VAPOR CHAMBER STRUCTURE

An improvement to a vapor chamber structure comprises a first body, a second body, and a working fluid. The first body has a plurality of first channels and a plurality of second channels, the first and second channels communicating with one another. The second body has a third channel, the first and second bodies and the first, second, and third channels communicate with one another and has a wick structure and are filled with a working fluid. By means of such a design of the present invention, the first body has the effect of uniform heat dissipation and the remote heat dissipation can be achieved through the second body. Consequently, the whole heat dissipation can be considerably improved.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an improvement to a vapor chamber structure and in particular to an improvement to a vapor chamber structure with a large area for uniform heat transfer and remote heat dissipation.

2. Description of Prior Art

With the compact size of the present electronic apparatus gradually becoming the appealing demand, each component of the electronic apparatus thus continues to shrink. However, the size shrinking of the electronic apparatus is accompanied with the heat dissipation issue which becomes the major barrier against an improvement to the performance of the electronic apparatus and system. Even the semiconductor sizes of the electronic components continue to shrink; there is still a constant demand for outstanding performance

When the semiconductor size shrinks, the induced heat flux increases consequently. The challenge caused by an increase in heat flux to cool the heated product is more severe than the total amount of the increased heat. Due to the increase in heat flux, the overheating issue about the electronic products will occur for various sizes at any time, causing damage to and failure in the electronic components.

In order to overcome the issue concerning heat dissipation in a compact space caused by the prior art technology, those skilled in the art used a VC (Vapor Chamber) attached on the chip for heat dissipation. In order to increase the capillary attraction capability, the wick structures with porous supports such as copper pillars, sintered coating, sintered pillars and foam pillars are used as support and return paths. The design of the above-mentioned support is for the connection between the upper and lower walls of the micro VC in which the two walls are quite thin (applied with thickness below 1.5 mm) and may fail due to thermal expansion.

The prior art VC applies the uniform heat transfer of plane-to-plane in which the heated surface at one side of the VC contacts with a heat source and then transfers the heat uniformly to a cooling surface at opposite side of the VC. It has the advantages of a larger area for heat transfer and a fast heat transfer rate; however, its disadvantage is that it can not transfer and dissipate the heat to a remote end. If the heat can not be dissipated immediately, the heat will be accumulated around the heat source. This is the main disadvantage of the VC.

SUMMARY OF THE INVENTION

In order to effectively overcome the above disadvantage of the prior art, the primary objective of the present invention is to provide an improvement to a vapor chamber structure, which can improve the heat dissipation.

In order to achieve the above objective, the present invention provides an improvement to a vapor chamber structure comprising a first body, a second body, and a working fluid.

The first body has a plurality of first channels and a plurality of second channels, the first and second channels communicating with one another. The second body has a third channel; the second body is connected to the first body; the third channel and the first and second channels communicate with one another; a wick structure is disposed on the wall surfaces of the first, second, and third channels. The working fluid is filled in the first and second bodies.

By means of the present invention, the VC can have the effects of heat transfer through a large area and remote heat dissipation, further considerably improving the whole heat dissipation of the VC.

BRIEF DESCRIPTION OF DRAWING

FIG. 1 is a perspective view of the improvement to a vapor chamber structure according to the first embodiment of the present invention;

FIG. 2 is a cross-sectional assembled view of the improvement to a vapor chamber structure according to the first embodiment of the present invention;

FIG. 3 is a perspective assembled view of the improvement to a vapor chamber structure according to the second embodiment of the present invention; and

FIG. 4 is a perspective assembled view of the improvement to a vapor chamber structure according to the third embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The above objective and structural and functional features of the present invention will be described with reference to the preferred embodiments in the accompanying drawings.

Please refer to FIGS. 1 and 2, which are the perspective view and cross-sectional assembled view of the improvement to a vapor chamber structure according to the first embodiment. As shown in FIGS. 1 and 2, the improvement to a vapor chamber structure according to the current embodiment comprises a first body 11, a second body 12, and a working fluid 2.

The first body 11 has a plurality of first channels 111 and a plurality of second channels 112, the first and second channels 111, 112 communicating with one another.

The first and second channels 111, 112 communicate with and intersect with one another at right angles. The first body 11 comprises a first enclosure side 113 and a second enclosure side 114 which seal two ends of the first channels 111, respectively.

The second body 12 has a third channel 121; the second body 12 is connected to the first body 11 such that the third channel 121 and the first and second channels 111, 112 communicate with one another. A wick structure 3 is disposed on the wall surfaces of the first, second, and third channels 111, 112, 121. The second body 12 is a heat pipe. The second body 12 further comprises a first end 122 and a second end 123; the first end 122 is connected to the first body 11; the second end 123 extends away from the first end 122. The wick structure 3 is selected to be one of mesh, fiber, sintered powder, and grooves. In the current embodiment, the grooves are used for explanation, but not limited to this. The working fluid 2 is filled in the first and second bodies 11, 12.

The first body 11 may be formed by extrusion. When the first body 11 is extruded, the first channels 111 in the first body 11 are formed at the same time and a plurality of grooves 1111 are disposed on the wall surfaces of the first channels 111. Then, the second channels 112 are formed in the first body 11 by machining, and communicate and intersect with the first channels 111 at right angles. Next, the two open ends of the first channels 111 are sealed; the second body 12 is connected to the first body 11 such that the first, second, and third channels 111, 112, 113 communicate with one another. Finally, the first and second bodies 11, 12 are pumped to vacuum and the working fluid 2 is filled therein.

Please refer to FIG. 3, which is a perspective assembled view of the improvement to a vapor chamber structure according to the second embodiment of the present invention. As shown in FIG. 3, some structures of the second embodiment are the same as those of the first embodiment, not described again here. The main difference between the first and second embodiments is that the second embodiment further comprises a heat dissipater 4 which is connected to one end of the second body 12 opposite to the first body 11. The absorbed heat is transferred through the second body 12 and the working fluid 2 therein to the connection point between the second body 12 and the heat dissipater 4, finally through the heat dissipater 4 to perform cooling.

Please refer to FIG. 4, which is a perspective assembled view of the improvement to a vapor chamber structure according to the third embodiment of the present invention. As shown in FIG. 4, some structures of the third embodiment are the same as those of the first embodiment, not described again here. The main difference between the first and third embodiments is that in the third embodiment the first and second ends 112, 123 of the second body 12 are connected to the first body 11; a transfer portion 124 connected to a heat dissipater 4 is disposed between the first and second ends 122, 123 of the second body 12.

Through the first, second, and third embodiments of the present invention, the disadvantage of large heat accumulation around the heat source in the prior art VC can be overcome, effectively achieving the effect of remote heat dissipation.

Claims

1. An improvement to a vapor chamber structure, comprising:

a first body having a plurality of first channels and a plurality of second channels, the first and second channels communicating with one another;
a second body having a third channel, wherein the second body is connected to the first body such that the third channel and the first and second channels communicate with one another, wherein a wick structure is disposed on the wall surfaces of the first, second, and third channels; and
a working fluid filled in the first and second bodies.

2. The improvement to a vapor chamber structure according to claim 1, wherein the wick structure is selected to be one of mesh, fiber, sintered powder, and grooves.

3. The improvement to a vapor chamber structure according to claim 1, wherein the first and second channels communicate with and intersect with one another at right angles.

4. The improvement to a vapor chamber structure according to claim 1, wherein the first body is formed by extrusion.

5. The improvement to a vapor chamber structure according to claim 1, wherein the second body is a heat pipe.

6. The improvement to a vapor chamber structure according to claim 1, wherein the first body further comprises a first enclosure side and a second enclosure side which seal two ends of the first channels, respectively.

7. The improvement to a vapor chamber structure according to claim 1, wherein the second body further comprises a first end and a second end, wherein the first end is connected to the first body, wherein the second end extends away from the first end.

8. The improvement to a vapor chamber structure according to claim 1, further comprising a heat dissipater connected to one end of the second body opposite to the first body.

9. The improvement to a vapor chamber structure according to claim 1, wherein the second body further has a first end and a second end, wherein the first and second ends are connected to the first body, wherein a transfer portion connected to a heat dissipater is disposed between the first and second ends of the second body.

Patent History
Publication number: 20140216691
Type: Application
Filed: Feb 5, 2013
Publication Date: Aug 7, 2014
Applicant: ASIA VITAL COMPONENTS CO., LTD. (New Taipei City)
Inventor: Hsiu-Wei Yang (New Taipei City)
Application Number: 13/759,048
Classifications
Current U.S. Class: Utilizing Capillary Attraction (165/104.26)
International Classification: F28D 15/04 (20060101);