one polymer is a latex or latexes with minimum film formation temperatures at or below 25° C.

18. The method according to claim 15, wherein the at least one polymer is a polyhydroxy polymer comprising at least one monomer selected from the group consisting of vinyl alcohol, vinyl esters, vinyl acetals, vinylidene chloride, acrylates and methacrylates.

19. The method according to claim 16, wherein the at least one polymer is a polyhydroxy polymer comprising at least one monomer selected from the group consisting of vinyl alcohol, vinyl esters, vinyl acetals, vinylidene chloride, acrylates and methacrylates.

20. The method according to claim 15, wherein the adhesive composition comprises a polymer having a plurality of hydroxy-groups and a curing agent selected from the group consisting of polyisocyanates, polyepoxides and hydrolysed polyalkoxysilanes.

21. The method according to claim 16, wherein the adhesive composition comprises a polymer having a plurality of hydroxy-groups and a curing agent selected from the group consisting of polyisocyanates, polyepoxides and hydrolysed polyalkoxysilanes.

22. The method according to claim 17, wherein the adhesive composition comprises a polymer having a plurality of hydroxy-groups and a curing agent selected from the group consisting of polyisocyanates, polyepoxides and hydrolysed polyalkoxysilanes.

23. The method according to claim 18, wherein the adhesive composition comprises a polymer having a plurality of hydroxy-groups and a curing agent selected from the group consisting of polyisocyanates, polyepoxides and hydrolysed polyalkoxysilanes.

24. The method according to claim 15, wherein the adhesive composition further comprises a crosslinking agent.

25. The method according to claim 16, wherein the adhesive composition further comprises a crosslinking agent.

26. The method according to claim 24, wherein the crosslinking agent is thermally activatable at a temperature above the temperature at which the adhesive layer is dried.

27. The method according to claim 25, wherein the crosslinking agent is thermally activatable at a temperature above the temperature at which the adhesive layer is dried.

28. The method according to claim 26, wherein the thermally activatable crosslinking agent is a blocked polyisocyanate.

29. The method according to claim 27, wherein the thermally activatable crosslinking agent is a blocked polyisocyanate.

30. The method according to claim 15, the method further comprising the steps of: applying the adhesive layer to the outermost surface on the side of the support with the HRI-layer not above the embossed layer, and laminating the transparent polymer film to the adhesive layer so that the adhesive at least provides a seal round the transparent embossed hologram or holograms.

31. The method according to claim 16, the method further comprising the steps of: applying the adhesive layer to the outermost surface on the side of the support with the HRI-layer not above the embossed layer, and laminating the transparent polymer film to the adhesive layer so that the adhesive at least provides a seal round the transparent embossed hologram or holograms.

32. The method according to claim 15, wherein the peel strength of the HRI-layer is at least 6 N/cm as measured according to ISO Norm 10373-1-1978.

33. The method according to claim 16, wherein the peel strength of the HRI-layer is at least 6 N/cm as measured according to ISO Norm 10373-1-1978.

34. The method according to claim 15, wherein the lamination of the polymer film to the outermost surface of the HRI-layer has a peel strength of at least 6 N/cm as measured according to ISO Norm 10373-1-1978.

35. The method according to claim 16, wherein the lamination of the polymer film to the outermost surface of the HRI-layer has a peel strength of at least 6 N/cm as measured according to ISO Norm 10373-1-1978.

36. The method according to claim 15, wherein the embossed layer has a refractive index within 0.2 of the refractive index of the support.

37. The method according to claim 16, wherein the embossed layer has a refractive index within 0.2 of the refractive index of the support.

38. A laminate obtained by the method according to claim 15.

39. A laminate obtained by the method according to claim 16.

40. A security document comprising a laminate obtained by the method of claim 15.

41. A security document comprising a laminate obtained by the method of claim 16.

Patent History
Publication number: 20110266788
Type: Application
Filed: Sep 19, 2008
Publication Date: Nov 3, 2011
Applicant: AGFA-GEVAERT N.V. (Mortsel)
Inventor: Ingrid Geuens (Emblem)
Application Number: 12/672,964
Classifications
Current U.S. Class: And Transparent Laminate (283/109); Ornamental Design Or Indicia (428/187); Synthetic Resin Containing (156/327); Epoxy Resin (156/330); Derived From Iso- Or Thio-cyanate; E.g., Polyurethane, Etc. (156/331.7); Silicon Resin (156/329)
International Classification: B42D 15/00 (20060101); B32B 37/12 (20060101); B32B 37/14 (20060101); B32B 3/28 (20060101);