Semiconductor Device and Method of Making an Embedded Wafer Level Ball Grid Array (EWLB) Package on Package (POP) Device With a Slotted Metal Carrier Interposer
A semiconductor device has a semiconductor die. The semiconductor die is disposed over a conductive substrate. An encapsulant is deposited over the semiconductor die. A first interconnect structure is formed over the encapsulant. An opening is formed through the substrate to isolate a portion of the substrate electrically connected to the first interconnect structure. A bump is formed over the first interconnect structure. Conductive vias are formed through the encapsulant and electrically connected to the portion of the substrate. A plurality of bumps is formed over the semiconductor die. A first conductive layer is formed over the encapsulant. A first insulating layer is formed over the first conductive layer. A second conductive layer is formed over the first insulating layer and first conductive layer. A second insulating layer is formed over the first insulating layer and second conductive layer. Protrusions extend above the substrate.
The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of making an embedded wafer level ball-grid array (eWLB) package-on-package (PoP) device having a metal carrier interposer.
BACKGROUND OF THE INVENTIONSemiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
Semiconductor devices perform a wide range of functions such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each semiconductor die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual semiconductor die from the finished wafer and packaging the die to provide structural support and environmental isolation. The term “semiconductor die” as used herein refers to both the singular and plural form of the words, and accordingly, can refer to both a single semiconductor device and multiple semiconductor devices.
One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller semiconductor die size can be achieved by improvements in the front-end process resulting in semiconductor die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
Another goal of semiconductor manufacturing is to produce higher performance semiconductor devices. Increases in device performance can be accomplished by forming active components that are capable of operating at higher speeds. In high frequency applications, such as radio frequency (RF) wireless communications, integrated passive devices (IPDs) are often contained within the semiconductor device. Examples of IPDs include resistors, capacitors, and inductors. A typical RF system requires multiple IPDs in one or more semiconductor packages to perform the necessary electrical functions. However, high frequency electrical devices generate or are susceptible to undesired electromagnetic interference (EMI) and radio frequency interference (RFI), harmonic distortion, or other inter-device interference, such as capacitive, inductive, or conductive coupling, also known as cross-talk, which can interfere with their operation.
Another goal of semiconductor manufacturing is to produce semiconductor devices with adequate heat dissipation. High frequency semiconductor devices generally generate more heat. Without effective heat dissipation, the generated heat can reduce performance, decrease reliability, and reduce the useful lifetime of the semiconductor device.
Semiconductor die often require a top and bottom build-up interconnect structure in a fan-out wafer level chip scale package (Fo-WLCSP) for electrical connection to external devices. The build-up interconnect structures are typically formed layer-by-layer on both sides of the Fo-WLCSP. The layer-by-layer formation of the build-up interconnect structures requires long cycle time and high manufacturing cost due to the industry standard temporary bonding processes. The temporary bonding can lower manufacturing yield and increase defects.
SUMMARY OF THE INVENTIONA need exists for a simple and cost-effective interconnect structure for eWLB PoP devices. Accordingly, in one embodiment, the present invention is a method of making a semiconductor device comprising the steps of providing a semiconductor die, disposing the semiconductor die over a conductive substrate, depositing an encapsulant over the semiconductor die, forming a first interconnect structure over the encapsulant, forming an opening through the substrate to isolate a portion of the substrate electrically connected to the first interconnect structure, and forming a bump over the first interconnect structure.
In another embodiment, the present invention is a method of making a semiconductor device comprising the steps of disposing a semiconductor die over a conductive substrate, depositing an encapsulant over the semiconductor die, forming a first interconnect structure over the encapsulant, and forming an opening through the substrate to isolate a portion of the substrate electrically connected to the first interconnect structure.
In another embodiment, the present invention is a method of making a semiconductor device comprising the steps of disposing a semiconductor die over a substrate, forming an interconnect structure over the semiconductor die, forming an opening in the substrate to isolate a portion of the substrate electrically connected to the interconnect structure, and forming a bump over the interconnect structure.
In another embodiment, the present invention is a semiconductor device comprising a conductive substrate. A semiconductor die is disposed over the substrate. An interconnect structure is formed over the substrate. Openings are formed in the substrate to separate a first portion of the substrate electrically connected to the interconnect structure.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition can involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. In one embodiment, the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. In another embodiment, the portion of the photoresist pattern not subjected to light, the negative photoresist, is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
Patterning is the basic operation by which portions of the top layers on the semiconductor wafer surface are removed. Portions of the semiconductor wafer can be removed using photolithography, photomasking, masking, oxide or metal removal, photography and stenciling, and microlithography. Photolithography includes forming a pattern in reticles or a photomask and transferring the pattern into the surface layers of the semiconductor wafer. Photolithography forms the horizontal dimensions of active and passive components on the surface of the semiconductor wafer in a two-step process. First, the pattern on the reticle or masks is transferred into a layer of photoresist. Photoresist is a light-sensitive material that undergoes changes in structure and properties when exposed to light. The process of changing the structure and properties of the photoresist occurs as either negative-acting photoresist or positive-acting photoresist. Second, the photoresist layer is transferred into the wafer surface. The transfer occurs when etching removes the portion of the top layers of semiconductor wafer not covered by the photoresist. The chemistry of photoresists is such that the photoresist remains substantially intact and resists removal by chemical etching solutions while the portion of the top layers of the semiconductor wafer not covered by the photoresist is removed. The process of forming, exposing, and removing the photoresist, as well as the process of removing a portion of the semiconductor wafer can be modified according to the particular resist used and the desired results.
In negative-acting photoresists, photoresist is exposed to light and is changed from a soluble condition to an insoluble condition in a process known as polymerization. In polymerization, unpolymerized material is exposed to a light or energy source and polymers form a cross-linked material that is etch-resistant. In most negative resists, the polymers are polyisoprenes. Removing the soluble portions (i.e., the portions not exposed to light) with chemical solvents or developers leaves a hole in the resist layer that corresponds to the opaque pattern on the reticle. A mask whose pattern exists in the opaque regions is called a clear-field mask.
In positive-acting photoresists, photoresist is exposed to light and is changed from relatively nonsoluble condition to much more soluble condition in a process known as photosolubilization. In photosolubilization, the relatively insoluble resist is exposed to the proper light energy and is converted to a more soluble state. The photosolubilized part of the resist can be removed by a solvent in the development process. The basic positive photoresist polymer is the phenol-formaldehyde polymer, also called the phenol-formaldehyde novolak resin. Removing the soluble portions (i.e., the portions exposed to light) with chemical solvents or developers leaves a hole in the resist layer that corresponds to the transparent pattern on the reticle. A mask whose pattern exists in the transparent regions is called a dark-field mask.
After removal of the top portion of the semiconductor wafer not covered by the photoresist, the remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
Back-end manufacturing refers to cutting or singulating the finished wafer into the individual semiconductor die and then packaging the semiconductor die for structural support and environmental isolation. To singulate the semiconductor die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual semiconductor die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
Electronic device 50 can be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 can be a subcomponent of a larger system. For example, electronic device 50 can be part of a cellular phone, personal digital assistant (PDA), digital video camera (DVC), or other electronic communication device. Alternatively, electronic device 50 can be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components. Miniaturization and weight reduction are essential for the products to be accepted by the market. The distance between semiconductor devices must be decreased to achieve higher density.
In
In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
For the purpose of illustration, several types of first level packaging, including bond wire package 56 and flipchip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using less expensive components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
In
BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flipchip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flipchip style first level packaging without intermediate carrier 106.
An electrically conductive layer 132 is formed over active surface 130 using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 132 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 132 operates as contact pads electrically connected to the circuits on active surface 130. Conductive layer 132 can be formed as contact pads disposed side-by-side a first distance from the edge of semiconductor die 124, as shown in
In
In
Continuing from
In
In
In
In
In
In
After the formation of bumps 192, substrate or reconstituted wafer 168 is singulated through encapsulant 144, insulating layer 162, and insulating layer 166 with saw blade or laser cutting device 196 to form opening 198 separating semiconductor devices 200 in
In
In
In
In
In
In
In
In
After the formation of bumps 252, substrate or reconstituted wafer 229 is singulated through encapsulant 210, insulating layer 220, and insulating layer 228 with saw blade or laser cutting device 254 to form opening 256 separating semiconductor devices 200 in
The use of leadframe 302 to support the reconstituted wafer and form an electrical interconnect to contact pads 132 and conductive layer 310 provides improved heat dissipation through leadframe 302. Semiconductor device 300 includes exposed leadframe 302 on a surface of semiconductor device 300 to improve warpage behavior. Leadframe 302 provides stable support for the wafer level processing of semiconductor device 300 without incurring the cost of bonding and debonding from a carrier and forming other interconnect structures over conductive layer 310.
An electrically conductive bump material is deposited over contact pads 132 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to contact pads 132 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form balls or bumps 382. In some applications, bumps 382 are reflowed a second time to improve electrical contact to contact pads 132. Bumps 382 can also be compression bonded or thermocompression bonded to contact pads 132. Bumps 382 represent one type of interconnect structure that can be formed over contact pads 132. The interconnect structure can also use stud bump, micro bump, or other electrical interconnect.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
Claims
1. A method of making a semiconductor device, comprising:
- providing a conductive substrate;
- disposing a semiconductor die over the conductive substrate;
- depositing an encapsulant over the semiconductor die;
- forming an interconnect structure over the encapsulant; and
- forming an opening through the conductive substrate to isolate a portion of the conductive substrate electrically connected to the interconnect structure.
2. The method of claim 1, further including forming a plurality of conductive vias through the encapsulant.
3. The method of claim 1, further including forming the opening over the semiconductor die.
4. The method of claim 1, wherein the opening forms a plurality of contact pads electrically connected to the interconnect structure.
5. The method of claim 1, wherein the encapsulant is coplanar with a surface of the semiconductor die.
6. The method of claim 1, wherein the conductive substrate includes a plurality of protrusions extending above a surface of the conductive substrate.
7. A method of making a semiconductor device, comprising:
- providing a conductive substrate;
- disposing a semiconductor die over the conductive substrate;
- depositing an encapsulant over the semiconductor die;
- forming an interconnect structure over the encapsulant; and
- removing a first portion of the conductive substrate to isolate a second portion of the conductive substrate.
8. The method of claim 7, further including forming a conductive via through the encapsulant.
9. The method of claim 7, wherein removing the first portion of the conductive substrate forms an opening in the conductive substrate extending over the semiconductor die.
10. The method of claim 7, wherein removing the first portion of the conductive substrate forms an opening in the conductive substrate outside a footprint of the semiconductor die.
11. The method of claim 7, wherein the conductive substrate includes a protrusion extending from a surface of the conductive substrate.
12. The method of claim 7, wherein removing the first portion of the conductive substrate forms a plurality of contact pads electrically connected to the interconnect structure.
13. The method of claim 7, wherein removing the first portion of the conductive substrate leaves a continuous portion of the conductive substrate over the semiconductor die.
14. A method of making a semiconductor device, comprising:
- providing a substrate;
- disposing a semiconductor die over the substrate;
- forming an interconnect structure over the semiconductor die; and
- removing a portion of the substrate.
15. The method of claim 14, further including:
- depositing an encapsulant over the semiconductor die; and
- forming a conductive via through the encapsulant.
16. The method of claim 14, wherein removing the portion of the substrate forms a plurality of contact pads.
17. The method of claim 14, wherein removing the portion of the substrate forms an opening in the substrate extending over the semiconductor die.
18. The method of claim 14, wherein the substrate includes a leadframe.
19. The method of claim 14, wherein the substrate includes a protrusion extending from a surface of the substrate.
20. The method of claim 14, wherein removing the portion of the substrate leaves a continuous portion of the substrate over the semiconductor die.
21. A semiconductor device, comprising:
- a substrate;
- a semiconductor die disposed over the substrate;
- and
- an opening formed in the substrate and separating a first portion of the substrate from a second portion of the substrate.
22. The semiconductor device of claim 21, wherein a continuous portion of the substrate is disposed over the semiconductor die.
23. The semiconductor device of claim 21, further including a protrusion extending from the substrate.
24. The semiconductor device of claim 21, further including
- a conductive via formed over the substrate.
25. The semiconductor device of claim 21, further including an interconnect structure formed over the semiconductor die and electrically connected to the first portion of the substrate.
26. The semiconductor device of claim 21, wherein the opening extends over the semiconductor die.
Type: Application
Filed: Jun 14, 2013
Publication Date: Apr 2, 2015
Patent Grant number: 9269691
Inventors: HeeJo Chi (Kyoungki-do), HanGil Shin (Seoul), NamJu Cho (Gyeonggi-do)
Application Number: 13/918,103
International Classification: H01L 23/00 (20060101); H01L 23/498 (20060101); H01L 21/56 (20060101); H01L 23/522 (20060101);