CAPTURE AGENTS FOR UNSATURATED METAL COMPLEXES

Compounds that act as capture agents to sequester unsaturated metal complexes are provided. In particular, the compounds may be host materials, dopant materials, or co-dopant materials containing functional groups, such as an isocyanide or a phosphine group, which are suitable for trapping an unsaturated coordination complex. These compounds may be used in organic light emitting devices, particularly blue devices, to provide improved device lifetime.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Application No. 61/420,473, filed Dec. 7, 2010, the disclosure of which is herein expressly incorporated by reference in its entirety.

The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

FIELD OF THE INVENTION

The present invention relates to organic light emitting devices and organic materials for use in such devices. More specifically, the invention relates to compounds that act as capture agents to sequester unsaturated metal complexes.

BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.

One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the structure of Formula I:

In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.

As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.

As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.

As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

SUMMARY OF THE INVENTION

Methods for trapping a low coordinate structure, resulting from cleavage of a metal-ligand bond in the compound, and converting it back to the original coordination number are provided. The method comprising operating an organic light emitting device comprising a first organic compound containing a metal-ligand bond and a second organic compound comprising a functional group capable of trapping an unsaturated coordination complex. A metal-ligand bond in the first organic compound cleaves during operation of the device, thereby creating a coordinatively unsaturated intermediate complex. The second organic compound reacts with the coordinatively unsaturated intermediate complex.

In one aspect, the method further comprises suppressing the ability of the coordinatively unsaturated intermediate complex to trap charge and excitons.

In one aspect, the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide. Preferably, the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. Preferably, the isocyanide has the formula —N≡C.

In one aspect, the second organic compound coordinates to the metal center of the first organic compound. In another aspect, the second organic compound is a host material. Preferably, the host material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the second organic compound is a co-dopant material. In another aspect, the co-dopant material is not capable of carrying charge. Preferably, the co-dopant material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the co-dopant material is capable of carrying a charge.

In one aspect, the metal-ligand bond of the first organic compound having the formula:

is broken, forming the coordinatively unsaturated intermediate complex having formula:

The second organic compound containing functional group :B, binds to the unsaturated intermediate complex:

forming a complex having the formula

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C. X is selected from the group consisting of N, C, O, and S. Preferably, X is N or C.

In one aspect, the first organic compound is bidentate.

In another aspect, the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound.

Additionally, a device comprising a trap charge compound is provided. A first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a first compound containing a metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

In one aspect, the second organic compound coordinates to the metal center of the first organic compound. In another aspect, the second organic compound is a host material. Preferably, the host material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the second organic compound is a co-dopant material. In another aspect, the co-dopant material is not capable of carrying charge. Preferably, the co-dopant material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the co-dopant material is capable of carrying a charge.

In one aspect, the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide. Preferably, the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. Preferably, the isocyanide has the formula —N≡C.

In one aspect, the metal-ligand bond of the first organic compound having the formula:

is broken, forming the coordinatively unsaturated intermediate complex having formula:

The second organic compound containing functional group :B, binds to the unsaturated intermediate complex:

forming a complex having the formula

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C. X is selected from the group consisting of N, C, O, and S. Preferably, X is N or C.

In one aspect, the first organic compound is bidentate.

In another aspect, the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound. Preferably, the second compound is

In one aspect, the organic light emitting device is a blue phosphorescent OLED.

In another aspect, the first organic compound is a transition metal complex having at least one ligand selected from the group consisting of:

Each of Ra, Rb and Rc may represent mono, di, tri, or tetra substituents. Each of Ra, Rb and Rc substituent are independently selected from a group consisting of hydrogen, deuterium, alkyl, heteroalkyl, aryl, or heteroaryl. Two adjacent substituents may form into a ring.

Additionally, a first device comprising a compound containing a cleaved metal-ligand bond is provided. A first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a first compound containing a cleaved metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

Moreover, devices comprising an isonitrile-substituted host material are also provided. In particular, a first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises an isonitrile-substituted host material. Preferably, the organic layer is an emissive layer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an organic light emitting device.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

FIG. 3 shows a trap capture compound binding to an unsaturated intermediate complex.

FIG. 4 shows HPLC chromatograms at 0 minute and 10 minute time points during a photolysis experiment.

FIG. 5 shows HPLC chromatograms at 20 minute and 60 minute time points during a photolysis experiment.

FIG. 6 shows HPLC chromatograms at 90 minute and 120 minute time points during a photolysis experiment.

FIG. 7 shows HPLC chromatograms at 0 minute and 6 hour time points during a photolysis experiment.

DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.

FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.

More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).

The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.

One possible reason for the short working lifetime of blue phosphorescent OLEDs is cleavage of a metal-ligand bond during operation of the device in the complex used as a luminescent dopant. The resulting coordinatively unsaturated intermediate complex is expected to have lower triplet and higher ground energy than the parent species and can thus serve as an exciton and/or charge trap for the remaining luminescent dopants. The presence of these traps may further degrade the luminescent output of the OLED. Compounds that can react with the unsaturated complex by coordinating to the metal center and suppress its ability to trap energy/charge, thereby extending the operating lifetime of a blue phosphorescent OLED, are provided herein. The compound, a trap capture agent, can be added to the emissive layer of an OLED either as a host or a co-dopant.

Incorporation of these trap capture compounds may provide several benefits. The addition of the trap capture compound to an unsaturated intermediate complex may lower the energy for holes, such that the complex will not trap holes. Furthermore, addition of the trap capture compound to an unsaturated intermediate complex may also prevent the complex from trapping excitons, resulting in blue shift emission of the complex.

Several experiments have been performed using the model compound fac-Ir(ppz)3 in order to verify the formation and capture of an unsaturated five-coordinate complex caused by photolytic metal-ligand bond breaking. The six coordinate complex (A) has a high triplet energy that causes it to undergo bond breaking before it can relax to the ground state. Complex B is a 16 electron complex that is expected to have lower triplet energy than A and therefore, act as non-emissive charge/exciton trap reducing the efficiency of the OLED.

It has been demonstrated that a molecule bearing an isocyanide group can intercept the intermediate complex B and bind strongly to iridium complex to form complex C.

This reaction enables complex C to regain an octahedral saturated coordination sphere. Moreover, the inductive electron-withdrawing effect of the strong field isocyanide ligand leads to a blue-shift in the absorption spectrum and raises the triplet energy of C compared to A.

The trap charge compounds provided herein may include host materials suitable for blue dopant phosphors and co-dopant materials, which are endowed with proper functional group able to trap an unsaturated coordination complex, for example, an isocyanide or a phosphine group. For example, cyclometallated blue phosphorescent materials with a ĈN cyclometallated ligand or a ĈC metal-carbene system endowed with proper functional groups to trap an unsaturated complex are suitable for use as a trap charge compound.

Methods for trapping a low coordinate structure, resulting from cleavage of a metal-ligand bond in the compound, and converting it back to the original coordination number are provided. Generally, the methods consist of operating an organic light emitting device comprising a first organic compound containing a metal-ligand bond and a second organic compound comprising a functional group capable of binding to the metal of an unsaturated coordination complex. A metal-ligand bond in the first organic compound cleaves during operation of the device, thereby creating a coordinatively unsaturated intermediate complex. The second organic compound reacts with the coordinatively unsaturated intermediate complex, which can suppress the ability of the coordinatively unsaturated intermediate complex to trap charge and excitons.

The methods provided herein comprise operating an organic light emitting device comprising a first organic compound containing a metal-ligand bond and a second organic compound comprising a functional group capable of trapping an unsaturated coordination complex; cleaving the metal-ligand bond in the first organic compound, thereby creating a coordinatively unsaturated intermediate complex; and reacting the second organic compound with the coordinatively unsaturated intermediate complex.

In one aspect, the method further comprises suppressing the ability of the coordinatively unsaturated intermediate complex to trap charge and excitons.

In one aspect, the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide. Preferably, the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. Preferably, the isocyanide has the formula —N≡C.

In one aspect, the second organic compound coordinates to the metal center of the first organic compound. In another aspect, the second organic compound is a host material. Preferably, the host material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the second organic compound is a co-dopant material. In another aspect, the co-dopant material is not capable of carrying charge. Preferably, the co-dopant material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the co-dopant material is capable of carrying a charge.

In one aspect, the metal-ligand bond of the first organic compound having the formula:

is broken, forming the coordinatively unsaturated intermediate complex having formula:

The second organic compound containing functional group :B binds to the unsaturated intermediate complex:

forming a complex having the formula

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C. X is selected from the group consisting of N, C, O, and S. Preferably, X is N or C. Additionally, we believe that this is the first report of trapping the intermediate complex along the transition pathway from meridional to facial.

Most phosphorescent materials used in OLEDs are bidentate. Therefore, in one aspect, the first organic compound is bidentate.

In another aspect, the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound.

Additionally, a device comprising a trap charge compound is provided. A first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a first compound containing a metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

In one aspect, the second organic compound coordinates to the metal center of the first organic compound. In another aspect, the second organic compound is a host material. Preferably, the host material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the second organic compound is a co-dopant material. In another aspect, the co-dopant material is not capable of carrying charge. Preferably, the co-dopant material is selected from the group consisting of:

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C.

In one aspect, the co-dopant material is capable of carrying a charge.

In one aspect, the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide. Preferably, the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. Preferably, the isocyanide has the formula —N≡C.

In one aspect, the metal-ligand bond of the first organic compound having the formula:

is broken, forming the coordinatively unsaturated intermediate complex having formula:

The second organic compound containing functional group :B binds to the unsaturated intermediate complex:

forming a complex having the formula

In one aspect, :B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl. In another aspect, :B is an isocyanide having the formula —N≡C. X is selected from the group consisting of N, C, O, and S. Preferably, X is N or C.

In one aspect, the first organic compound is bidentate.

In another aspect, the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound. Preferably, the second compound is

In one aspect, the organic light emitting device is a blue phosphorescent OLED.

In another aspect, the first organic compound is a transition metal complex having at least one ligand selected from the group consisting of:

Each of Ra, Rb and Rc may represent mono, di, tri, or tetra substituents. Each of Ra, Rb and Rc substituent are independently selected from a group consisting of hydrogen, deuterium, alkyl, heteroalkyl, aryl, or heteroaryl. Two adjacent substituents may form into a ring.

Additionally, a first device comprising a compound containing a cleaved metal-ligand bond is provided. A first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a first compound containing a cleaved metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

Moreover, devices comprising an isonitrile-substituted host material are also provided. In particular, a first device comprises an organic light emitting device, which further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises an isonitrile-substituted host material. Preferably, the organic layer is an emissive layer.

Combination with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

HIL/HTL:

A hole injecting/transporting material to be used in embodiments of the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

Each of Ar1 to Ar9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl.

In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:

k is an integer from 1 to 20; X1 to X8 is CH or N; Ar1 has the same group defined above.

Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:

M is a metal, having an atomic weight greater than 40; (Y1-Y2) is a bidentate ligand, Y1 and Y2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

In one aspect, (Y1-Y2) is a 2-phenylpyridine derivative.

In another aspect, (Y1-Y2) is a carbene ligand.

In another aspect, M is selected from Ir, Pt, Os, and Zn.

In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.

Host:

The light emitting layer of the organic EL device in embodiments of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant.

Examples of metal complexes used as host are preferred to have the following general formula:

M is a metal; (Y3-Y4) is a bidentate ligand, Y3 and Y4 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

In one aspect, the metal complexes are:

(O—N) is a bidentate ligand, having metal coordinated to atoms O and N.

In another aspect, M is selected from Ir and Pt.

In a further aspect, (Y3-Y4) is a carbene ligand.

Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl.

In one aspect, host compound contains at least one of the following groups in the molecule:

R1 to R7 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

k is an integer from 0 to 20.

X1 to X8 is selected from CH or N.

HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.

In one aspect, compound used in HBL contains the same molecule used as host described above.

In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

k is an integer from 0 to 20; L is an ancillary ligand, m is an integer from 1 to 3.

ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

In one aspect, compound used in ETL contains at least one of the following groups in the molecule:

R1 is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

Ar1 to Ar3 has the similar definition as Ar's mentioned above.

k is an integer from 0 to 20.

X1 to X8 is selected from CH or N.

In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

(O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

In any above-mentioned compounds used in each layer of OLED device, the hydrogen atoms can be partially or fully deuterated.

In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 1 below. Table 1 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.

TABLE 1 PUBLI- MATERIAL EXAMPLES OF MATERIAL CATIONS Hole injection materials Phthalocy- anine and porphryin compounds Appl. Phys. Lett. 69, 2160 (1996) Starburst triarylamines J. Lumin. 72-74, 985 (1997) CFx Fluoro- hydrocarbon polymer Appl. Phys. Lett. 78, 673 (2001) Conducting polymers (e.g., PEDOT:PSS, polyaniline, polypthio- phene) Synth. Met. 87, 171 (1997) WO2007002683 Phosphonic acid and sliane SAMs US20030162053 Triarylamine or polythio- phene polymers with conductivity dopants EA01725079A1 and Arylamines complexed with metal oxides such as molybdenum and tungsten oxides SID Symposium Digest, 37, 923 (2006) WO2009018009 p-type semi- conducting organic complexes US20020158242 Metal organo- metallic complexes US20060240279 Cross- linkable compounds US20080220265 Hole transporting materials Triaryla- mines (e.g., TPD, α-NPD) Appl. Phys. Lett. 51, 913 (1987) US5061569 EP650955 J. Mater. Chem. 3, 319 (1993) Appl. Phys. Lett. 90, 183503 (2007) Appl. Phys. Lett. 90, 183503 (2007) Triarylamine on spirofluorene core Synth. Met. 91, 209 (1997) Arylamine carbazole compounds Adv. Mater. 6, 677 (1994), US20080124572 Triarylamine with (di)benzo- thiophene/ (di)benzo- furan US20070278938, US20080106190 Indolo- carbazoles Synth. Met. 111, 421 (2000) Isoindole compounds Chem. Mater. 15, 3148 (2003) Metal carbene complexes US20080018221 Phosphorescent OLED host materials Red hosts Aryl- carbazoles Appl. Phys. Lett. 78, 1622 (2001) Metal 8-hydroxy- quinolates (e.g., Alq3, BAlq) Nature 395, 151 (1998) US20060202194 WO2005014551 WO2006072002 Metal phenoxy- benzo- thiazole compounds Appl. Phys. Lett. 90, 123509 (2007) Conjugated oligomers and polymers (e.g., poly- fluorene) Org. Electron. 1, 15 (2000) Aromatic fused rings WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065 Zinc complexes WO2009062578 Green hosts Aryl- carbazoles Appl. Phys. Lett. 78, 1622 (2001) US20030175553 WO2001039234 Aryltri- phenylene compounds US20060280965 US20060280965 WO2009021126 Donor acceptor type molecules WO2008056746 Aza- carbazole/ DBT/DBF JP2008074939 Polymers (e.g., PVK) Appl. Phys. Lett. 77, 2280 (2000) Spiro- fluorene compounds WO2004093207 Metal phenoxy- benzo- oxazole compounds WO2005089025 WO2006132173 JP200511610 Spiro- fluorene- carbazole compounds JP2007254297 JP2007254297 Indolo- cabazoles WO2007063796 WO2007063754 5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole) J. Appl. Phys. 90, 5048 (2001) WO2004107822 Tetra- phenylene complexes US20050112407 Metal phenoxy- pyridine compounds WO2005030900 Metal coordination complexes (e.g., Zn, Al with N{circumflex over ( )}N ligands) US20040137268, US20040137267 Blue hosts Aryl- carbazoles Appl. Phys. Lett. 82, 2422 (2003) US20070190359 Dibenzo- thiophene/ Dibenzo- furan- carbazole compounds WO2006114966, US20090167162 US20090167162 WO2009086028 US20090030202, US20090017330 Silicon aryl compounds US20050238919 WO2009003898 Silicon/ Germanium aryl compounds EP2034538A Aryl benzoyl ester WO2006100298 High triplet metal organo- metallic complex US7154114 Phosphorescent dopants Red dopants Heavy metal porphyrins (e.g., PtOEP) Nature 395, 151 (1998) Iridium(III) organo- metallic complexes Appl. Phys. Lett. 78, 1622 (2001) US2006835469 US2006835469 US20060202194 US20060202194 US20070087321 US20070087321 Adv. Mater. 19, 739 (2007) WO2009100991 WO2008101842 Platinum(II) organo- metallic complexes WO2003040257 Osminium (III) complexes Chem. Mater. 17, 3532 (2005) Ruthenium (II) complexes Adv. Mater. 17, 1059 (2005) Rhenium (I), (II), and (III) complexes US20050244673 Green dopants Iridium(III) organo- metallic complexes Inorg. Chem. 40, 1704 (2001) and its derivatives US20020034656 US7332232 US20090108737 US20090039776 US6921915 US6687266 Chem. Mater. 16, 2480 (2004) US20070190359 US 20060008670 JP2007123392 Adv. Mater. 16, 2003 (2004) Angew. Chem. Int. Ed. 2006, 45, 7800 WO2009050290 US20090165846 US20080015355 Monomer for polymeric metal organo- metallic compounds US7250226, US7396598 Pt(II) organo- metallic complexes, including poly- dentated ligands Appl. Phys. Lett. 86, 153505 (2005) Appl. Phys. Lett. 86, 153505 (2005) Chem. Lett. 34, 592 (2005) WO2002015645 US20060263635 Cu complexes WO2009000673 Gold complexes Chem. Commun. 2906 (2005) Rhenium(III) complexes Inorg. Chem. 42, 1248 (2003) Deutered organo- metallic complexes US20030138657 Organo- metallic complexes with two or more metal centers US20030152802 US7090928 Blue dopants Iridium(III) organo- metallic complexes WO2002002714 WO2006009024 US20060251923 US7393599, WO2006056418, US20050260441, WO2005019373 US7534505 US7445855 US20070190359, US20080297033 US7338722 US20020134984 Angew. Chem. Int. Ed. 47, 1 (2008) Chem. Mater. 18, 5119 (2006) Inorg. Chem. 46, 4308 (2007) WO2005123873 WO2005123873 WO2007004380 WO2006082742 Osmium (II) complexes US7279704 Organo- metallics 23, 3745 (2004) Gold complexes Appl. Phys. Lett. 74, 1361 (1999) Platinum (II) complexes WO2006098120, WO2006103874 Exciton/hole blocking layer materials Bathocu- prine compounds (e.g., BCP, BPhen) Appl. Phys. Lett. 75, 4 (1999) Appl. Phys. Lett. 79, 449 (2001) Metal 8-hydroxy- quinolates (e.g., BAlq) Appl. Phys. Lett. 81, 162 (2002) 5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzo- imidazole Appl. Phys. Lett. 81, 162 (2002) Triphenylene compounds US20050025993 Fluorinated aromatic compounds Appl. Phys. Lett. 79, 156 (2001) Pheno- thiazine- S-oxide WO2008132085 Electron transporting materials Anthracene- benzo- imidazole compounds WO2003060956 US20090179554 Aza triphenylene derivatives US20090115316 Anthracene- benzo- thiazole compounds Appl. Phys. Lett. 89, 063504 (2006) Metal 8-hydroxy- quinolates (e.g., Alq3, Zrq4) Appl. Phys. Lett. 51, 913 (1987) US7230107 Metal hydroxy- beno- quinolates Chem. Lett. 5, 905 (1993) Bathocu- prine compounds such as BCP, BPhen, etc Appl. Phys. Lett. 91, 263503 (2007) Appl. Phys. Lett. 79, 449 (2001) 5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzo- imidazole) Appl. Phys. Lett. 74, 865 (1999) Appl. Phys. Lett. 55, 1489 (1989) Jpn. J. Apply. Phys. 32, L917 (1993) Silole compounds Org. Electron. 4, 113 (2003) Arylborane compounds J. Am. Chem. Soc. 120, 9714 (1998) Fluorinated aromatic compounds J. Am. Chem. Soc. 122, 1832 (2000) Fullerene (e.g., C60) US20090101870 Triazine complexes US20040036077 Zn (N{circumflex over ( )}N) complexes US6528187

EXPERIMENTAL

General Methods:

HPLC-MS. HPLC analysis was performed on a Shimadzu Prominance-LCMS 2020 equipped with a column oven (T=40° C.), a PDA photodetector (200-800 nm) and an MS spectrometer (LCMS 2020; m/z range: 0-2000; ionization modes: ESI/APCI). The ESI/APCI conditions were: nitrogen gas pressure 100 psi; nitrogen gas flow rate 1.5 L/minute; auxiliary nitrogen gas flow rates 15 L/minute; interface voltage −3.5 kV; interface current 0.1 uA; corona needle voltage −3.5 kV; corona needle current 0.1 uA; dissolvation line (DL) voltage 0V; DL temperature 250° C.; heat block temperature 400° C.; Q-array RF voltage 14.6 V; detector voltage 0.95 V; IG vacuum 7×10−4 Pa. HPLC was preformed with the following protocol on a Inertsil C18, column 5 μm; 4.6×250 mm; flow rate: 0.6 mL/min; Gradient acetonitrile-H2O: 0-5 minutes, 80%; 20 minutes, 90%; 23 minutes, 80%; 25 minutes end of the program.

Photolysis experiments n° 1:

A stirred nitrogen degassed solution of fac-Ir(ppz)3, 1 mg/mL, in tert-butylisocyanide (CN-tBu) is photolyzed in a photo reactor equipped with 364 nm lamps (FIGS. 4-6). A reference sample is taken before photolysis starts. Photolysis is carried on for 120 minutes. 50 uL aliquot of the solution is taken for analysis after 10 minutes, 20 minutes, 60 minutes, 90 minutes and 120 minutes of irradiation. The sample aliquot is diluted in 1 mL of acetonitrile (AcCN) and analyzed by HPLC-MS in the condition previously indicated.

Photolysis experiments n° 2 neat film:

A mixture of 10 mg (1 equiv) of fac/mer-Ir(ppz)3 (56/46 molar ratio) and 24.6 mg of CN-2-Np (10 equiv) dissolved in 1.5 mL of CH2Cl2 is spincoated on a quartz substrate at 2000 rpm for 40 seconds (nominal film thickness 200-300 Å). The film is irradiated under nitrogen or under vacuum in a photo reactor equipped with 364 nm lamps (FIG. 7). A reference sample film is not irradiated Photolysis is carried on for 6 hours. The film is dissolved in 1 mL of acetonitrile (ACN) and analyzed by HPLC-MS in the condition previously indicated.

It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims

1. A method, comprising:

operating an organic light emitting device comprising a first organic compound containing a metal-ligand bond and a second organic compound comprising a functional group capable of trapping an unsaturated coordination complex;
cleaving the metal-ligand bond in the first organic compound, thereby creating a coordinatively unsaturated intermediate complex; and
reacting the second organic compound with the coordinatively unsaturated intermediate complex.

2. The method of claim 1, wherein the method further comprises suppressing the ability of the coordinatively unsaturated intermediate complex to trap charge and excitons.

3. The method of claim 1, wherein the second organic compound coordinates to the metal center of the first organic compound.

4. The method of claim 1, wherein the second organic compound is a host material.

5. The method of claim 4, wherein the host material is selected from the group consisting of:

wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or wherein:B is an isocyanide having the formula —N≡C.

6. The method of claim 1, wherein the second organic compound is a co-dopant material.

7. The method of claim 6, wherein the co-dopant material is not capable of carrying charge.

8. The method of claim 7, wherein the co-dopant material is selected from the group consisting of:

wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or
wherein:B is an isocyanide having the formula —N≡C.

9. The method of claim 6, wherein the co-dopant material is capable of carrying a charge.

10. The method of claim 1, wherein the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide.

11. The method of claim 10, wherein the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl.

12. The method of claim 10, wherein the isocyanide has the formula —N≡C.

13. The method of claim 1, wherein the metal-ligand bond of the first organic compound having the formula: is broken, forming the coordinatively unsaturated intermediate complex having formula: and

the second organic compound containing functional group:B binds to the unsaturated intermediate complex:
forming a complex having the formula
wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or:B is an isocyanide having the formula —N≡C; and
wherein X is selected from the group consisting of N, C, O, and S.

14. The method of claim 13, wherein X is N or C.

15. The method of claim 1, wherein the first organic compound is bidentate.

16. The method of claim 1, wherein the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound.

17. A first device comprising an organic light emitting device, further comprising:

an anode;
a cathode; and
an organic layer, disposed between the anode and the cathode, comprising a first compound containing a metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

18. The first device of claim 17, wherein the second organic compound coordinates to the metal center of the first organic compound.

19. The first device of claim 17, wherein the second organic compound is a host material.

20. The first device of claim 19, wherein the host material is selected from the group consisting of:

wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or
wherein:B is an isocyanide having the formula —N≡C.

21. The first device of claim 17, wherein the second organic compound is a co-dopant material.

22. The first device of claim 21, wherein the co-dopant material is not capable of carrying charge.

23. The first device of claim 21, wherein the co-dopant material is selected from the group consisting of:

wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or
wherein:B is an isocyanide having the formula —N≡C.

24. The first device of claim 21, wherein the co-dopant material is capable of carrying a charge.

25. The first device of claim 17, wherein the functional group capable of trapping an unsaturated coordination complex is a phosphine or an isocyanide.

26. The first device of claim 25, wherein the phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl.

27. The first device of claim 25, wherein the isocyanide has the formula —N≡C.

28. The first device of claim 17, wherein the metal-ligand bond of the first organic compound having the formula: is broken, forming the coordinatively unsaturated intermediate complex having formula: and

the second organic compound containing functional group:B binds to the unsaturated intermediate complex:
forming a complex having the formula
wherein:B is a phosphine has the formula —PR2 and R selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, alkyl, and phenyl, or:B is an isocyanide having the formula —N≡C; and
wherein X is selected from the group consisting of N, C, O, and S.

29. The first device of claim 28, wherein X is N or C.

30. The first device of claim 17, wherein the first organic compound is bidentate.

31. The first device of claim 17, wherein the organic light emitting device comprises an emissive layer, and the emissive layer comprises the second organic compound.

32. The first device of claim 17, wherein the second compound is

33. The first device of claim 17, wherein the organic light emitting device is a blue phosphorescent OLED.

34. The first device of claim 17, wherein the first organic compound is a transition metal complex having at least one ligand selected from the group consisting of:

wherein each of Ra, Rb and Rc may represent mono, di, tri, or tetra substituents;
wherein each of Ra, Rb and Rc substituent are independently selected from a group consisting of hydrogen, deuterium, alkyl, heteroalkyl, aryl, or heteroaryl; and
wherein two adjacent substituents may form into a ring.

35. A first device comprising an organic light emitting device, further comprising:

an anode;
a cathode; and
an organic layer, disposed between the anode and the cathode, comprising a first compound containing a cleaved metal-ligand bond and a second compound comprising a functional group capable of trapping an unsaturated coordination complex.

36. A first device comprising an organic light emitting device, further comprising:

an anode;
a cathode; and
an organic layer, disposed between the anode and the cathode, comprising an isonitrile-substituted host material.

37. The first device of claim 35, wherein the organic layer is an emissive layer.

Patent History
Publication number: 20120138906
Type: Application
Filed: Nov 22, 2011
Publication Date: Jun 7, 2012
Applicant: The University of Southern California USC Stevens Institute for Innovation (Los Angeles, CA)
Inventors: Mark E. Thompson (Anaheim, CA), Alberto Bossi (Los Angeles, CA), Peter Djurovich (Long Beach, CA)
Application Number: 13/302,436