Intelligent Atlas for Automatic Image Analysis of Magnetic Resonance Imaging

A non-invasive imaging system, including an imaging scanner suitable to generate an imaging signal from a tissue region of a subject under observation, the tissue region having at least one substructure; a signal processing system in communication with the imaging scanner to receive the imaging signal from the imaging scanner; and a data storage unit in communication with the signal processing system, wherein the data storage unit stores an anatomical atlas comprising data encoding spatial information of the at least one substructure in the tissue region, and a pathological atlas corresponding to an abnormality of the tissue region, wherein the signal processing system is adapted to automatically identify, using the imaging signal, the anatomical atlas, and the pathological atlas, a presence of the abnormality or a precursor abnormality in the subject under observation.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE OF RELATED APPLICATION

This application claims priority to U.S. Provisional Application No. 61/329,857 filed on Apr. 30, 2010, the entire contents of which are hereby incorporated by reference.

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No.: R01AG20012 and P41RR15241, awarded by the National Institutes of Health.

BACKGROUND

1. Field of Invention

The current invention relates to non-invasive imaging systems and methods, and more particularly to imaging systems and methods that provide computer assisted diagnosis of tissue abnormalities in human and animal subjects.

2. Discussion of Related Art

Conventional radiological diagnosis can be qualitative or subjective. Even though quantitative analyses may significantly improve our ability to detect and characterize abnormalities, currently almost no quantitative techniques can be accepted as a part of routine radiological diagnosis. This is partly due to difficulties in analyzing tissue based on radiological, such as Magnetic Resonance (MR) images. For example, high quality segmentation of the brain boundary requires a considerable amount of manual labor, which typically takes 2-4 hours for individual brains. Further segmentation of the brain into tissue substructures takes even more time. There are many automated programs for various types of tissue segmentation but they can only provide approximate results. For automated image analysis, voxel-based analyses (VBAs) have been widely used. Initially, the shape of each brain may be transformed to that of an atlas brain. Once all brain images are transformed (normalized) to the atlas, voxel-by-voxel analyses can be performed. In this type of analysis, each voxel is treated as an independent entity and no anatomical information is used during the process. This approach has not proven to be effective and there is a need in the art for an automatic means to improve the ability to detect and characterize abnormalities from current radiological images.

SUMMARY

An embodiment of the present invention includes a non-invasive imaging system, including an imaging scanner suitable to generate an imaging signal from a tissue region of a subject under observation, the tissue region having at least one substructure; a signal processing system in communication with the imaging scanner to receive the imaging signal from the imaging scanner; and a data storage unit in communication with the signal processing system, wherein the data storage unit stores an anatomical atlas comprising data encoding spatial information of the at least one substructure in the tissue region, and a pathological atlas corresponding to an abnormality of the tissue region, wherein the signal processing system is adapted to automatically identify, using the imaging signal, the anatomical atlas, and the pathological atlas, a presence of the abnormality or a pre-cursor abnormality in the subject under observation.

Some embodiments of the present invention include a workstation, including a receiving engine adapted to receive an image data representing a tissue region of a subject, an anatomical atlas comprising data encoding spatial information of at least one anatomical substructure in the tissue region, and a pathological atlas comprising data encoding spatial information of a portion of the at least one anatomical substructure affected by an abnormality of the tissue region and statistical quantities associated with the portion of the at least one substructure; a normalizing engine constructed to provide a normalized image data by normalizing the image data, via a transformation, to the anatomical atlas; a computing engine configured compute a statistical quantity from image voxels in the normalized image data corresponding to the portion of the at least one anatomical substructure affected by an abnormality of the tissue region; and an analyzing engine configured to determine whether the abnormality or a pre-cursor abnormality thereof is present in the subject by analyzing a statistical relationship between the statistical quantity computed from the image data and the statistical quantities in the pathological atlas.

Some embodiments of the present invention include a method of generating a pathological atlas corresponding to an abnormality, including: receiving, from one of an imaging system, a workstation, or a first data storage device, a first image data representing a tissue region having a plurality of anatomical substructures; wherein the first image data comprises a plurality of image voxels, and wherein the abnormality affects at least one of the plurality of anatomical substructures, providing a normalized first image data by normalizing the first image data, via a transformation, to an anatomical atlas corresponding to the tissue region; wherein the anatomical atlas comprises data encoding spatial information of the plurality of anatomical substructures, and wherein the anatomical atlas is from one of the first data storage device, or a second data storage device; creating the pathological atlas corresponding to the abnormality based on the normalized first image data; wherein the pathological atlas comprises data encoding spatial information of the at least one of the plurality of anatomical substructures affected by the abnormality; and storing the pathological atlas corresponding to the tissue abnormality on the data storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objectives and advantages will become apparent from a consideration of the description, drawings, and examples.

FIG. 1 is a schematic illustration of a non-invasive imaging system according to an embodiment of the current invention.

FIG. 2A shows a flow chart according to some embodiments of the current invention.

FIG. 2B shows an example input image 201 according to some embodiments of the current invention.

FIG. 2C shows an example training data 204 according to some embodiments of the present invention.

FIG. 2D shows one example implementation of block 205 according to an embodiment of the present invention.

FIG. 2E shows an example pathological atlas 206 according to some embodiments of the present invention.

FIG. 2F shows an implementation of block 208 according to some embodiments of the present invention.

FIG. 3 shows an example of multi-contrast disease-specific atlas created for Alzheimer's disease.

FIG. 4 shows a workstation according to some embodiments of the current invention.

DETAILED DESCRIPTION

Some embodiments of the current invention are discussed in detail below. In describing the embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent components can be employed and other methods developed without departing from the broad concepts of the current invention. All references cited herein are incorporated by reference as if each had been individually incorporated.

FIG. 1 is a schematic illustration of a non-invasive imaging system 100 according to some embodiments of the current invention. The non-invasive imaging system 100 includes an imaging scanner 101, a data storage unit 102, and a signal processing system 103. Imaging scanner 101 may be, but is not limited to, a magnetic resonance imaging (MRI) scanner, a computed tomography (CT) scanner, a positron emission tomography (PET) scanner, a single positron emission computed tomography (SPECT) scanner, or combinations thereof. For example, an MRI scanner may have a base 104 to support a main magnet 105 (providing a substantially uniform main magnetic field B0 for a subject 108 under observation on scanner bed 109), a gradient system 106 (providing a perturbation of the main magnetic field B0 to encode spatial information of the constituent water molecules of subject 108 under observation), and a radio-frequency (RF) coil system 107 (transmitting electromagnetic waves and receiving magnetic resonance signals from subject 108).

Data storage unit 102 stores atlas data corresponding to a tissue region of subject 108 under observation. The tissue region may be, for example, a brain, a heart, a liver, a muscle, and other intended organ of subject 108. The term “atlas” used herein does not necessarily require an actual material object, such as a three dimensional material object. It will be used generally to also refer to data or information that represents a geometrical configuration.

For example, data storage unit 102 may store an anatomical atlas of the tissue region including geometric information of the constituent anatomical substructures. For example, the anatomical atlas may represent a human brain and may include information encoding locations of the gray matter, the white matter, etc. The anatomical atlas may be derived from, for example, a plurality of images from a subpopulation of subjects similar to subject 108. For example, the images can come from the same age group as subject 108 in some applications. This is because each age range may have different tissue shapes and contrasts. The anatomical atlas can be constructed to take into account variations between genders, races, or other subpopulations based on the potential application.

Data storage unit 102 may further store a pathological atlas including, for example, geometric information of substructures affected by, for example, a brain pathology (such as, for example, Alzheimer's disease, mild-cognitive disability, Parkinson's disease, dementia, etc.), a liver disease, a kidney disease, a muscle abnormality (e.g., atrophy, edema, or frailty, etc.), a joint abnormality, etc. The pathological atlas may also be referred to as the disease specific atlas (DSA). The pathological atlas may be derived from, for example, a plurality of images from a subpopulation of patients having, for example, the specific brain pathology or precursor disease to the specific brain pathology (e.g., mild cognitive impairment—converter as a precursor to Alzheimer's disease).

The plurality of images, used to construct the anatomical and pathological atlas, may be, for example, MRI images, CT images, PET images, SPECT images, etc. the anatomical and pathological atlas may incorporate information from images from at least one subject that is different from subject 108 under observation. The anatomical and pathological atlas may incorporate information from images from a previous scan of subject 108 under observation. The anatomical and pathological atlas may be derived from images of a variety of different contrasts, each favorably delineating, for example, certain substructures in the tissue region. For example, T1-weighted magnetic resonance images suitable for the cortex and deep gray matter structures of the brain may be used. For example, T2-weighted magnetic resonance images having higher contrasts for the ventricles of the brain may be used. For example, diffusion tensor images in which intra-white matter structures of the brain are best delineated may be used.

The anatomical atlas may include spatial information, such as, for example, shape information, location information, of the tissue region. The anatomical and pathological atlas may further incorporate variability information associated with registering the soft tissue region in the images from a subpopulation of subjects to the geometric information. Registering a soft tissue region in an image from a subject to the geometric information of a atlas may involve warping or transforming (e.g., translation, scaling, deforming, etc.) the soft tissue region in the image to align with the geometric information of the atlas. Registering may also be referred to as normalizing.

The pathological atlas may include spatial information, such as, for example, shape information, location information, transformation information when registering an image from subject 108 to the anatomical atlas, of a portion of the anatomical substructures the tissue region affected by an abnormality (such as, for example, a brain pathology). The pathological atlas may further comprise statistical information associated with the portion of the anatomical substructures affected by the abnormality. The statistical information may be computed from image voxels corresponding to the portion of the anatomical substructures affected by the abnormality in the tissue region.

The term “atlas” include, but is not limited to the above examples.

Data storage unit 102 may be, for example, a hard disk drive, a network area storage (NAS) device, a redundant array of independent disks (RAID), a flash drive, an optical disk, a magnetic tape, a magneto-optical disk, etc. However, the data storage unit 102 is not limited to these particular examples. It can include other existing or future developed data storage devices without departing from the scope of the current invention.

Signal processing system 103 is in communication with imaging scanner 101 to receive imaging signals for forming images of subject 108. Signal processing system 103 may be partially or totally incorporated within a structure housing imaging scanner 101. Signal processing system 103 may be at least partially incorporated in a workstation that is structurally separate from and in communication with imaging scanner 101. Signal processing system 103 may be incorporated in a workstation that is structurally separate from and in communication with imaging scanner 101. Imaging signals received by signal processing system 103 may be associated with, for example, a magnetic resonance contrast parameter, such as, for example, a relaxation time T1, a relaxation time T2, an apparent diffusion coefficient, a property associated with the blood oxygenation level dependent (BOLD) effect, a property associated with the diffusion tensor, etc.

Signal processing system 103 is in communication with data storage unit 102. Signal processing system 103 is adapted to automatically identify, using said imaging signal, said anatomical atlas, and said pathological atlas, a presence of the abnormality of the tissue region in the subject 108 under observation. The imaging signals being processed by signal processing system 103 may contain multiple contrasts mechanisms, each favorably delineating a portion of the substructures of the tissue region. At least one contrast mechanism is taken into account when the signal processing system 103 automatically identifies the presence of the abnormality or a precursor of the abnormality. For example, imaging signals may be Diffusion Tensor Imaging (DTI) signals from a variety of information may be computed, such as, for example, fiber anisotropy, mean diffusivity, parallel diffusion (λ|), and radial diffusion (λ). In addition, T2 maps, T1 maps may also be calculated from the imaging signals.

The diagnosis results may be visualized by superimposing the pathological atlas on the normalized image on a viewing station 110 or a console station 111. Viewing station 110 or a console station 111 may be, for example, a display device or a printing device. Example display devices may include, for example, a cathode ray tube (CRT), a light-emitting diode (LED) display, a liquid crystal display (LCD), a digital light projection (DLP) monitor, a vacuum florescent display (VFDs), a surface-conduction electron-emitter display (SED), a field emission display (FEDs), a liquid crystal on silicon (LCOS) display, etc. Example printing devices may include, for example, toner-based printers, liquid ink-jet printers, solid ink printers, dye-sublimation printers, and inkless printers such as thermal printers and ultraviolet (UV) printers, etc.

FIG. 2A shows a flow chart illustrating processes, implemented by one or more processors executing software code stored on one or more data storage devices, according to some embodiments of the current invention. The processors may be signal processors, computer processors, or combinations thereof. Example signal processors may include programmed field programmable gated array (FPGA) chips, programmed digital signal processing (DSP) chips, application specific integrated circuits (ASIC) chips, etc. Example computer processors may include single core or multi-core central processing units (CPU), single-core or multi-core graphic unit processing (GPU) chips, etc. In some embodiments of the current invention, the processes illustrated in FIG. 2A can be performed by data storage unit 102 and signal process unit 103.

Block 201 corresponds to an input image, which can be an image from a single subject or a population-averaged image. Input image 201 corresponds to a tissue region having at least one substructure. Input image 201 may be more than one image showing the tissue region from at least one subject from at least one of an imaging system or a data storage device. FIG. 2B shows an example input image 201 according to some embodiments of the current invention. Input image 201 may include, for example, Diffusion Tensor Image (DTI) and T2 image. Input image 201 may further include T1 weighted images. Images may be processed to show segmented structures of the brain tissue. The processing may be manual or automatic.

Block 202 represents an anatomical atlas including spatial information of the tissue region, as discussed above.

In block 203, input image 201 is normalized to anatomical atlas 202. Registration may involve warping or transforming (e.g., translation, scaling, deforming, etc.) the soft tissue region in the images to align with the shape information of anatomic atlas 202. A transformation algorithm, called Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Miller et al., 1993, Proc Natl Acad Sci, 90, 1194-11948; Joshi et al., 1995, Geometric methods in Applied Imaging, San Diego, Calif.; Granander and Miller, 1996, Statistical computing and graphics newsletter 7, 3-8), may be used during the registration. There can be several important technically attractive features of LDDMM. First, LDDMM is highly non-linear and can match the shapes of two brains. It can even transform a brain with severe atrophy. Second, LDDMM can achieve topology preservation. Topology preservation may be a very important feature when applying a morphing algorithm to a biological entity. For example, when morphing one face to another, if topology is not preserved, non-biological results can occur (e.g., two eyes become three eyes). Third the transformation can be reciprocal. Other transformation algorithms that can generate image transformation and preserve tissue topology can be used instead of LDDMM. In some cases, e.g. when only subtle changes in soft tissue regions are expected, the requirement of topology preserving can be waived.

Training data 204 may be generated by normalizing block 203 and may be used to create pathological atlas 206 via block 205. FIG. 2C shows an example of training data 204 according to some embodiments of the present invention. Training data 204 may include a normalized T2 image, a normalized T1 image, Diffusion Tensor Image (DTI) images, other normalized images, a segmented structure map, and a Jacobian map. DTI map may include a normalized Fiber Anisotropy (FA) map, a normalized Mean Diffusivity (MD) map, a normalized parallel diffusion (λ|) map, a normalized radial diffusion (λ) map. A Jacobian map shows the transformation matrix of the normalization process.

FIG. 2D shows one implementation of block 205 according to an embodiment of the present invention. In block 212, the locations of at least some anatomical substructures of the tissue region may be identified in the input image. The structure could be as small as a single pixel or could be clusters of pixels. In block 213, a statistical quantity may be computed based on a portion of the image voxels corresponding to these anatomical substructures. These image pixels may be associated with the normalized input image 204. The statistical quantities of a subset of these anatomical structures may exhibit a statistically significant differentiation between a disease group having the abnormality (or a precursor condition) and a normal control group. Once the statistical significant difference is confirmed in block 214, the statistical quantities computed this subset of anatomical structures may be stored in the pathological atlas 206. In particular, the statistically significant differentiation may be determined via a Linear Discriminatory Analysis (LDA) to substantially improve a classification power of using said statistic quantity. The Linear Discriminatory Analysis (LDA) may include permutation tests and a Receiver Operating Characteristic (ROC) analysis, as will be demonstrated below.

FIG. 2E shows an example pathological atlas 206 according to some embodiments of the present invention. Pathological atlas 206 may include Disease Specific Atlas (DSA) data including a DSA T2 image, a DSA T1 image, DSA DTI images. The DSA DTI images may include a DSA Fiber Anisotropy (FA) map, a DSA Mean Diffusivity (MD) map, a DSA parallel diffusion (λ|) map, a DSA radial diffusion (λ) map. Pathlogical atlas 206 may further include a a DSA segmented map, a DSA Jacobian map showing the characteristic transformation matrix of the normalization, or other DSA normalized images. Disease specific means specific and characteristic to a particular abnormality. The abnormality may include, for example, a brain disease including a neurodegenerative disease (such as, for example, Alzheimer disease, Parkinson's disease, Wilson's disease, mild-cognitive impairment, dementia, etc.), a liver disease, a kidney disease, a muscle abnormality (such as, for example, muscle atrophy, muscle edema, muscle frailty, etc,) or a joint abnormality (such as, for example. Rheumatoid arthritis, ostero-arthritis, etc.).

In block 208, anatomical atlas 202, pathological atlas 206 are applied to new image 207 from the tissue region of a new subject to automatically identify the presence of the abnormality in the new subject.

FIG. 2F shows an implementation of block 208 according to some embodiments of the present invention. In block 215, new image 207 is normalized to anatomical atlas 202 according to the same registration procedure as discussed above. In block 216, a statistical quantity (such as, for example, an average value, a median value, etc.) of image voxels corresponding to each of these anatomical substructures affected by the abnormality may be computed. In block 217, the computed statistical quantity for an affected anatomical structure may be analyzed to determine a statistical relationship with the statistical quantity stored in the pathological atlas 206. The analysis may automatically identify the presence of the abnormality in the new subject. The analysis can may be a form of a classification to determine the probability that the computed statistical quantity based on new image 207 is in the same class as the stored statistical quantities in the pathological atlas 206.

Thus, the atlas-based approach, as compared to a conventional voxel-based approach has been disclosed. In this type of analysis, the atlas may be pre-segmented into anatomical substructures based on anatomical knowledge. After normalization of an input image to an anatomical atlas, the tissue region can be automatically segmented into the defined anatomical substructures, which allows substructure-specific morphometry and photometry. All voxels within a substructure may be pooled for analyses. This can potentially enhance the statistical power and help anatomical interpretation of the voxel-based analyses, as demonstrated below.

FIG. 3 shows an example of disease-specific atlas of Alzheimer's disease. For each image contrast, sensitive brain areas are defined in the common anatomical space (atlas). This anatomical template can be applied to each patient and quantify the values of multiple contrasts. A linear combination of these contrast values, for example, can be used as an index to represent the likelihood of being the specific disease of interest.

FIG. 4 shows a workstation 401 according to some embodiments of the current invention. The workstation may include a receiving engine 402, a normalizing engine 403, a computing engine 404, and analyzing engine 405.

Receiving engine 402 may be adapted to receive an image data representing a tissue region of a subject, an anatomical atlas comprising data encoding spatial information of at least one anatomical substructure in the tissue region, and a pathological atlas comprising data encoding spatial information of a portion of the at least one anatomical substructure affected by an abnormality of the tissue region and statistical quantities associated with the portion of the at least one substructure. The received image data may have at least one contrast type that favorably delineates at least some of the substructure of the tissue region.

Normalizing engine 403 may be constructed to provide a normalized image data by normalizing the image data, via a transformation, to the anatomical atlas.

Computing engine 404 may be configured compute a statistical quantity from image voxels in the normalized image data corresponding to the portion of the at least one anatomical substructure affected by an abnormality of said tissue region.

Analyzing engine 405 may be configured to determine whether said abnormality or a pre-cursor abnormality thereof is present in said subject by analyzing a statistical relationship between the statistical quantity computed from said image data and the statistical quantities in the pathological atlas.

Workstation 401 may further include a visualization engine 406 to display the registered at least one image showing the tissue region. Visualization engine 406 may be, for example, a display device or a printing device. Example display devices may include, for example, a cathode ray tube (CRT), a light-emitting diode (LED) display, a liquid crystal display (LCD), a digital light projection (DLP) monitor, a vacuum florescent display (VFDs), a surface-conduction electron-emitter display (SED), a field emission display (FEDs), a liquid crystal on silicon (LCOS) display, etc. Example printing devices may include, for example, toner-based printers, liquid ink jet printers, solid ink printers, dye-sublimation printers, and inkless printers such as thermal printers and ultraviolet (UV) printers, etc.

Workstation 401 may be a computer with at least one central processing unit (CPU) and a plurality of memories. Workstation 401 may also be a dedicated processing machine with such devices as, for example, a field programmable gated array (FPGA), a digital signal processing (DSP) chip, a graphic processing unit (GPU), an application specific integrated circuit (ASIC), etc. Workstation 401 may also be incorporated in the imaging system 100.

The engines may be implemented by a computer with at least one processor and a plurality of memories. The processor may be, for example, one or more single-core or multi-core central processing unit (CPU), one or more single-core or multi-core graphic processing unit (GPU), etc. The computer may be a distributed computer comprising more than one processor connected via a network to divide the computation. Example networks may include, but is not limited to, an intranet, an extranet, the interne, or combinations thereof. Receiving engine 402, normalization engine 403, computing engine 404, and analyzing engine 405 may be implemented by, for example, a field programmable gated array (FPGA), a digital signal processing (DSP) chip, a graphic processing unit (GPU), an application specific integrated circuit (ASIC), etc.

In general, normalization-based image analysis, in which voxel-by-voxel statistical analysis (VBA) is performed after the brain shapes are normalized to an atlas space, is widely used to detect differences in MR images between normal populations and patient populations. While this approach provides a method for an automated and quantitative examination of the entire brain with the highest spatial information, there exists several important limitations. First, perfect spatial normalization accuracy is not assured. Second, the information from each pixel is noisy. Due to these limitations, VBA often does not have enough power to differentiate the patient population from the normal population nor can it be used for diagnosis of individual patients. To increase the statistical power, it is common practice to apply spatial filtering that averages the information from multiple adjacent voxels. The most popular filtering method is an isotropic filter (typically 3-16 mm) that effectively lowers the spatial resolution and increases the partial volume effect. This counteracts one of the most important advantages of MRI; highly localized spatial information, which enables delineation of the fine detail of brain anatomy. To ameliorate this problem, structure-based (non-isotropic) spatial filtering methods have been postulated. These methods include anisotropic spatial filtering (Chen and Hsu, 2005; Ding et al., 2005; Lee et al., 2009; Martin-Fernandez et al., 2009; Van Hecke et al., 2010; Xu et al., 2010), skeletonization of the white matter structures (Smith et al., 2006), and parcellation of the brain structures (Mori et al., 2008; Oishi et al., 2009; Oishi et al., 2008). Although these sophisticated filtering methods could possibly increase the statistical power to separate patients from normal controls, it is difficult to choose a single spatial filtering method suitable for all diseases, because the volume and the spatial distribution of the abnormalities depend on the nature of the disease. For example, if the pathology of the disease follows a vascular pattern, cytoarchitecture-based filtering may not a logical choice. If the pathology is limited to a small area in the structure, parcellation-based filtering may be spatially too coarse to detect the abnormality. If the purpose of the analysis is to investigate known pathological features of a particular disease, a disease-specific filtering method could possibly increase the statistical power; namely, groups of voxels at specific locations are extracted and averaged for statistical analysis. To test this hypothesis, multi-contrast, disease-specific atlases were developed, specifying voxel locations in standard coordinates that represent the most affected brain regions. The disease-specific atlases were created independently for multiple MR contrasts (e.g., T1-weighted image, T2 map, and DTI) using a training dataset. Assuming that there are multiple pathologies with different spatial distribution in a single disease (e.g., neuronal loss, demyelination, ischemic changes, etc.), it may be further hypothesized that the optimized combination of multiple MR contrasts could increase the power to separate diseased brains from normal brains. Therefore, the MR measures of each contrast from the corresponding disease-specific atlas were optimally combined using the linear discriminant analysis.

In describing embodiments of the invention, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

Claims

1. A non-invasive imaging system, comprising:

an imaging scanner suitable to generate an imaging signal from a tissue region of a subject under observation, the tissue region having at least one substructure;
a signal processing system in communication with said imaging scanner to receive the imaging signal from said imaging scanner; and
a data storage unit in communication with said signal processing system,
wherein said data storage unit is configured to store an anatomical atlas comprising spatial information of said at least one substructure in the tissue region, and a pathological atlas corresponding to an abnormality of said tissue region,
wherein said signal processing system is adapted to automatically identify, based on said imaging signal, said anatomical atlas, and said pathological atlas, a presence of said abnormality or a pre-cursor abnormality thereof in said tissue region of said subject under observation.

2. The non-invasive imaging system according to claim 1, wherein said imaging scanner is a magnetic resonance imaging (MRI) scanner, a computed tomography (CT) imaging scanner, a positron emission tomography (PET) imaging scanner, a single positron emission computed tomography (SPECT) imaging scanner, or a combination thereof.

3. The non-invasive imaging system according to claim 1, wherein said imaging signal is capable of providing at least one contrast mechanism that favorably delineates at least a portion of said at least one substructure of said tissue region.

4. The imaging system according to claim 3, wherein said signal processing system is further adapted to automatically identify the presence of said abnormality by utilizing said at least one contrast mechanism.

5. A workstation, comprising:

a receiving engine adapted to receive
an image data representing a tissue region of a subject,
an anatomical atlas comprising spatial information of at least one anatomical substructure in the tissue region, and
a pathological atlas corresponding to an abnormality of said tissue region, wherein the pathological atlas comprises:
spatial information of a portion of said at least one anatomical substructure;
statistical quantities associated with said portion of the at least one anatomical substructure;
a normalizing engine constructed to provide a normalized image data by normalizing the image data, via a transformation, to the anatomical atlas;
a computing engine configured compute a statistical quantity from image voxels in the normalized image data corresponding to said portion of the at least one anatomical substructure of said tissue region; and
an analyzing engine configured to determine whether said abnormality or a pre-cursor abnormality thereof is present in said subject by analyzing a statistical relationship between the statistical quantity computed from said image data and the statistical quantities in the pathological atlas.

6. The workstation according to claim 5, further comprising:

a visualization engine adapted to superimpose said pathological atlas on the normalized image data.

7. A method of generating a pathological atlas corresponding to an abnormality, comprising:

receiving, from one of an imaging system, a workstation, or a first data storage device, a first image data representing a tissue region of at least one patient having said abnormality, wherein the first image data comprises a plurality of image voxels, wherein said tissue region has a plurality of anatomical substructures, and wherein the abnormality affects at least one of said plurality of anatomical substructures,
providing a normalized first image data by normalizing the first image data, via a transformation, to an anatomical atlas corresponding to said tissue region;
wherein the anatomical atlas comprises data encoding spatial information of the plurality of anatomical substructures, and
wherein the anatomical atlas is from one of the first data storage device, or a second data storage device;
creating the pathological atlas corresponding to said abnormality based on the normalized first image data;
wherein the pathological atlas comprises data encoding spatial information of the at least one of said plurality of anatomical substructures affected by said abnormality; and
storing the pathological atlas corresponding to said tissue abnormality on the data storage system.

8. The method of claim 7, further comprising:

computing a statistical quantity based on a portion of the plurality of image voxels corresponding to each of said plurality of anatomical substructures;
identifying a portion of said plurality of said anatomical structures wherein the statistical quantity computed is capable of providing a statistically significant differentiation between a group of patients having said abnormality and a normal control group of subjects; and
storing the statistical quantity computed in the pathological atlas.

9. The method of claim 8, wherein said statistically significant differentiation is determined via a Linear Discriminatory Analysis (LDA) to substantially improve a classification power of using said statistic quantity.

10. The method of claim 8, wherein the Linear Discriminatory Analysis (LDA) further comprises a plurality of permutation tests and a Receiver Operating Characteristic (ROC) analysis.

11. The method of claim 8, further comprising:

receiving a second image data representing the tissue region of a subject;
providing a normalized second image data by normalizing the second image data, via a transformation, to an anatomical atlas corresponding to said tissue region; and; and
applying the pathological atlas to automatically identify a presence of said abnormality or a pre-cursor abnormality thereof in the subject by:
computing said statistical quantity from a portion of image voxels in the normalized second image data corresponding to said portion of the plurality of anatomical substructures, and
determining whether said abnormality or said pre-cursor abnormality thereof is present by analyzing a statistic relationship between the statistical quantity computed from the normalized second image data and the statistical quantity stored in the pathological atlas.

12. The method of claim 11,

wherein said second image data is capable of providing a plurality of contrast mechanisms for representing said tissue region, and
wherein said statistic relationship combines classification powers from each of the plurality of contrast mechanisms.

13. The method of claim 8, wherein the statistical quantity is one of an average value, a median value, or equivalents thereof.

14. The method of claim 8,

wherein said spatial information comprises location information, shape information, and transformation information, and
wherein the transformation information comprises atrophy information and expansion information.

15. The method of claim 7, wherein the pathological atlas further comprises information capable of encoding at least one of fractional anisotropy, mean diffusivity, parallel diffusion, T2 relaxation, or ′Yχ relaxation.

16. The method of claim 7, wherein the first image data comprises diffusion tensor imaging (DTI) data.

17. The method of claim 7, further comprising revising the atlas by

receiving a third image data representing the tissue region,
providing a normalized third image data by normalizing the third image data, via a transformation, to an anatomical atlas corresponding to said tissue region; and
incorporating the normalized third image data to the pathological atlas, wherein the third image data is associated with a patient different from any of the at least one patient associated with the first image data.

18. The method of claim 7, further comprising:

superimposing the pathological atlas on the normalized first image data.

19. The method of claim 7, wherein the transformation is a Large Deformation Deffeomorphic Metric Mapping.

20. The method of claim 7, wherein said abnormality is one of a brain disease, a liver disease, a kidney disease, a muscle abnormality, or a joint abnormality.

21. The method of claim 20, wherein said brain disease is a neurodegenerative disease.

Patent History
Publication number: 20130172727
Type: Application
Filed: Apr 29, 2011
Publication Date: Jul 4, 2013
Applicant: THE JOHNS HOPKINS UNIVERSITY (Baltimore, MD)
Inventors: Susumu Mori (Ellicott City, MD), Michael I Miller (Baltimore, MD), Kenichi Oishi (Lutherville Timonium, MD)
Application Number: 13/695,173
Classifications
Current U.S. Class: Detecting Nuclear, Electromagnetic, Or Ultrasonic Radiation (600/407); Tomography (e.g., Cat Scanner) (382/131)
International Classification: G06T 7/00 (20060101); A61B 5/00 (20060101);