SYTEM AND METHOD FOR LIQUEFYING A FLUID AND STORING THE LIQUEFIED FLUID
A Dewar system is configured to liquefy a flow of fluid, and to store the liquefied fluid. The Dewar system is disposed within a single, portable housing. Disposing the components of the Dewar system within the single housing enables liquefied fluid to be transferred between a heat exchange assembly configured to liquefy fluid and a storage assembly configured to store liquefied fluid in an enhanced manner. In one embodiment, the flow of fluid liquefied and stored by the Dewar system is oxygen (e.g., purified oxygen), nitrogen, and/or some other fluid.
Latest Patents:
This patent application claims the priority benefit under 35 U.S.C. §371 of international patent application no. PCT/IB2010/053888, filed Aug. 30, 2010, which claims the priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/246,558 filed on Sep. 29, 2009, the contents of which are herein incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The invention relates to the liquefaction of a fluid, and to storage of the liquefied fluid. In particular, the invention relates to systems that provide for liquefaction and storage in a unified and integrated manner.
2. Description of the Related Art
Systems configured to liquefy fluids such as oxygen, nitrogen, and/or other fluids by reducing the temperature and increasing the pressure of the fluid being liquefied are known. Similarly, systems configured to store liquefied fluids are known. However, these systems are generally configured as separate solutions to separate problems. Consequently, conventional apparatus that have been configured to separately liquefy and store fluids rely on a transfer of fluid from a liquefaction system to a storage system that is inefficient, and is prone to malfunction and failure. Further, implementation of separate systems for liquefaction and storage may inhibit the portability, affordability, and/or usability of such conventional solutions.
SUMMARY OF THE INVENTIONOne aspect of this invention relates to a system configured to liquefy a fluid, and to store the liquefied fluid. In one embodiment, the system comprises a housing, a heat exchange assembly, and a fluid storage assembly. The housing is configured to substantially seal the interior of the housing from atmosphere. The heat exchange assembly is disposed within the housing. The heat exchange assembly comprises a fluid conduit that passes from inside the housing to outside the housing, and is configured to receive a flow of fluid in its gaseous state from a fluid flow generator located outside the housing. The heat exchange assembly is configured to liquefy the flow of fluid received into the heat exchange assembly via the fluid conduit. The fluid storage assembly is disposed within the housing. The fluid storage assembly is in fluid communication with the heat exchange assembly, and is configured to store fluid that has been liquefied by the heat exchange assembly.
Another aspect of the invention relates to a method of liquefying a fluid, and storing the liquefied fluid. In one embodiment, the method comprises substantially sealing a cavity from atmosphere; receiving a flow of fluid in a gaseous state into the cavity from outside the cavity through a fluid conduit, wherein the flow of fluid is received into the cavity in a gaseous state; liquefying the flow of fluid received into the cavity via the fluid conduit; directing the liquefied fluid into a reservoir disposed within the cavity; and storing the liquefied fluid within the reservoir.
Yet another aspect of the invention relates to a system configured to liquefy a fluid, and to store the liquefied fluid. In one embodiment, the system comprises means for substantially sealing a cavity from atmosphere; means for receiving a flow of fluid in a gaseous state into the cavity from outside the cavity, wherein the flow of fluid is received into the cavity by the means for receiving in a gaseous state; means for liquefying the flow of fluid received into the cavity, wherein the means for liquefying the flow of fluid is disposed within the cavity; and means storing the liquefied fluid within the cavity.
These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. In one embodiment of the invention, the structural components illustrated herein are drawn in proportion. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not a limitation of the invention. In addition, it should be appreciated that structural features shown or described in any one embodiment herein can be used in other embodiments as well. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
Housing 12 is configured to substantially seal the interior of housing 12 from atmosphere. As such, the interior of housing 12 forms a cavity 18 that is substantially sealed from ambient atmosphere. This provides some isolation from ambient atmosphere for components of Dewar system 10 that are disposed within cavity 18 of housing 12. To enhance this isolation, housing 12 may be formed from an insulating material. By way of non-limiting example, housing 12 may be formed from stainless steel, and/or other materials. To further insulate heat exchange assembly 14 and storage assembly 16 from atmosphere, in one embodiment, housing 12 may be evacuated between housing 12 and the portions of cavity 18 within which heat exchange assembly 14 and/or storage assembly 16 are disposed. The created vacuum may provide an enhanced layer of insulation and/or protection for heat exchange assembly 14 and/or storage assembly 16. In addition to providing insulation, housing 12 also provides structural protection for components disposed therein. As such, housing 12 is rigid to resist breakage caused by drops, collisions, and/or other forces experienced by Dewar system 10. Additionally, insulation wrap (not shown) may be used to coat the interior of housing 12 and/or component contained therein as an added one or more layers radiation barrier.
In one embodiment, housing 12 is formed from a first piece 20 and a second piece 22. First piece 20 forms cavity 18 of housing 12 such that cavity 18 has an opening formed by a rim 24. Second piece 22 is a lid, that is selectably coupled to first piece 20 at rim 24 of cavity 18 to substantially seal cavity 18 from atmosphere. The selectable coupling between first piece 20 and second piece 22 may be accomplished via releasable fasteners 26 (e.g., bolts and nuts), as shown in
Heat exchange assembly 14 is configured to receive a flow of fluid in a gaseous state, and to liquefy the received flow of fluid. Heat exchange assembly 14 receives the flow of fluid from a source of fluid (not shown) that is external to housing 12. The source of fluid may include, for example, a fluid flow generator (e.g., a pressure swing adsorption generator), a storage canister, a wall gas connection, and/or other sources of fluid.
Heat exchange assembly 14 is configured to liquefy the flow of fluid by lowering the temperature of the fluid. This may include supercooling the fluid down to temperatures of about 100° K or less at 1 atmosphere. As is discussed below, in one embodiment, heat exchange assembly 14 operates by circulation of compressor cooled refrigerant. However, this is not intended to be limiting, and other types of heat exchange system may be disposed (in whole or in part) within housing 12 to liquefy the flow of fluid. For example, some other type of super-cooled fluid could be circulated within heat exchange assembly 14 rather than compressor cooled refrigerant (e.g., liquid nitrogen).
Storage assembly 16 is configured to store fluid that has been liquefied by heat exchange assembly 14. In one embodiment, storage assembly 16 includes a storage reservoir 28. Storage reservoir 28 is in fluid communication with heat exchange assembly 14 such that fluid that has been liquefied by heat exchange assembly 14 is directed into storage reservoir 28. The liquefied fluid is then held within storage reservoir 28 until it is needed. As the liquefied fluid is stored within storage reservoir 28, the temperature within storage reservoir 28 may rise to the point where some of the fluid begins to boil off back into the gaseous state. At least some of this boiled off fluid may be vented from housing 12 to maintain the pressure within storage reservoir 28 at a manageable level.
In one embodiment, housing 12 is formed as a cylinder. This embodiment of housing 12 has a top 30 formed by second piece 22, and a bottom 32 formed by first piece 20. When housing 12 is seated on bottom 32 in the embodiment shown in
In one embodiment, storage assembly 16 is formed integrally or securely with first piece 20. As used herein, the formation of storage assembly 16 integrally or securely with first piece 20 refers to a construction of storage assembly 16 and first piece 20 such that these two components are not intended to be separated during regular usage and/or maintenance. While separation of storage assembly 16 and first piece 20 may be achieved, reference to the secure and/or integral attachment between these components reflects the relative strength and permanence of this attachment during typical usage.
In one embodiment, heat exchange assembly 14 is formed integrally or securely with second piece 22. As used herein, the formation of heat exchange assembly 14 integrally or securely with second piece 22 refers to a construction of heat exchange assembly 14 and second piece 22 such that these two components are not intended to be separated during regular usage and/or maintenance. While separation of heat exchange assembly 14 and second piece 22 may be achieved, reference to the secure and/or integral attachment between these components reflects the relative strength and permanence of this attachment during typical usage.
By virtue of the integral and secure formations of storage assembly 16 with first piece 20 and of heat exchange assembly 14 with second piece 22 in the embodiment illustrated in
In the view of Dewar system 10 shown in
In one embodiment, a gasket 42 is disposed between first piece 20 and second piece 22. One or more openings 44 are formed in gasket 42. Through the one or more openings 44, the components of Dewar system 10 housed within housing 12 communicate with the exterior of housing 12. For example, fluid from a fluid source may be communicated to heat exchange assembly 14 through an opening 44, fluid stored within storage reservoir 28 may be communicated to the exterior of the housing through an opening 44, and/or other components of Dewar system 10 within housing 12 may be communicated with the exterior of housing 12 through the one or more openings 44.
In one embodiment, heat exchange assembly 14 includes a refrigerant conduit 48. Refrigerant conduit 48 passes through housing 12 (e.g., at second piece 22) to communicate heat exchange assembly 14 with the exterior of housing 12. Refrigerant conduit 48 is configured to receive and circulate a flow of cooled refrigerant. The flow of cooled refrigerant may be received, for example, from a compressor (not shown) that cools the refrigerant, and is located outside of housing 12. Upon passing through the length of refrigerant conduit 48, the refrigerant may be conveyed out of housing 12 by refrigerant conduit 48 (e.g., back to the compressor for further cooling and re-circulation). In one embodiment, refrigerant conduit 48 may be arranged in a coil, or some other labyrinthine configuration designed to minimize the volume of heat exchange assembly 14 as a whole while increasing the length of refrigerant conduit 48 included therein.
As can be seen in
In one embodiment, heat exchange assembly 14 includes a cold head 52.
After directing the flow of fluid along the length of 48, fluid conduit 50 may provide the flow of fluid into cold head 52. Cold head 52 is configured to further reduce the temperature of the flow of fluid such that any fluid not liquefied within fluid conduit 50 is liquefied in cold head 52. In one embodiment illustrated in
Secondary refrigerant conduit 54 is configured to receive cooled refrigerant (e.g., from refrigerant conduit 48, from an external source, etc.), and to circulate the refrigerant. Secondary refrigerant conduit 54 is in thermal communication with cold head 52. In one embodiment, secondary refrigerant conduit 54 is disposed around the outside of cold head 52 to provide a heat sink for cold head 52.
Condensing chamber 56 is formed by the body of cold head 52. The condensing chamber includes a fluid inlet 58 and a fluid outlet 60. Fluid inlet 58 communicates with fluid conduit 50 to receive cooled and at least partially liquefied fluid therefrom. Fluid outlet 60 communicates with storage reservoir 28 to provide liquefied fluid thereto for storage. In one embodiment, one or more coalescing structures 62 are formed within condensing chamber 56. Coalescing structures 62 are configured to form super-cooled surfaces on which fluid that has not yet been liquefied can be condensed. Coalescing structures 62 are cooled by the heat sink provided to cold head 52 by secondary refrigerant conduit 54. In one embodiment, condensing chamber 56 is formed from a thermally conductive material, such as copper, aluminum, or other materials, that enhance the removal of heat from coalescing structures 62 by secondary refrigerant conduit 54.
During operation, fluid that is at least partially liquefied is introduced into cold head 52 through fluid inlet 58, and migrates toward fluid outlet 60. As the fluid passes through condensing chamber 56 from fluid inlet 58 to fluid outlet 60, fluid that has not been liquefied becomes condensed on coalescing structures 62. Thus, fluid provided to storage reservoir 28 for storage and/or usage from cold head 52 is substantially completely liquefied.
As can be seen in
Reservoir lid 70 is configured to fill the opening in storage reservoir 28 by reservoir neck 68, thereby enclosing storage reservoir 28. In one embodiment, reservoir lid 70 seals storage reservoir 28. For example,
Cold head 52 is formed having a cross-section that tends to enhance the amount of surface area on cold head 52. As fluid enters the chamber formed by reservoir neck 68 from fluid conduit 50, fluid that is still in the gaseous state comes into contact with cold head 52. This causes the fluid to condense, and then to flow down into storage reservoir 28 for storage.
As can be seen in
As can be seen in particular in
In one embodiment illustrated in
In one embodiment illustrated in
In one embodiment illustrated in
As can be seen in particular in the magnified view of
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Claims
1. A system configured to liquefy a fluid, and to store the liquefied fluid, the system comprising:
- a housing configured to substantially seal the interior of the housing from atmosphere;
- a heat exchange assembly disposed within the housing, the heat exchange assembly comprising a fluid conduit that passes from inside the housing to outside the housing, the fluid conduit being configured to receive a flow of fluid in its gaseous state from a fluid flow generator located outside the housing, the heat exchange assembly being configured to liquefy the flow of fluid received into the heat exchange assembly via the fluid conduit; and
- a fluid storage assembly disposed within the housing, the fluid storage assembly being in fluid communication with the heat exchange assembly, the fluid storage assembly being configured to store fluid that has been liquefied by the heat exchange assembly.
2. The system of claim 1, wherein the housing comprises a first piece and a second piece, wherein the first piece and the second piece are configured to be selectably coupled together to substantially seal the interior of the housing from atmosphere, wherein the heat exchange assembly is formed integrally or securely with the first piece of the housing, and wherein the fluid storage assembly is formed integrally or securely with the second piece of the housing.
3. The system of claim 2, wherein the second piece of the housing forms a cavity having an opening formed by a rim of the second piece of the housing, and wherein the first piece of the housing is a lid that is selectably coupled to the rim of the second piece of the housing to substantially seal the cavity formed by the first piece of the housing from atmosphere.
4. The system of claim 1, wherein the storage assembly comprises a reservoir neck that extends from a storage reservoir to the housing enable liquefied fluid to be released from the storage reservoir, wherein a vacuum space is formed between the housing and the storage assembly, and wherein the heat exchange assembly is disposed in the vacuum space.
5. The system of claim 1, wherein the fluid is oxygen.
6. A method of liquefying a fluid, and storing the liquefied fluid, the method comprising:
- substantially sealing a cavity from atmosphere;
- receiving a flow of fluid in a gaseous state into the cavity from outside the cavity through a fluid conduit, wherein the flow of fluid is received into the cavity in a gaseous state;
- liquefying the flow of fluid received into the cavity via the fluid conduit;
- directing the liquefied fluid into a reservoir disposed within the cavity; and
- storing the liquefied fluid within the reservoir.
7. The method of claim 6, wherein substantially sealing the cavity from atmosphere is performed by a first piece of a housing selectably coupled to a second piece of the housing to substantially seal the cavity, which is formed in the interior of the housing, from atmosphere, wherein a heat exchange assembly that performs the liquefaction of the flow of fluid is formed integrally or securely with the first piece of the housing, and wherein the reservoir is formed integrally or securely with the second piece of the housing.
8. The method of claim 7, wherein the second piece of the housing forms the cavity such that the cavity has an opening formed by a rim of the second piece of the housing, and wherein the first piece of the housing is a lid formed such that selectably coupling the lid to the rim of the second piece of the housing substantially seals the cavity formed by the first piece of the housing from atmosphere.
9. The method of claim 6, wherein a heat exchange assembly that performs the liquefaction of the flow of fluid is disposed within a portion of the cavity this is under vacuum, and is external to the reservoir.
10. The method of claim 6, wherein the fluid is oxygen.
11. A system configured to liquefy a fluid, and to store the liquefied fluid, the system comprising:
- means for substantially sealing a cavity from atmosphere;
- means for receiving a flow of fluid in a gaseous state into the cavity from outside the cavity, wherein the flow of fluid is received into the cavity by the means for receiving in a gaseous state;
- means for liquefying the flow of fluid received into the cavity, wherein the means for liquefying the flow of fluid is disposed within the cavity;
- means storing the liquefied fluid within the cavity.
12. The system of claim 11, wherein the means for sealing the cavity from atmosphere comprises a first piece and a second piece, the first piece and second piece being selectably coupled to seal the cavity from atmosphere, wherein the means for liquefying is formed integrally or securely with the first piece of the means for substantially sealing, and wherein the means for storing is formed integrally or securely with the second piece of the means for substantially sealing.
13. The system of claim 12, wherein the second piece of the means for substantially sealing forms the cavity such that the cavity has an opening formed by a rim of the second piece of the means for substantially sealing, and wherein the first piece of the means for substantially sealing is a lid formed such that selectably coupling the lid to the rim of the second piece of the means for substantially sealing substantially seals the cavity from atmosphere.
14. The system of claim 11, wherein the portion of the cavity that is external to the means for storing is under vacuum, thereby creating a vacuum space, and wherein the means for liquefying is disposed in the vaccum space.
15. The system of claim 11, wherein the fluid is oxygen.
Type: Application
Filed: Aug 30, 2010
Publication Date: Jul 19, 2012
Applicant: (EINDHOVEN)
Inventors: Brian Edward Dickerson (Canton, GA), Jeremy Webster Blair (Atlanta, GA), Laurent Brouqueyre (Kennesaw, GA), Douglas Adam Whitcher (Atlanta, GA)
Application Number: 13/498,403
International Classification: F28F 9/00 (20060101); B65B 3/04 (20060101);