Method and Apparatus for Processing Financial Information at Hardware Speeds Using FPGA Devices
A method and apparatus use a reconfigurable logic device to process a stream of financial information at hardware speeds. The reconfigurable logic device can be configured to perform data processing operations on the financial information stream. Examples of such data processing operations include data processing operations to compute a latest stock price, a minimum stock price, and a maximum stock price.
Latest WASHINGTON UNIVERSITY Patents:
- NXTAR-derived oligonucleotides and uses thereof
- Computational refocusing-assisted deep learning
- Catalysts for the transformation of carbon dioxide and glycerol to formic acid and lactic acid and methods of making the same
- Transparent conducting oxide (TCO) based integrated modulators
- Compositions and methods for treatment of pre-cancerous skin lesions
This application is a continuation of Ser. No. 11/561,615 filed Nov. 20, 2006, now U.S. Pat. No. ______, which is a continuation of Ser. No. 10/153,151 filed May 21, 2002, now U.S. Pat. No. 7,139,743, the disclosure of the '743 patent being incorporated herein by reference.
This application is related to Ser. No. ______, filed concurrently herewith, entitled “Method and Apparatus for Processing Financial Information at Hardware Speeds Using FPGA Devices” (said application being identified by Thompson Coburn Attorney Docket Number 53047-100562), which is a continuation of Ser. No. 10/153,151 filed May 21, 2002, now U.S. Pat. No. 7,139,743.
BACKGROUND OF THE INVENTIONIndications are that the average database size and associated software support systems are growing at rates that are greater than the increase in processor performance (i.e., more than doubling roughly every 18 months). This is due to a number of factors including without limitation the desire to store more detailed information, to store information over longer periods of time, to merge databases from disparate organizations, and to deal with the large new databases which have arisen from emerging and important applications. For example, two emerging applications having large and rapidly growing databases are those connected with the genetics revolution and those associated with cataloging and accessing information on the Internet. In the case of the Internet, current industry estimates are that in excess of 1.5 million pages are added to the Internet each day. At the physical level this has been made possible by the remarkable growth in disk storage performance where magnetic storage density has been doubling every year or so for the past five years.
Search and retrieval functions are more easily performed on information when it is indexed. For example, with respect to financial information, it can be indexed by company name, stock symbol and price. Oftentimes, however, the information being searched is of a type that is either hard to categorize or index or which falls into multiple categories. As a result, the accuracy of a search for information is only as good as the accuracy and comprehensiveness of the index created therefor. In the case of the Internet, however, the information is not indexed. The bottleneck for indexing is the time taken to develop the reverse index needed to access web pages in reasonable time. For example, while there are search engines available, designing a search which will yield a manageable result is becoming increasingly difficult due to the large number of “hits” generated by less than a very detailed set of search instructions. For this reason, several “intelligent” search engines have been offered on the web, such as Google, which are intended to whittle down the search result using logic to eliminate presumed undesired “hits”.
With the next-generation Internet, ever-faster networks, and expansion of the Internet content, this bottleneck is becoming a critical concern. Further, it is becomingly exceedingly difficult to index information on a timely basis. In the case of the Internet, current industry estimates are that in excess of 1.5 million pages are added to the Internet each day. As a result, maintaining and updating a reverse index has become an enormous and continuous task and the bottleneck it causes is becoming a major impediment to the speed and accuracy of existing search and retrieval systems. Given the ever increasing amounts of information available, however, the ability to accurately and quickly search and retrieve desired information has become critical.
DESCRIPTION OF ARTAssociative memory devices for dealing with large databases are known in the prior art. Generally, these associative memory devices comprise peripheral memories for computers, computer networks, and the like, which operate asynchronously to the computer, network, etc. and provide increased efficiency for specialized searches. Additionally, it is also known in the prior art that these memory devices can include certain limited decision-making logic as an aid to a main CPU in accessing the peripheral memory. An example of such an associative memory device particularly adapted for use with a rotating memory such as a high speed disk or drum can be found in U.S. Pat. No. 3,906,455, the disclosure of which is incorporated herein by reference. This particular device provides a scheme for use with a rotating memory and teaches that two passes over a memory sector is necessary to presort and then sort the memory prior to performing any logical operations thereon. Thus, this device is taught as not being suitable for use with any linear or serial memory such as magnetic tape or the like.
Other examples of prior art devices may also be found in U.S. Pat. Nos. 3,729,712; 4,464,718; 5,050,075; 5,140,692; and 5,721,898; the disclosures of which are incorporated herein by reference.
As an example, in 4,464,718, Dixon performs fixed comparisons on a fixed number of bytes. They don't have the ability to scan and correlate arbitrarily over the data. They search serially along the tracks in a given disk cylinder but there is no provision for parallel searching across disks. Dixon's comparisons are limited by a fixed rigid number of standard logical operation types. Additionally, the circuitry presented supports only these single logical operations. There is no support for approximate or fuzzy matching.
While these prior art associative memory devices represent an attempt to speed the input and output of information to and from a peripheral memory, which in many cases is a mass storage memory device, all rely on the classic accessing of data stored in digital form by reading and interpreting the digital either address or content of the memory location. In other words, most such devices access data by its address but there are some devices that take advantage of the power of content addressing as is well known in the art. Nevertheless, in all of the prior art known to the inventors, the digital value of the address or data contained in the addressed location must be read and interpreted in its digital form in order to identify the data and then select it for processing. Not only does it take processing time to read and interpret the digital data represented by the address or content, this necessarily requires that the accessing circuit process the memory according to the structure of the data stored. In other words, if the data is stored in octets, then the accessing circuitry must access the data in octets and process it in an incremental manner. This “start and stop” processing serves to increase the input/output time required to access data. As is also well known in the art, this input/output time typically represents the bottleneck and effective limitation of processing power in any computer or computer network.
Furthermore, given the vast amount of information available to be searched, data reduction operations (i.e., the ability to summarize data in some aggregate form) has become critical. Oftentimes, the ability to quickly perform data reduction functions can provide a company with a significant competitive advantage.
Likewise, with the improvements in digital imaging technology, the ability to perform two dimensional matching such as on images has become necessary. For example, the ability to conduct matches on a particular image of an individual, such as his or her face or retina, or on a fingerprint, is becoming critical to law enforcement as it steps up its efforts on security in light of the Sep. 11, 2001 terrorist attacks. Image matching is also of importance to the military in the area of automatic target recognition.
Finally, existing searching devices cannot currently be quickly and easily reconfigured in response to changing application demands.
Accordingly, there is a need for an improved information search and retrieval system and method which overcomes these and other problems in the prior art.
In order to solve these and other problems in the prior art, the inventors herein have succeeded in designing and developing a method and apparatus for an associative memory using Field Programmable Gate Arrays (FPGA) in several embodiments described in the parent U.S. Pat. No. 7,139,743, which provide an elegantly simple solution to these prior art limitations as well as dramatically decreased access times for data stored in mass storage memories. As described below, the invention has several embodiments each of which has its own advantages.
U.S. Pat. No. 6,711,558, which is the parent of the '743 patent referenced above, discloses and claims the use of programmable logic and circuitry generally without being specific as to any choice between the various kinds of devices available for this part of the invention. In the '743 patent, the inventors disclose more specifically the use of FPGA's as part of the circuitry for various reasons as their best mode. There are several reasons for that. The first of these is speed. And, there are two different aspects of operation in which speed plays a part. The first of these is the speed of reconfiguration. It is known in the art that FPGA's may be quickly programmed in the field to optimize the search methodology using a template, the template having been prepared in advance and merely communicated to the FPGA's over a connecting bus. Should it then be desired to search using a different methodology, the FPGA's may then be quickly and conveniently re-programmed with another prepared template in a minimal number of clock cycles and the second search started immediately. Thus, with FPGA's as the re-configurable logic, shifting from one search to another is quite easy and quick, relative to other types of re-programmable logic devices.
A second aspect of speed is the amount of time required, once programmed, a search requires. As FPGA's are hardware devices, searching is done at hardware processing speeds which is orders of magnitude faster than at software processing speeds as would be experienced with a microprocessor, for example. Thus, FPGA's are desirable over other software implementations where speed is a consideration as it most often is.
In considering the use of templates, it is contemplated that at least several “generic” templates would be prepared in advance and would be available for use in performing text searching in either an absolute search, an approximate search, or a higher or advanced search mode incorporating a Boolean algebra logic capability, or a graphics search mode. These could then be stored in a CPU memory and be available either on command or loaded in automatically in response to a software queue indicating one of these searches.
Still another factor to consider is cost, and the recent price reductions in FPGA's have made them more feasible for implementation as a preferred embodiment for this application, especially as part of a hard disk drive accelerator as would be targeted for a pc market. It is fully expected that further cost reductions will add to the desirability of these for this implementation, as well as others as discussed in greater detail below.
Generally, various embodiments of the '743 patent describe a technique for data retrieval through approximate matching of a data key with a continuous reading of data as stored on a mass storage medium, using FPGA's to contain the template for the search and do the comparison, all in hardware and at essentially line speed. By utilizing FPGA's, the many advantages and features commonly known are made available. These include the ability to arrange the FPGA's in a “pipeline” orientation, in a “parallel” orientation, or even in an array incorporating a complex web overlay of interconnecting data paths allowing for complex searching algorithms. In its broadest, and perhaps most powerful, embodiment, the data key may be an analog signal and it is matched with an analog signal generated by a typical read/write device as it slews across the mass storage medium. In other words, the steps taught to be required in the prior art of not only reading the analog representation of digital data stored on the mass storage medium but also the conversion of that signal to its digital format prior to being compared are eliminated. Furthermore, there is no requirement that the data be “framed” or compared utilizing the structure or format in which the data has been organized and stored. For an analog signal, all that need be specified is the elapsed time of that signal which is used for comparison with a corresponding and continuously changing selected time portion of the “read” signal. Using any one of many standard correlation techniques as known in the prior art, the data “key” may then be approximately matched to the sliding “window” of data signal to determine a match. Significantly, the same amount of data may be scanned much more quickly and data matching the search request may be determined much more quickly as well. For example, the inventors have found that CPU based approximate searches of 200 megabytes of DNA sequences can take up to 10 seconds on a typical present day “high end” system, assuming the offline processing to index the database has already been completed. In that same 10 seconds, the inventors have found that a 10-gigabyte disk could be magnetically searched for approximate matches using the present invention. This represents a 50:1 improvement in performance. Furthermore, in a typical hard disk drive there are four surfaces and corresponding read/write heads, which may be all searched in parallel should each head be equipped with the present invention. As these searches can proceed in parallel, the total increase in speed or improvement represents a 200:1 advantage. Furthermore, additional hard disk drives may be accessed in parallel and scaled to further increase the advantage provided by the present invention.
By choosing an appropriate correlation or matching technique, and by setting an appropriate threshold, the search may be conducted to exactly match the desired signal, or more importantly and perhaps more powerfully, the threshold may be lowered to provide for approximate matching searches. This is generally considered a more powerful search mode in that databases may be scanned to find “hits” which may be valid even though the data may be only approximately that which is being sought. This allows searching to find data that has been corrupted, incorrectly entered data, data which only generally corresponds to a category, as well as other kinds of data searches that are highly desired in many applications. For example, a library of DNA sequences may be desired to be searched and hits found which represent an approximate match to a desired sequence of residues. This ensures that sequences which are close to the desired sequence are found and not discarded but for the difference in a forgivable number of residue mismatches. Given the ever-increasing volume and type of information desired to be searched, more complex searching techniques are needed. This is especially true in the area of molecular biology, “[O]ne of the most powerful methods for inferring the biological function of a gene (or the protein that it encodes) is by sequence similarity searching on protein and DNA sequence databases.” Garfield, “The Importance of (Sub)sequence Comparison in Molecular Biology,” pgs. 212-217, the disclosure of which is incorporated herein by reference. Current solutions for sequence matching are only available in software or non-reconfigurable hardware.
Still another application involves Internet searches provided by Internet search engines. In such a search, approximate matching allows for misspelled words, differently spelled words, and other variations to be accommodated without defeating a search or requiring a combinatorial number of specialized searches. This technique permits a search engine to provide a greater number of hits for any given search and ensure that a greater number of relevant web pages are found and cataloged in the search. Although, as mentioned above, this approximate matching casts a wider net which produces a greater number of “hits” which itself creates its own problems.
Still another possible application for the technology described in the '743 patent is for accessing databases which may be enormous in size or which may be stored as analog representations. For example, our society has seen the implementation of sound recording devices and their use in many forums including judicial proceedings. In recent history, tape recordings made in the President's oval office have risen in importance with respect to impeachment hearings. As can be appreciated, tape recordings made over the years of a presidency can accumulate into a huge database which might require a number of persons to actually listen to them in order to find instances where particular words are spoken that might be of interest. Utilizing the technology described in the '743 patent, an analog representation of that spoken word can be used as a key and sought to be matched while the database is scanned in a continuous manner and at rapid speed. Thus, the technology described in the '743 patent provides a powerful search tool for massive analog databases as well as massive digital databases.
While text-based searches are accommodated by the '743 patent as described above, storage media containing images, sound, and other representations have traditionally been more difficult to search than text. The '743 patent further describes embodiments that allow searching a large data base for the presence of such content or fragments thereof. For example, the key in this case could be a row or quadrant of pixels that represent the image being sought. Approximate matching of the key's signal can then allow identification of matches or near matches to the key. In still another image application, differences in pixels or groups of pixels can be searched and noted as results which can be important for satellite imaging where comparisons between images of the same geographic location are of interest as indicative of movement of equipment or troops.
The technology described in the '743 patent may be embodied in any of several configurations, as is noted more particularly below. However, one important embodiment is perhaps in the form of a disk drive accelerator which would be readily installed in any PC as an interface between the hard disk drive and the system bus. This disk drive accelerator could be provided with a set of standardized templates and would provide a “plug and play” solution for dramatically increasing the speed at which data could be accessed from the drive by the CPU. This would be an after market or retrofit device to be sold to the large installed base of PC's. It could also be provided as part of a new disk drive, packaged within the envelope of the drive case or enclosure for an external drive or provided as an additional plug in pc card as an adapter for an internal drive. Additional templates for various kinds of searches on various kinds of databases could be made available either with the purchase of the accelerator, such as by being encoded on a CD, or even over the Internet for download, as desired.
BRIEF SUMMARY OF THE INVENTIONThe present invention leverages the hardware acceleration and flexibility provided by reconfigurable logic devices to perform various data processing operations such as data reduction operations (e.g., aggregate summarization operations) on streaming financial information. For example, in the financial industry, one might want to search financial information to identify a minimum, maximum, and latest price of a stock. The ability to perform data reduction searching such as this at high speeds cannot be under-estimated. One of the most valuable aspects of information is its timeliness. Companies that can quickly compute aggregate data reductions will clearly have a competitive advantage over those that cannot compute such aggregate data reductions as quickly.
Thus, in accordance with an exemplary aspect of the invention, the inventors disclose a method for processing financial information, the method comprising: (1) streaming financial information through a reconfigurable logic device, and (2) the reconfigurable logic device performing a data processing operation on the financial information on a streaming basis as the financial information streams therethrough.
In accordance with another exemplary aspect of the invention, the inventors disclose an apparatus for processing financial information, the apparatus comprising a reconfigurable logic device, wherein the reconfigurable logic device is configured to (1) receive streaming financial information, and (2) perform a data processing operation on the financial information on a streaming basis as the financial information streams therethrough.
While the principal advantages and features of the present invention have been briefly explained above, a more thorough understanding of the invention may be attained by referring to the drawings and description of the preferred embodiment which follow.
As shown in
The re-configurable logic device 21 interfaces with the system or input/output bus 34 and, in one configuration, also interfaces with any disk caches 30 which may be present. It receives and processes search requests or inquires from the CPU 32 or network interface 36. Additionally, the device may aid in passing the results of the inquiries to either or both the disk cache 30 and/or the CPU 32 (by way of the bus 34).
The mass storage medium 26 provides the medium for storing large amounts of information which will hereafter be referred to as target data. The term “mass storage medium” should be understood as meaning any magnetic device used to store large amounts of data, and which is typically designated for use in a computer or computer network. Examples include without limitation hard disk drives or sub-units such as a single disk surface, and these systems may be rotating, linear, serial, parallel, or various combinations of each. For example, a rack of hard disk drive units could be connected in parallel and their parallel output provided at the transducer level to one or more re-configurable logic devices 21. Similarly, a bank of magnetic tape drives could be used, and their serial outputs each provided in parallel to one or more re-configurable logic devices 21. The data stored on the medium may be in analog or in digital form. For example, the data could be voice recordings. The present invention is thus scalable, permitting an increase in the amount of data stored by increasing the number of parallel mass storage media, while preserving the performance by increasing the number of parallel re-configurable logic devices or replicating the re-configurable logic device.
In the prior art as shown in the upper portion of
As has been explained above, the present invention may be used to perform a variety of different types of matching or data reduction operations on the target data. Each one of these operations will now be discussed in detail below. For all operations, however, it will be assumed that the target data is written onto the magnetic mass storage medium 26 with sufficient formatting information attached so that the logical structure of the target data can be extracted. Exact and approximate string matching will be described with reference to
More particularly, a conventional rigid disk drive may have a plurality of rotating disks with multiple transducers accessing each disk. Each of these transducers typically has its output feeding analog signal circuitry 18, such as amplifiers. This is represented at point A. As further shown in
The results may be sent to a control microprocessor 22, which may or may not be configured as part of an FPGA, to execute logic associated with a compound or complex search inquiry. In the most general case, a compound search inquiry 40 will go through the transformation process illustrated in
While the path shown in
These templates may be provided and maintained either in CPU 32 memory, made available through an off-line storage medium such as a CD, or even kept in the mass storage medium 26 itself. Still further, such templates may be communicated to CPU 32 such as over a network or the Internet.
One embodiment of such a hardware template 29 is illustrated in
One embodiment of a hardware template for conducting approximate matching is illustrated in
The actual configuration of the hardware template will of course vary with the search inquiry type. By providing a small amount of flexibility in the hardware templates (e.g., the target data stored in the compare registers, the routing of signals from the data shift registers and compare register elements to the cells of the fine-grained comparison logic device, and the width of the word-level comparison logic), such a template can support a wide range of word matches. As a result, this diminishes the frequency with which the full search inquiry transformation represented in
It should be noted that the data entries identified in an “approximate” match search will include the “exact” hits that would result from an “exact” search. For clarity, when the word “match” is used, it should be understood that it includes a search or a data result found through either of an approximate search or an exact search. When the phrase “approximate match” or even just “approximate” is used, it should be understood that it could be either of the two searches described above as approximate searches, or for that matter any other kind of “fuzzy” search that has a big enough net to gather target data that are loosely related to the search inquiry or in particular, data key. Of course, an exact match is just that, and does not include any result other than an exact match of the search inquiry with a high degree of correlation.
Also shown in
As shown in
As shown in
As shown in
The configurations as exemplified by those shown in FIGS. 1 and 6-8 represent only examples of the various computer and network configurations with which the present invention would be compatible and highly useful. Others would be apparent to those having skill in the art and the present invention is not intended to be limited through the examples as shown herein which are meant to be instead illustrative of the versatility of the present invention.
As shown in
Referring back to
At this point, depending upon the particular methodology desired to be implemented in the particular embodiment of the invention, it would be necessary that an analog or digital data key is determined. This data key, which can be either exact or approximate for a text search, corresponds to the data being searched for. For an analog data key, it may either be pre-stored such as in the mass storage medium, developed using dedicated circuitry, or required to be generated. Should the analog data key be pre-stored, a send pre-stored data key step 68 would be performed by the microprocessor 22 (see
Next, after the mass storage medium 26 reaches its starting location as at 79, the target data stored on the mass storage medium is continuously read as at step 78 to generate a continuous stream signal representative of the target data. Should an analog data key have been used, this analog data key may then be correlated with an analog read of the target data from the mass storage medium 26 as at step 80.
While the inventors contemplate that any of many prior art comparators and correlation circuitry could be used, for present purposes the inventors suggest that a digital sampling of the analog signal and data key could be quite useful for performing such comparison and calculating the correlation coefficient, as explained below. It is noted that this analog signal generated from reading the target data from mass storage medium 26 may be conveniently generated by devices in the prior art from the reading of either analog or digital data, it not being necessary that a digital data key be used to match digital target data as stored in mass storage medium 26. Alternatively, a correlation step 82 may be performed by matching the digital data key with a stream of digital target data as read from the mass storage medium 26. It should be noted that the data key may reflect the inclusion of approximate information or the re-configurable logic device 21 may be programmed to allow for same. Thus, correlating this with target data read from the mass storage medium enables approximate matching capabilities.
Referring back to
The inventors herein have preliminarily tested the present invention in the analog domain and have generated preliminary data demonstrate its operability and effectiveness. In particular,
As shown in
As previously mentioned, the present invention is also capable of performing sequence matching searches. With reference to
The values for di,j are computed by the re-configurable logic device 20 using the fact that di,j is only a function of the following characters: (1) pi, (2) tj, (3) di−1,j−1, (4) di−1,j, and (5) di,j−1. This is illustrated in
di,j=max[di,j−1+A;di−1,j+A;di−1,j−1+Bi,j],
where A is a constant and Bi,j is a tabular function of pi and tj. The form of the function, however, can be quite arbitrary. In the biological literature, B is referred to as the scoring function. In the popular database searching program BLAST, scores are only a function of whether or not pi=tj. In other contexts, such as for amino acid sequences, the value of B is dependent upon the specific characters in p and t.
The operation of the array of
The sequence matching operation will now be described with reference to
key=axbacs
target data=pqraxabcstvq
A=1
B=2, if i=j
B=−2 if i=j
From these variables, the table of
A portion of the synthesis arrays representing the values present in
Many matching applications operate on data representing a two dimensional entity, such as an image.
Loading of the target image into the array 120 is explained using
Although for simplicity purposes the individual bi-directional links 126 and 128 are shown simply in
One embodiment for the individual cells of array 120 is illustrated in
Another embodiment for the individual cells of array 120 of
The operation performed within the compare logic block can be any function that provides a judgment as to whether or not there are significant differences between the target image and the image key. An example includes cross-correlations across the entire image or sub-regions of the image as described in John C. Russ, The Image Processing Handbook, 3rd edition, CRC Press 1999, which is incorporated herein by reference.
The present invention is also capable of performing data reduction searching. Such searching involves matching as previously described herein, but includes summarizing the matched data in some aggregate form. For example, in the financial industry, one might want to search financial information to identify a minimum, maximum, and latest price of a stock. A re-configurable logic device for computing such aggregate data reductions is illustrated as 100 in
While data reduction searching has been described with respect to the very simple financial example shown in
The ability to perform data reduction searching at disk rotational speeds cannot be under-estimated. One of the most valuable aspects of information is its timeliness. People are growing to expect things at Internet speed. Companies that can quickly compute aggregate data reductions will clearly have a competitive advantage over those that cannot.
Various changes and modifications to the present invention would be apparent to those skilled in the art but yet which would not depart from the spirit of the invention. The preferred embodiment describes an implementation of the invention but this description is intended to be merely illustrative. Several alternatives have been also been above. For example, all of the operations exemplified by the analog processing have their equivalent counterparts in the digital domain. Thus, approximate matching and correlation types of processing can be done on the standard digital representation of the analog bit patterns. This can also be achieved in a continuous fashion using tailored digital logic, microprocessors and digital signal processors, or alternative combinations. It is therefore the inventors' intention that the present invention be limited solely by the scope of the claims appended hereto, and their legal equivalents.
Claims
1. A method for processing financial information, the method comprising:
- streaming financial information through a reconfigurable logic device; and
- the reconfigurable logic device performing a data processing operation on the financial information on a streaming basis as the financial information streams therethrough.
2. The method of claim 1 wherein the streaming step comprises the reconfigurable logic device receiving the streaming financial information as an input, and wherein the performing step comprises the reconfigurable logic device generating processed financial information on a streaming basis at hardware processing speeds from the streaming financial information input in accordance with the data processing operation.
3. The method of claim 2 wherein the performing step comprises the reconfigurable logic device performing a data reduction operation on the streaming financial information to generate the processed financial information.
4. The method of claim 3 wherein the reconfigurable logic device comprises a programmable logic device (PLD), the PLD performing the method steps.
5. The method of claim 3 wherein the reconfigurable logic device comprises a field programmable gate array (FPGA), the FPGA performing the method steps.
6. The method of claim 5 wherein the streaming financial information comprises data representative of a plurality of stocks and data representative of a plurality of prices for the stocks, and wherein the performing step comprises the FPGA performing a running minimum stock price operation on the streaming financial information to compute a minimum price for a stock on a streaming basis at hardware processing speeds.
7. The method of claim 5 wherein the streaming financial information comprises data representative of a plurality of stocks and data representative of a plurality of prices for the stocks, and wherein the performing step comprises the FPGA performing a running maximum stock price operation on the streaming financial information to compute a maximum price for a stock on a streaming basis at hardware processing speeds.
8. The method of claim 5 wherein the streaming financial information comprises data representative of a plurality of stocks, data representative of a plurality of prices for the stocks, and data representative of a plurality of times associated with the stock prices, and wherein the performing step comprises the FPGA performing a running latest stock price operation on the streaming financial information to compute a latest price for a stock on a streaming basis at hardware processing speeds.
9. The method of claim 5 wherein the streaming financial information comprises data representative of a plurality of stocks, data representative of a plurality of prices for the stocks, and data representative of a plurality of times associated with the stock prices, and wherein the performing step comprises the FPGA simultaneously performing (1) a running minimum stock price operation on the streaming financial information to compute a minimum price for a stock on a streaming basis at hardware processing speeds, (2) a running maximum stock price operation on the streaming financial information to compute a maximum price for a stock on a streaming basis at hardware processing speeds, and (3) a running latest stock price operation on the streaming financial information to compute a latest price for a stock on a streaming basis at hardware processing speeds.
10. The method of claim 3 wherein the streaming step comprises:
- the reconfigurable logic device reading the financial information into a data shift register from a data source; and
- the reconfigurable logic device streaming the financial information out of the data shift register into decision logic deployed on the reconfigurable logic device, wherein the decision logic performs the data reduction operation.
11. The method of claim 10 wherein the data source comprises a mass storage medium.
12. The method of claim 10 wherein the data shift register is deployed on the reconfigurable logic device.
13. An apparatus for processing financial information, the apparatus comprising:
- a reconfigurable logic device, wherein the reconfigurable logic device is configured to (1) receive streaming financial information, and (2) perform a data processing operation on the financial information on a streaming basis as the financial information streams therethrough.
14. The apparatus of claim 13 wherein the reconfigurable logic device is further configured to (1) receive the streaming financial information as an input, and (2) generate processed financial information on a streaming basis at hardware processing speeds from the streaming financial information input in accordance with the data processing operation.
15. The apparatus of claim 14 wherein the reconfigurable logic device is further configured to perform a data reduction operation on the streaming financial information to generate the processed financial information.
16. The apparatus of claim 15 wherein the reconfigurable logic device comprises a programmable logic device (PLD), the PLD being configured to perform the receive operation and the data reduction operation.
17. The apparatus of claim 15 wherein the reconfigurable logic device comprises a field programmable gate array (FPGA), the FPGA being configured to perform the receive operation and the data reduction operation.
18. The apparatus of claim 17 wherein the reconfigurable logic device is configured for processing streaming financial information that comprises data representative of a plurality of stocks and data representative of a plurality of prices for the stocks, and wherein the FPGA is configured to perform a running minimum stock price operation on the streaming financial information to compute a minimum price for a stock on a streaming basis at hardware processing speeds.
19. The apparatus of claim 17 wherein the reconfigurable logic device is configured for processing streaming financial information that comprises data representative of a plurality of stocks and data representative of a plurality of prices for the stocks, and wherein the FPGA is configured to perform a running maximum stock price operation on the streaming financial information to compute a maximum price for a stock on a streaming basis at hardware processing speeds.
20. The apparatus of claim 17 wherein the reconfigurable logic device is configured for processing streaming financial information that comprises data representative of a plurality of stocks, data representative of a plurality of prices for the stocks, and data representative of a plurality of times associated with the stock prices, and wherein the FPGA is configured to perform a running latest stock price operation on the streaming financial information to compute a latest price for a stock on a streaming basis at hardware processing speeds.
21. The apparatus of claim 17 wherein the reconfigurable logic device is configured for processing streaming financial information that comprises data representative of a plurality of stocks, data representative of a plurality of prices for the stocks, and data representative of a plurality of times associated with the stock prices, and wherein the FPGA is configured to simultaneously perform (1) a running minimum stock price operation on the streaming financial information to compute a minimum price for a stock on a streaming basis at hardware processing speeds, (2) a running maximum stock price operation on the streaming financial information to compute a maximum price for a stock on a streaming basis at hardware processing speeds, and (3) a running latest stock price operation on the streaming financial information to compute a latest price for a stock on a streaming basis at hardware processing speeds.
22. The apparatus of claim 15 further comprising a data source, and wherein the reconfigurable logic device is further configured to (1) read the financial information into a data shift register from the data source, and (2) stream the financial information out of the data shift register into decision logic deployed on the reconfigurable logic device, wherein the decision logic is configured to perform the data reduction operation.
23. The apparatus of claim 22 wherein the data source comprises a mass storage medium.
24. The apparatus of claim 22 wherein the data shift register is deployed on the reconfigurable logic device.
Type: Application
Filed: Nov 21, 2011
Publication Date: May 10, 2012
Applicant: WASHINGTON UNIVERSITY (St. Louis, MO)
Inventors: Ronald S. Indeck (St. Louis, MO), Ron Kaplan Cytron (St. Louis, MO), Mark Allen Franklin (St. Louis, MO), Roger D. Chamberlain (St. Louis, MO)
Application Number: 13/301,387
International Classification: G06Q 40/04 (20120101); G06Q 40/00 (20120101);