APPARATUS FOR THE COMPACT COOLING OF AN ARRAY OF COMPONENTS
An apparatus for the compact cooling of an array of components. The apparatus includes a housing with cover plates on opposing sides of the housing, and a frame between the cover plates. The frame is thermally coupled to each of the cover plates and includes a plurality of channels for passing coolant through the housing.
Latest IBM Patents:
This invention was made with Government support under Contract No. DE-EE0002894 (Department of Energy). The Government has certain rights in this invention.
BACKGROUNDThis invention relates to heat sinks, and more particularly to an apparatus for the compact cooling of an array of components.
Over the years, electronic equipment, especially semiconductor based devices, have found their applications in almost all fields of research. The demand for more power and performance from such electronic equipment has constantly been growing, resulting in an increased amount of heat dissipation from these devices. While conventional cooling solutions have performed the task of heat removal, no straightforward extension has been possible for the significantly high heat fluxes dissipated by smaller and more efficient electronic devices.
Thermal management of high-density power control units for hybrid electric vehicles is one such challenging application. A power control unit typically consists of pairs of insulated gate bipolar transistors and diodes used for power conversion and manipulation, such as DC to DC, DC to AC, or AC to DC conversion. Over the last few years, the performance of such power control units has been improved. Furthermore, their size has been reduced to attain higher efficiency (approximately 95%) and performance, causing the heat dissipation as well as heat density to increase significantly to approximately 400%. However, the overall cooling system has remained unchanged.
BRIEF SUMMARYAccordingly, one example of the present invention is an apparatus for the compact cooling of an array of components. The apparatus may include a housing with two cover plates on opposing sides of the housing, and a frame between the cover plates. The frame can be thermally coupled to each of the cover plates. Additionally, the frame may further include a plurality of channels for passing coolant through the housing.
Another example of the present invention is a heat sink for the compact cooling of an array of components. The heat sink can include a housing, a first cover plate on a side of the housing, a second cover plate on an opposite side of the housing, and a separating plate. Additionally, a first fluid guide may be thermally coupled to the first cover plate, and a second fluid guide may be thermally coupled to the second cover plate. The first fluid guide and the second fluid guide can define a plurality of channels for passing coolant through the housing. Furthermore, to isolate coolant of the first fluid guide from the second fluid guide, the separating plate may be between the first fluid guide and the second fluid guide.
Yet another embodiment of the present invention is heat sink for the compact cooling of an array of components. The heat sink may include a housing, a first cover plate on a first side of the housing, a first fluid guide thermally coupled to the first cover plate, a second cover plate on a second side of the housing opposite the first side, a second fluid guide thermally coupled to the second cover plate, a plurality of channels defined by the first fluid guide and second fluid guide for passing coolant through the housing, and an inlet port for receiving coolant into the housing and an outlet port for passing the coolant out of the housing.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The present invention is described with reference to embodiments of the invention. Throughout the description of the invention reference is made to
In one embodiment of the heat sink contemplated by the present invention, components may be attached to a cover plate by soldering, direct bonding, applying thermal grease, or any other applicable process. The number of layers in the heat sink may be one or more depending on the amount of heat that needs to be dissipated. The heat sink can be fabricated in a few steps. If starting from a unitary sheet of metal, the sheet can be folded to form a folded-fin structure having a height equal to the height of triangular or rectangular channels for passing coolant through the heat sink. Also, the folded-fin structure can have a width equal to the width of the base of the triangular or rectangular channels. In the case of triangular channels, the folded-fin structure may then be compressed horizontally from the sides to form a structure of alternating triangular channels. Next, these channels can be placed and be attached to a rectangular cup-shaped cover plate using soldering, brazing, direct bonding, or any other applicable process. The rectangular cup-shaped cover plate may have an inlet port and an outlet port. A separating plate can then be attached to the top surface of the alternating triangular channels structure by soldering, brazing, direct bonding, or any other applicable process. An additional layer of the same structure of triangular or rectangular channels can then be attached to the top of this separating plate by soldering, brazing, direct bonded, or any other applicable process. This process can be repeated N number of times to form N+1 layers of triangular channels. Once N+1 numbers of channels are stacked, a cover plate can be attached to the top-most layer by soldering, brazing, direct bonding, or any other applicable process. The cover plate can also be attached to the periphery of a base metal structure to form a leak-proof joint by soldering, brazing, direct bonding, or any other applicable process. The larger surface area provided by the proposed heat sink will allow for enhanced cooling. In general, the proposed heat sink can have one or more than one layer of triangular channels on each side. The proposed heat sink can also include a rectangular cup-shaped bottom cover plate, an inlet port, an outlet port, triangular channels made from a single sheet, separating plates (for 2 or more channels on each side) and a top cover plate. The different components may be assembled together by soldering, brazing, direct-bonding, or any other applicable process.
In another embodiment of the heat sink contemplated by the present invention the heat sink can be fabricated from a metal sheet of specified thickness or from a sheet of folded-fin having a specified fin thickness, channel height and width. If starting from a unitary sheet of metal, the metal sheet can be folded to form a folded-fin structure that has a fin height equal to the height of triangular or rectangular channels for passing coolant through the heat sink. Also, the folded-fin structure can be folded to form a folded-fin structure that has a width equal to the width of the base of the triangular or rectangular channels. In the case of triangular channels, the folded-fin structure may then be compressed horizontally from the sides to form a structure of alternating triangular channels. The folded-fin structure may then be placed in a base rectangular cup-shaped metal structure. The base rectangular cup-shaped metal structure can have an inlet port for receiving coolant into the heat sink and an outlet port for passing coolant out of the heat sink. Also, the folded-fin structure may be attached to the top of a separating plate by soldering, brazing, direct bonding, or any other applicable process. An additional layer of the same structure of alternating channels may then be attached to the top of the separating plate by soldering, brazing, direct bonding, or any other applicable process. The entire process for this embodiment of the present invention can be repeated N number of times to form N+1 layers of channels. Once N+1 number of layers of alternating channels are stacked, a cover plate can be attached to the top of the top-most layer by soldering, brazing, direct bonding, or any other applicable method. The cover plate may also be attached to the periphery of the base rectangular cup-shaped metal structure by soldering, brazing, direct bonding, or any other applicable process to form a leak-proof joint. In general, this heat sink can have one or more layers of alternating channels. Moreover, due to the structure of the layers of alternating channels, a larger surface area for contact between adjacent layers is inherent. The use of a soldering, braze joint, or direct bonding method can provide proper thermal contact between adjacent layers of alternating channels. The use of a soldering, braze joint, or direct bonding method can also enhance the thermal performance of the heat sink by enabling proper heat flow until the (N+1)th layer.
In another embodiment of the apparatus contemplated by the present invention, the apparatus may include a heat sink assembly structure with two-layer triangular channels where heat sinks may be attached to opposing sides of a component. The heat sink can attach to manifolds on either end of the component to provide inlet and outlet paths for coolant. This attachment to the manifolds may also provide structural rigidity to the heat sinks with respect to the components. This structural rigidity can be used to provide a compressive force that ensures a sufficient contact between the components and the heat sinks. Any appropriate thermal interface material such as thermal grease, thermal pads, thermal oil, etc., can be placed between the component and the heat sinks to ensure proper thermal contact.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Claims
1. An apparatus for the compact cooling of an array of components comprising:
- a housing including at least two cover plates on opposing sides of the housing; and
- a frame between the cover plates, the frame being thermally coupled to each of the cover plates and including a plurality of channels for passing coolant through the housing.
2. The apparatus of claim 1, wherein the housing further comprises an inlet port for receiving the coolant within the housing and an outlet port for passing the coolant out of the housing.
3. The apparatus of claim 1, wherein the frame includes a fluid guide defining the plurality of channels, the fluid guide being thermally coupled to the cover plates.
4. The apparatus of claim 3, wherein the fluid guide is a unitary sheet of folded metal.
5. The apparatus of claim 1, further comprising:
- wherein the cover plates include a first cover plate and a second cover plate; and
- wherein the frame includes a first fluid guide thermally coupled to the first cover plate and a second fluid guide thermally coupled to the second cover plate, the first fluid guide and the second fluid guide defining the plurality of channels.
6. The apparatus of claim 5, wherein the first fluid guide is a first unitary sheet of folded metal and the second fluid guide is a second unitary sheet of folded metal.
7. The apparatus of claim 5, wherein the frame further comprises a separating plate between the first fluid guide and the second fluid guide for isolating the coolant of the first fluid guide from the second fluid guide.
8. The apparatus of claim 1, wherein the plurality of channels are triangular channels.
9. The apparatus of claim 1, wherein the plurality of channels are rectangular channels.
10. The apparatus of claim 1, wherein at least one of the cover plates has a U-shaped cross section and includes an inlet port for receiving the coolant by the housing and an outlet port for passing the coolant out of the housing.
11. A heat sink comprising:
- a housing;
- a first cover plate on a first side of the housing;
- a first fluid guide thermally coupled to the first cover plate;
- a second cover plate on a second side of the housing opposite the first side;
- a second fluid guide thermally coupled to the second cover plate;
- a separating plate between the first fluid guide and the second fluid guide for isolating coolant of the first fluid guide from the second fluid guide; and
- a plurality of channels defined by the first fluid guide and second fluid guide for passing the coolant through the housing.
12. The heat sink of claim 11, further comprising an inlet port for receiving coolant within the housing and an outlet port for passing the coolant out the housing.
13. The heat sink of claim 11, wherein the first fluid guide is a first unitary sheet of folded metal and the second fluid guide is a second unitary sheet of folded metal.
14. The heat sink of claim 13, wherein the plurality of channels are triangular channels.
15. The heat sink of claim 13, wherein the plurality of channels are rectangular channels.
16. An heat sink for the compact cooling of an array of components comprising:
- a housing;
- a first cover plate on a first side of the housing;
- a first fluid guide thermally coupled to the first cover plate;
- a second cover plate on a second side of the housing opposite the first side;
- a second fluid guide thermally coupled to the second cover plate;
- a plurality of channels defined by the first fluid guide and second fluid guide for passing coolant through the housing; and
- an inlet port for receiving coolant within the housing and an outlet port for passing the coolant out the housing.
17. The heat sink of claim 16, wherein the first fluid guide is a first unitary sheet of folded metal and the second fluid guide is a second unitary sheet of folded metal.
18. The heat sink of claim 17, wherein the plurality of channels are triangular channels.
19. The heat sink of claim 17, wherein the plurality of channels are rectangular channels.
20. The heat sink of claim 17, further comprising a separating plate between the first fluid guide and the second fluid guide for isolating coolant of the first fluid guide from the second fluid guide.
Type: Application
Filed: May 18, 2012
Publication Date: Nov 21, 2013
Applicant: International Business Machines Corporation (Armonk, NY)
Inventors: Madhusudan K. Iyengar (Woodstock, NY), Pritish R. Parida (Fishkill, NY)
Application Number: 13/475,224
International Classification: F28D 15/00 (20060101);