Light Emitting And Lasing Semiconductor Methods And Devices
A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
Latest Patents:
This is a continuation of U.S. patent application Ser. No. 12/799,080, filed Apr. 16, 2010, which is incorporated herein by reference. Said U.S. patent application Ser. No. 12/799,080 is a continuation-in-part of U.S. patent application Ser. No. 12/655,806, filed Jan. 7, 2010, which, in turn, claimed priority from three U.S. Provisional Patent Applications; namely, U.S. Provisional Application Ser. No. 61/204,560, filed Jan. 8, 2009, U.S. Provisional Application Ser. No. 61/204,602, filed Jan. 8, 2009, and U.S. Provisional Application Ser. No. 61/208,422, filed Feb. 24, 2009. Said U.S. patent application Ser. No. 12/799,080 also claims priority from U.S. Provisional Patent Application Ser. No. 61/212,951, filed Apr. 17, 2009, and from U.S. Provisional Patent Application Ser. No. 61/268,119, filed Jun. 9, 2009, and all of the listed Patent Applications are incorporated herein by reference.
RELATED APPLICATIONThe subject matter of this Application relates to subject matter disclosed in copending U.S. patent application Ser. No. ______, filed of even date with the parent Application hereof and assigned to the same assignees as the present Application.
GOVERNMENT RIGHTSThis invention was made with Government support, and the Government has certain rights in the invention.
FIELD OF THE INVENTIONThis invention relates to methods and devices for producing light emission and laser emission in response to electrical signals. The invention also relates to methods for producing light emission and laser emission from semiconductor devices with improved efficiency, and to increasing light output from semiconductor light-emitting devices.
BACKGROUND OF THE INVENTIONA part of the background hereof lies in the development of heterojunction bipolar transistors which operate as light-emitting transistors and transistor lasers. Reference can be made for example, to U.S. Pat. Nos. 7,091,082, 7,286,583, 7,354,780, 7,535,034 and 7,693,195; U.S. Patent Application Publication Numbers US2005/0040432, US2005/0054172, US2008/0240173, US2009/0134939, and US2010/0034228; and to PCT International Patent Publication Numbers WO/2005/020287 and WO/2006/093883. Reference can also be made to the following publications: Light-Emitting Transistor: Light Emission From InGaP/GaAs Heterojunction Bipolar Transistors, M. Feng, N. Holonyak, Jr., and W. Hafez, Appl. Phys. Lett. 84, 151 (2004); Quantum-Well-Base Heterojunction Bipolar Light-Emitting Transistor, M. Feng, N. Holonyak, Jr., and R. Chan, Appl. Phys. Lett. 84, 1952 (2004); Type-II GaAsSb/InP Heterojunction Bipolar Light-Emitting Transistor, M. Feng, N. Holonyak, Jr., B. Chu-Kung, G. Walter, and R. Chan, Appl. Phys. Lett. 84, 4792 (2004); Laser Operation Of A Heterojunction Bipolar Light-Emitting Transistor, G. Walter, N. Holonyak, Jr., M. Feng, and R. Chan, Appl. Phys. Lett. 85, 4768 (2004); Microwave Operation And Modulation Of A Transistor Laser, R. Chan, M. Feng, N. Holonyak, Jr., and G. Walter, Appl. Phys. Lett. 86, 131114 (2005); Room Temperature Continuous Wave Operation Of A Heterojunction Bipolar Transistor Laser, M. Feng, N. Holonyak, Jr., G. Walter, and R. Chan, Appl. Phys. Lett. 87, 131103 (2005); Visible Spectrum Light-Emitting Transistors, F. Dixon, R. Chan, G. Walter, N. Holonyak, Jr., M. Feng, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 88, 012108 (2006); The Transistor Laser, N. Holonyak and M Feng, Spectrum, IEEE Volume 43, Issue 2, February 2006; Signal Mixing In A Multiple Input Transistor Laser Near Threshold, M. Feng, N. Holonyak, Jr., R. Chan, A. James, and G. Walter, Appl. Phys. Lett. 88, 063509 (2006); and Collector Current Map Of Gain And Stimulated Recombination On The Base Quantum Well Transitions Of A Transistor Laser, R. Chan, N. Holonyak, Jr., A. James, and G. Walter, Appl. Phys. Lett. 88, 14508 (2006); Collector Breakdown In The Heterojunction Bipolar Transistor Laser, G. Walter, A. James, N. Holonyak, Jr., M. Feng, and R. Chan, Appl. Phys. Lett. 88, 232105 (2006); High-Speed (/spl ges/1 GHz) Electrical And Optical Adding, Mixing, And Processing Of Square-Wave Signals With A Transistor Laser, M. Feng, N. Holonyak, Jr., R. Chan, A. James, and G. Walter, Photonics Technology Letters, IEEE Volume: 18 Issue: 11 (2006); Graded-Base InGaN/GaN Heterojunction Bipolar Light-Emitting Transistors, B. F. Chu-Kung et al., Appl. Phys. Lett. 89, 082108 (2006); Carrier Lifetime And Modulation Bandwidth Of A Quantum Well AlGaAs/InGaP/GaAs/InGaAs Transistor Laser, M. Feng, N. Holonyak, Jr., A. James, K. Cimino, G. Walter, and R. Chan, Appl. Phys. Lett. 89, 113504 (2006); Chirp In A Transistor Laser, Franz-Keldysh Reduction of The Linewidth Enhancement, G. Walter, A. James, N. Holonyak, Jr., and M. Feng, Appl. Phys. Lett. 90, 091109 (2007); Photon-Assisted Breakdown, Negative Resistance, And Switching In A Quantum-Well Transistor Laser, A. James, G. Walter, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 90, 152109 (2007); Franz-Keldysh Photon-Assisted Voltage-Operated Switching of a Transistor Laser, A. James, N. Holonyak, M. Feng, and G. Walter, Photonics Technology Letters, IEEE Volume: 19 Issue: 9 (2007); Experimental Determination Of The Effective Minority Carrier Lifetime In The Operation Of A Quantum-Well n-p-n Heterojunction Bipolar Light-Emitting Transistor Of Varying Base Quantum-Well Design And Doping; H. W. Then, M. Feng, N. Holonyak, Jr., and C. H. Wu, Appl. Phys. Lett. 91, 033505 (2007); Charge Control Analysis Of Transistor Laser Operation, M. Feng, N. Holonyak, Jr., H. W. Then, and G. Walter, Appl. Phys. Lett. 91, 053501 (2007); Optical Bandwidth Enhancement By Operation And Modulation Of The First Excited State Of A Transistor Laser, H. W. Then, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 91, 183505 (2007); Modulation Of High Current Gain (β>49) Light-Emitting InGaN/GaN Heterojunction Bipolar Transistors, B. F. Chu-Kung, C. H. Wu, G. Walter, M. Feng, N. Holonyak, Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 91, 232114 (2007); Collector Characteristics And The Differential Optical Gain Of A Quantum-Well Transistor Laser, H. W. Then, G. Walter, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 91, 243508 (2007); Transistor Laser With Emission Wavelength at 1544 nm, F. Dixon, M. Feng, N. Holonyak, Jr., Yong Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 93, 021111 (2008); and Optical Bandwidth Enhancement Of Heterojunction Bipolar Transistor Laser Operation With An Auxiliary Base Signal, H. W. Then, G. Walter, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 93, 163504 (2008).
In existing tilted charge devices, the optical cavity or window, defined in part by an aperture formed with an oxide, is placed after the base and emitter contact. Due to the high base sheet resistant and large current gain (emitter current) of the tilted charge device, the voltage difference across the base emitter junction is the greatest along the edge defined by the oxide aperture. This forces the recombination events (which result in the desired optical output) to localize along the perimeter of the oxide aperture, as current injection is largest in the region where voltage difference is largest. The junction voltage decreases towards the center of the optical cavity. This phenomenon is represented in
In
In the described types of devices, as above noted, the optical window or cavity is placed after the base and emitter contact. Due to the high base sheet resistant and large current gain (emitter current) of the tilted charge device, the voltage difference across the base emitter junction is greatest along the edge defined by the oxide aperture. As explained above, this forces the recombination events (which result in the desired optical output) to localize along the perimeter of the oxide aperture, as current injection is largest in the region where voltage difference is largest. The junction voltage decreases towards the center of the optical cavity, with attendant disadvantages.
Among the objects of the present invention are to overcome these and other limitations of existing light-emitting devices, such as the described tilted-charge light emitters, and to improve light emission of light-emitting and lasing semiconductor devices.
SUMMARY OF THE INVENTIONIn a form of the present invention, the light-emitting semiconductor devices are configured to obtain uniformity of carrier injection into the base region, and the optical cavity between base and emitter electrodes does not cause a deleterious non-uniformity of voltage distribution between the emitter and base (or base/drain) electrodes of the device, as in the prior art.
In accordance with a form of the invention, a method is set forth for producing light emission from a two terminal semiconductor device with improved efficiency, including the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on said drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of said base region and comprising an emitter mesa that includes at least one emitter layer; providing, in said base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of said base region and a further portion coupled with said drain region, and providing an emitter electrode on the surface of said emitter region; applying signals with respect to said base/drain and emitter electrodes to obtain light emission from said base region; and configuring said base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
In an embodiment of this form of the invention, the geometry of said emitter mesa between said electrodes is configured to promote substantial uniformity of voltage distribution in the region between the electrodes. In a form of this embodiment, the emitter mesa has a substantially rectilinear surface portion, and the step of providing said electrodes comprises providing said emitter electrode along one side of said surface portion of the emitter mesa and providing the first portion of said base/drain electrode on a portion of the base region surface adjacent the opposite side of said emitter mesa surface portion. The emitter electrode and said first portion of the base/drain electrode can be opposing linear conductive strips.
In accordance with another form of the invention, a method is provided for producing light emission from a three terminal semiconductor device with improved efficiency, including the following steps: providing a layered semiconductor structure including a semiconductor collector region comprising at least one collector layer, a semiconductor base region disposed on said collector region and including at least one base layer, and a semiconductor emitter region disposed on a portion of said base region and comprising an emitter mesa that includes at least one emitter layer; providing, in said base region, at least one region exhibiting quantum size effects; providing a collector electrode on said collector region, providing a base electrode on an exposed surface of said base region, and providing an emitter electrode on the surface of said emitter region; applying signals with respect to said collector, base, and emitter electrodes to obtain light emission from said base region; and configuring said base and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
Further features and advantages of the invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings.
In the embodiment of
A substantially symmetrical voltage drop across the base and emitter junction can be achieved by tuning the sheet resistance and geometry of the emitter mesa; e.g. by employing a geometry of the optical window or cavity (defined by in this case the exposed emitter mesa) to obtain the desired resistances. For example, the diagrams of
For an example of the embodiment of
The two-junction tilted-charge LED is fabricated by first performing wet etching steps to form emitter and base-“drain” mesas, followed by an isolation etch from the sub-“drain” layer to the substrate. Metallization steps are then performed to provide the required electrical contacts. The completed LED has only two terminals: (a) a contact to the emitter layer, and (b) another across the base and “drain” layers (see
The tilted-charge LED can be biased as a usual two-terminal device, simply operating faster. Externally the tilted-charge LED displays an electrical I-V characteristic resembling that of a p-n junction diode (see
The invention has been described with reference to particular preferred embodiments, but variations within the spirit and scope of the invention will occur to those skilled in the art. For example, appropriate reflectors can be employed to enhance extraction of output spontaneous optical emission. Also, where spontaneous emission LETs and diodes have been described, it will be understood that by employing appropriate reflective resonators, transistor lasers and diode lasers that benefit from the described features can also be devised.
Claims
1. A method for producing light emission from a two terminal semiconductor device with improved efficiency, comprising the steps of:
- providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on said drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of said base region and comprising an emitter mesa that includes at least one emitter layer;
- providing, in said base region, at least one region exhibiting quantum size effects;
- providing a base/drain electrode having a first portion on an exposed surface of said base region and a further portion coupled with said drain region, and providing an emitter electrode on the surface of said emitter region;
- applying signals with respect to said base/drain and emitter electrodes to obtain light emission from said base region; and
- configuring said base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
2. The method as defined by claim 1, further comprising configuring the geometry of said emitter mesa between said electrodes for substantial uniformity of voltage distribution in said region between said electrodes.
3. The method as defined by claim 1, further comprising providing an optical cavity for said light emission in the region between said first portion of the base/drain electrode and said emitter electrode.
4. The method as defined by claim 1, wherein said emitter mesa has a substantially rectilinear surface portion, and wherein said step of providing said electrodes comprises providing said emitter electrode along one side of said surface portion of the emitter mesa and providing the first portion of said base/drain electrode on a portion of the base region surface adjacent the opposite side of said emitter mesa surface portion.
5. The method as defined by claim 3, wherein said emitter mesa has a substantially rectilinear surface portion, and wherein said step of providing said electrodes comprises providing said emitter electrode along one side of said surface portion of the emitter mesa and providing the first portion of said base/drain electrode on a portion of the base region surface adjacent the opposite side of said emitter mesa surface portion.
6. The method as defined by claim 4, wherein said step of providing said electrodes further comprises providing said emitter electrode and the first portion of said base/drain electrode as opposing linear conductive strips.
7. The method as defined by claim 6, wherein said step of providing said emitter electrode and said first portion of said base/drain electrode as opposing linear conductive strips further comprises providing said conductive strips as having substantially the same length.
8. The method as defined by claim 1, wherein said step of providing, in said base region, a region exhibiting quantum size effects comprises providing at least one quantum well.
9. The method as defined by claim 1, further comprising providing an optical resonant cavity enclosing at least part of said base region, so that said light emission comprises laser emission.
10. A two terminal light-emitting semiconductor device for producing light emission in response to electrical signals, comprising:
- a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on said drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of said base region and comprising an emitter mesa that includes at least one emitter layer;
- said base region containing at least one region exhibiting quantum size effects; and
- a base/drain electrode having a flange portion contacting an exposed surface of said base region and a further portion contacting said drain region, and an emitter electrode on the surface of said emitter region, said electrical signals being applied with respect to said base/drain and emitter electrodes to cause light emission from said base region;
- said base/drain and emitter electrodes being configured to obtain substantial uniformity of voltage distribution in the region between said electrodes.
11. The device as defined by claim 10, wherein the geometry of said emitter mesa between said electrodes is configured to obtain substantial uniformity of voltage distribution in said region between said electrodes.
12. The device as defined by claim 10, further comprising an optical cavity for said light emission in the region between said flange portion of the base/drain electrode and said emitter electrode.
13. The device as defined by claim 10, wherein said emitter mesa has a substantially rectilinear surface portion, and wherein said emitter electrode is disposed along one side of said surface portion of the emitter mesa and said flange portion of said base/drain electrode is disposed on a portion of the base region surface adjacent the opposite side of said emitter mesa surface portion.
14. The device as defined by claim 12, wherein said emitter mesa has a substantially rectilinear surface portion, and wherein said emitter electrode is disposed along one side of said surface portion of the emitter mesa and said flange portion of said base/drain electrode is disposed on a portion of the base region surface adjacent the opposite side of said emitter mesa surface portion.
15. The device as defined by claim 13, wherein said emitter electrode and the flange portion of said base/drain electrode comprise opposing linear conductive strips.
16. The device as defined by claim 15, wherein said linear conductive strips have substantially the same length.
17. The device as defined by claim 10, wherein said region exhibiting quantum size effects comprises at least one quantum well.
18. The device as defined by claim 10, wherein said drain region comprises a tunnel junction comprising an n+ layer and a p+ layer, with said p+ layer being adjacent said base region.
Type: Application
Filed: Jul 23, 2013
Publication Date: Feb 6, 2014
Applicants: (Melaka), The Board of Trustees of The University of Illinois (Urbana, IL)
Inventors: Gabriel Walter (Champaign, IL), Nick Holonyak (Urbana, IL), Milton Feng (Champaign, IL), Chao-Hsin Wu (Champaign, IL)
Application Number: 13/949,204
International Classification: H01S 5/34 (20060101);