FACILITATING FABRICATING GATE-ALL-AROUND NANOWIRE FIELD-EFFECT TRANSISTORS
Methods are presented for facilitating fabrication of a semiconductor device, such as a gate-all-around nanowire field-effect transistor. The methods include, for instance: providing at least one stack structure including at least one layer or bump extending above the substrate structure; selectively oxidizing at least a portion of the at least one stack structure to form at least one nanowire extending within the stack structure(s) surrounded by oxidized material of the stack structure(s); and removing the oxidized material from the stack structure(s), exposing the nanowire(s). This selectively oxidizing may include oxidizing an upper portion of the substrate structure, such as an upper portion of one or more fins supporting the stack structure(s) to facilitate full 360° exposure of the nanowire(s). In one embodiment, the stack structure includes one or more diamond-shaped bumps or ridges.
Latest Patents:
- Semiconductor device comprising magnetic tunneling junctions with different distances/widths in a magnetoresistive random access memory
- Shader-based dynamic video manipulation
- Methods of forming integrated assemblies with improved charge migration impedance
- Methods and apparatus to automate receivability updates for media crediting
- Basketball hoop
The present invention relates to integrated circuits and to methods of manufacturing integrated circuits, and more particularly, the present invention relates to methods for facilitating fabrication of semiconductor devices having one or more nanowires, such as gate-all-around nanowire field-effect transistors.
BACKGROUND OF THE INVENTIONComplementary metal oxide semiconductor (CMOS) technology is the primary technology employed for ultra-large scale integrated (ULSI) circuits. Over the past decades, reduction in the size of CMOS transistors has been a principle focus of the microelectronics industry.
Transistors, such as metal oxide semiconductor field-effect transistors (MOSFETs), are generally either bulk semiconductor-type devices or silicon-on-insulator (SOI)-type devices. Most integrated circuits are fabricated in a CMOS process on a bulk semiconductor substrate.
In bulk semiconductor-type devices, transistors, such as MOSFETs, are built on top of the surface of a bulk substrate. The substrate is doped to form source and drain regions, and the conductive layer is provided between the source and drain regions. The conductive layer operates as a gate for the transistor, and the gate controls current in a channel between the surface and the drain regions. As transistors become smaller, the body thickness of the transistor (or thickness of the depletion layer below the inversion channel) must be scaled down to achieve superior short-channel performance.
In practice, the geometry of the gate and channel can become quite complicated. In one class of the device, a gate may be placed beneath the channel, as well as on top of the channel and its sides, to define a gate-all-around device, such as a gate-all-around MOSFET device. The gate-all-around configuration advantageously significantly increases the extent of the inversion layer.
BRIEF SUMMARYVarious shortcomings of the prior art are overcome, and additional advantages are provided through the provision, in one aspect, of a method which includes facilitating fabrication of a semiconductor device including at least one nanowire. The facilitating fabrication includes: providing at least one stack structure having at least one layer or bump extending above a substrate structure; selectively oxidizing at least a portion of the at least one stack structure to form at least one nanowire extending therein surrounded by oxidized material of the at least one stack structure; and removing the oxidized material from the at least one stack structure, exposing the at least one nanowire.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Aspects of the present invention and certain features, advantages, and details thereof, are explained more fully below with reference to the non-limiting examples illustrated in the accompanying drawings. Descriptions of well-known materials, fabrication tools, processing techniques, etc, are omitted so as not to unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific examples, while indicating aspects of the invention, are given by way of illustration only, and are not by way of limitation. Various substitutions, modifications, additions, and/or arrangements, within the spirit and/or scope of the underlying inventive concepts will be apparent to those skilled in the art from this disclosure.
Disclosed herein, at least in part, are methods of facilitating fabrication of a semiconductor device having one or more nanowires. As used herein, a nanowire is an elongate nanostructure with, for instance, a diameter on the order of a few nanometers or less. Alternatively, a nanowire can be defined as an elongate structure having a thickness or diameter constrained to, for instance, ten nanometers or less, and an unconstrained length. By way of example, semiconductor devices are discussed herein using semiconducting nanowires. In one embodiment, the nanowires are incorporated into transistors, such as metal oxide semiconductor field-effect transistors (MOSFETs). Advantageously, the processes disclosed herein are compatible with complementary metal oxide semiconductor (CMOS) processing. As noted, the geometry of the gate and channel of a field-effect transistor (FET) can be quite complicated. In one class of semiconductor device, a gate may be placed beneath the channel, as well as on top of the channel and its sides, to define a gate-all-around device, such as a gate-all-around MOSFET device. A gate-all-around MOSFET device advantageously has a significantly increased inversion layer. In one implementation, the gate-all-around MOSFET may be implemented with a nanowire, around which the gate structure is formed.
The nanowire field-effect transistor with a gate-all-around structure is of significant interest in the semiconductor fabrication industry due to its excellent gate controllability on the channel, and minimized short channel effect. However, fabrication of a nanowire FET can be challenging. Moreover, the drive current of a nanowire FET is largely restricted by the small cross sectional area of the single nanowire. Proposed herein are different processes to fabricate nanowires, including nanowires vertically-oriented in parallel-spaced relation so as to form a type of vertical stack or fin. The vertical alignment of multiple nanowires can provide higher drive current per device area. Further, the processes disclosed herein can be employed with different types of nanowires, such as different types of semiconductor nanowires, including, for instance, silicon nanowire, or silicon germanium or germanium nanowires.
Generally stated, disclosed herein are methods for facilitating fabrication of a semiconductor device having one or more nanowires. The facilitating fabricating includes, for instance: providing at least one stack structure having at least one layer or bump extending above the substrate structure; selectively oxidizing at least a portion of the at least one stack structure to form at least one nanowire extending therein surrounded by oxidized material of the at least one stack structure; and removing the oxidized material from the at least one stack structure, exposing the at least one nanowire. In one embodiment, the stack structure(s) includes multiple layers or bumps extending above the substrate structure, the selectively oxidizing the at least a portion of the stack structure(s) facilitates forming multiple nanowires extending therein surrounded by the oxidized material of the stack structure(s), and the removing of the oxidized material from the stack structure exposes multiple nanowires. By way of example, the multiple nanowires may be spaced apart and extend substantially in parallel, vertical alignment to form, for instance, a fin or extended fin portion.
In one implementation, providing at least one stack structure may include growing multiple layers of a first semiconductor material and a second semiconductor material over the substrate structure, and etching the multiple layers of materials to provide the stack structure(s). By way of specific example, multiple alternating layers of the first semiconductor material and the second semiconductor material may be grown over a substrate structure, such as over one or more fins extending above a substrate. As an example, the first semiconductor material may be or include silicon germanium (SiGe), and the second semiconductor material may be or include silicon (Si).
In one embodiment, the selectively oxidizing may include oxidizing an upper portion of the substrate structure, and the removing may include removing oxidized material from the upper portion of the substrate structure to facilitate full 360° exposure of at least a portion of the at least one nanowire, for instance, to facilitate subsequently forming a gate-all-around structure around the exposed nanowire(s).
In one implementation, the stack structure includes one or more bumps (such as one or more ridges) extending above the substrate structure, and the one or more bumps may be configured or oriented as diamond-shaped bumps. By way of example, multiple diamond-shaped bumps may be grown using successive epitaxial processes such as described herein below. In one implementation, the one or more bumps extend from an upper portion of a fin of the substrate structure, and the selectively oxidizing may include oxidizing an upper portion of the fin. In such a case, the removing includes removing (at least in part) the oxidized material of the upper portion of the fin, for instance, to facilitate full 360° exposure of a lower-most nanowire.
Different techniques are presented for establishing, in certain embodiments, multiple stacked, diamond-shaped bumps extending above a substrate structure. In one implementation, providing the stack structure may include: forming, via first epitaxial process, a first diamond-shaped bump of the multiple bumps extending from an upper portion of the substrate structure (such as an upper portion of a fin extending above a substrate); providing a hard-mask layer conformally wrapping around the first diamond-shaped bump; etching the hard-mask layer to reveal a tip or upper portion of the first diamond-shaped bump; forming via a second epitaxial process, a second diamond-shaped bump extending from the first diamond-shaped bump; and subsequently removing the hard-mask layer from the first diamond-shaped bump to reveal the multiple bumps. If three or more diamond-shaped bumps are desired, the process is repeated for each successive bump being grown in the stack structure (or fin).
In an alternate process, providing the stack structure may include: growing, via a first epitaxial process, a first diamond-shaped bump of the multiple bumps from an upper portion of the substrate structure; depositing an isolation layer covering over the first diamond-shaped bump; etching the isolation layer to reveal a tip or upper portion of the first diamond-shaped bump; growing, via second epitaxial process, a second diamond-shaped bump from the first diamond-shaped bump; and further etching the isolation layer to reveal the first diamond-shaped bump and the second diamond-shaped bump of the multiple bumps. Again, if three or more diamond-shaped bumps are desired, this process may be repeated for each successive bump being grown in the stack structure (or fin).
Reference is made below to the drawings, which are not drawn to scale for ease of understanding, wherein the same reference numbers used throughout different figures designate the same or similar components.
In one example, substrate structure 101 may be a bulk semiconductor material such as, for example, a bulk silicon wafer. In another embodiment, substrate structure 101 may be any silicon-containing substrate including, but not limited to, a substrate fabricated of or including silicon (Si), single crystal silicon, polycrystalline Si, amorphous Si, silicon-on-nothing (SON), silicon-on-insulator (SOI), or silicon-on-replacement insulator (SRI) or the like. Substrate structure 101 may in addition or instead include various isolations, dopings and/or device features. For instance, the substrate may include other suitable elementary semiconductors, such as, for example, germanium (Ge) in crystal, a compound semiconductor such as silicon carbide (SiC), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (InSb) or combinations thereof; an alloy semiconductor including GaAsP, AlInAs, GaInAs, GaInP, or GaInAsP or combinations thereof.
In one example, first material 111 may be epitaxially grown or deposited over substrate structure 101, and may be an epitaxial single crystalline semiconductor layer. For example, first material 111 may include a layer of silicon germanium, which may be expressed as Si1-xGex wherein x, the atomic ratio of germanium in silicon, may be less than or substantially equal to about 1, although the atomic ratio is about 0.3 to about 0.7 in one example. As a specific example, the atomic ratio of germanium present in the layer of silicon germanium may be about 0.5. Silicon germanium first material 111, may be formed (for example) by various epitaxial growth processes such as ultra-high vacuum chemical vapor deposition (UHV-CVD), low-pressure CVD (LPCVD), reduced-pressure CVD (RPCVD), rapid thermal CVD (RTCVD), or molecular beam epitaxy (MBE). In one example, the CVD-based epitaxial growth may take place at a temperature of between about 600° C. to about 1100° C., while the MBE may typically use a lower temperature. In a specific example, the selective epitaxial growth of the silicon germanium layer may be performed using halogermanes and silanes as the source gases at temperatures below 600° C. A silicon germanium first material 111 may have a thickness of between about 10 to 100 nanometers, depending on the metastable thickness of the Si1-xGex layer.
Deposition of second material 112 over first material 111 may occur using processes such as CVD or MBE, and the thickness may be about 10 nanometers to about 100 nanometers, by way of example only. In a specific example, the thickness of second material 112 may be between, for instance, 10 nanometers and 100 nanometers, and second material, such as a layer of silicon, may be grown by flowing over the structure a reactant gas, such as dichlorosilane SiH2Cl2, trichlorosilane SiHCl3, silicontetrachloride SiCl4 or silane SiH4 together with a carrier gas such as hydrogen gas to form a uniform silicon second material 112.
As illustrated in
By way of example, formation of stack structures 115 may be achieved through patterning with various approaches such as, for instance, direct lithography; sidewall image transfer technique; extreme ultraviolet lithography (EUV); an e-beam technique; litho-etch litho-etch; or litho-etch litho-freeze. The etching may be performed, for example, by any suitable etching process, such as an anisotropic dry etching process, for instance, reactive-ion-etching (RIE) in sulfur hexafluoride (SF6).
After providing the stack structure(s), the process includes thermally oxidizing the structure to, in one implementation, fully oxidize silicon within the stack structures 115 and obtain oxidized material 120, as illustrated in
As illustrated in
Note also that as used herein, p-type dopant refers to the addition of an impurity to the gate structure (which includes (for example) a sacrificial material formed of an intrinsic semiconductor) to create deficiencies of valence electrons. Examples of a p-type dopant may include boron, aluminum, gallium, or indium, being added to a polysilicon sacrificial material of the gate structure. The n-type dopant refers to the addition of impurities to, for instance, an intrinsic semiconductor material of the gate structure(s), which contribute more electrons to an intrinsic material, and may include (for instance) phosphorus, antimony, or arsenic.
As illustrated in
As noted above, in one implementation, the stack structures may each include or be defined by one or more bumps, which may extend a length across the substrate structure as one or more ridges. For instance, these one or more bumps may be configured or oriented on edge as diamond-shaped bumps, which may be vertically aligned or stacked in the stack structure.
Referring first to the process of
By way of example, substrate 201 may be a bulk semiconductor material such as, for example, a bulk silicon wafer in a crystalline structure with any suitable crystallographic orientation, for instance, (100) and (110) orientations. In one example, the semiconductor substrate has a planar (100) crystallographic surface orientation (referred to as “(100)” surface) and, where the semiconductor substrate is a wafer, may further include a notch (not shown) at an edge of the wafer, along any suitable direction, such as, for example <110> (most popular) or <100> direction. Note that the crystal direction is indicated by “<100>,” while the crystal surface is denoted by (100). By way of an example, substrate 201 may be any silicon-containing substrate including, but not limited to, a substrate fabricated of or including silicon (Si), single crystal silicon, polycrystalline Si, amorphous Si, silicon-on-nothing (SON), silicon-on-insulator (SOI), or silicon-on-replacement insulator (SRI) or the like. Substrate 201 may in addition or instead include various isolations, dopings and/or device features. For instance, the substrate may include other suitable elementary semiconductors, such as, for example, germanium (Ge) in crystal, a compound semiconductor such as silicon carbide (SiC), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (InSb) or combinations thereof; an alloy semiconductor including GaAsP, AlInAs, GaInAs, GaInP, or GaInAsP or combinations thereof.
As one skilled in art will understand, where substrate 201 is a semiconductor wafer including an orientation notch (in <110> or <100> directions), multiple fins 210 may be positioned substantially parallel or perpendicular to the direction as defined by the notch (or flat) pointing to <110> or <100> direction. Multiple fins 210 may exhibit a rectangular shape with an upper surface of (100) crystallographic surface orientation and a (110) crystallographic surface on the sidewall surfaces in case the notch pointing to <110> direction. Alternatively, the crystallographic orientation of the upper surface and the sidewall surface of multiple fins 210 may include a (100) surface orientation, in the case of the substrate including a notch aligned toward <100> direction.
First diamond-shaped bumps 220, may be epitaxially grown from respective upper portions of multiple fins 210 using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD, LPCVD, or other applicable methods. In one example, first diamond-shaped bumps 220 may include or be fabricated of silicon or materials, such as silicon doped with carbon and phosphorous Si:C(P), where the atomic percentage of carbon may be about 1 percent to about 3 percent or silicon doped with phosphorus (SiP), where the atomic percentage of phosphorus may vary, for instance, between about 0.1 percent to about 10 percent. In one example, silicon doped with phosphorus may be formed using gases such as, for example, dichlorosilane (SiH2Cl2) gas or silane (SiH4) with phosphine (PH3). In another example, the semiconductor source gas may be a silicon source gas, such as, for example, silane (SiH4) gas, a disilane (Si2H6) gas, a dichlorosilane (SiH2Cl2) gas, a SiHCl3 gas and a SiCl4 gas or may include a carbon source gas for the growth of SiC.
In another example, first diamond-shaped bumps 220 may include or be fabricated of materials, such as, for example, silicon germanium (SiGe) where the atomic percentage of germanium may vary, for instance, between about 0.1 percent to about 10 percent, and may be epitaxially grown above the silicon (Si) fins. The epitaxial growth may be realized using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD or other applicable methods and may be initiated using a silicon germanium source gas, which may include a stoichiometric ratio of silicon source gas and the germanium source gas. The stoichiometric ratio depends on the percentage of SiGe that is being grown. In addition, the SiGe may be doped as well. The semiconductor source gas may instead be, for example, one of the more advanced gases from the family of germyl-silanes, such as H3GeSiH3, (H3Ge)2SiH2, (H3Ge)3SiH, or (H3Ge)4Si.
As illustrated in
By way of example, thin hard-mask or isolation layer 230 may be deposited using conventional deposition processes, such as, for example, chemical vapor deposition (CVD), low-pressure CVD, or plasma-enhanced CVD (PE-CVD). In one example, isolation layer 230, may have a conventional thickness and include or be fabricated of a material such as, for example, silicon nitride. In a specific example, silicon nitride may be deposited using process gases such as, for example, dichlorosilane (SiH2Cl2) and ammonia (NH3) and using known process conditions.
As shown in
Next, as illustrated in
Second diamond-shaped bumps 220′, may be epitaxially grown from respective upper portions 221 of first diamond-shaped bumps 220, using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD, LPCVD, or other applicable methods. In one example, second diamond-shaped bumps 220′ may include or be fabricated of materials, such as silicon doped with carbon and phosphorous Si:C(P), where the atomic percentage of carbon may be about 1 percent to about 3 percent or silicon doped with phosphorus (SiP), where the atomic percentage of phosphorus may vary, for instance, between about 0.1 percent to about 10 percent. In one example, silicon doped with phosphorus may be formed using gases such as, for example, dichlorosilane (SiH2Cl2) gas or silane (SiH4) with phosphine (PH3). In another example, the semiconductor source gas may be a silicon source gas, such as, for example, silane (SiH4) gas, a disilane (Si2H6) gas, a dichlorosilane (SiH2Cl2) gas, a SiHCl3 gas and a SiCl4 gas or may include a carbon source gas for the growth of SiC.
In another example, second diamond-shaped bumps 220′ may include or be fabricated of materials, such as, for example, silicon germanium (SiGe) where the atomic percentage of germanium may vary, for instance, between about 0.1 percent to about 10 percent, and may be epitaxially grown above the silicon (Si) fins. The epitaxial growth may be realized using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD or other applicable methods and may be initiated using a silicon germanium source gas, which may include a stoichiometric ratio of silicon source gas and the germanium source gas. The stoichiometric ratio depends on the percentage of SiGe that is being grown. In addition, the SiGe may be doped as well. The semiconductor source gas may instead be, for example, one of the more advanced gases from the family of germyl-silanes, such as H3GeSiH3, (H3Ge)2SiH2, (H3Ge)3SiH, or (H3Ge)4Si.
As noted,
By way of example, substrate 301 may be a bulk semiconductor material such as, for example, a bulk silicon wafer in a crystalline structure with any suitable crystallographic orientation, for instance, (100) and (110) orientations. In one example, the semiconductor substrate has a planar (100) crystallographic surface orientation (referred to as “(100)” surface) and, where the semiconductor substrate is a wafer, may further include a notch (not shown) at an edge of the wafer, along any suitable direction, such as, for example <110> (most popular) or <100> direction. Note that the crystal direction is indicated by “<100>,” while the crystal surface is denoted by (100). By way of an example, substrate 301 may be any silicon-containing substrate including, but not limited to, a substrate fabricated of or including silicon (Si), single crystal silicon, polycrystalline Si, amorphous Si, silicon-on-nothing (SON), silicon-on-insulator (SOI), or silicon-on-replacement insulator (SRI) or the like. Substrate 301 may in addition or instead include various isolations, dopings and/or device features. For instance, the substrate may include other suitable elementary semiconductors, such as, for example, germanium (Ge) in crystal, a compound semiconductor such as silicon carbide (SiC), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (InSb) or combinations thereof; an alloy semiconductor including GaAsP, AlInAs, GaInAs, GaInP, or GaInAsP or combinations thereof.
As one skilled in art will understand, where substrate 301 is a semiconductor wafer including an orientation notch (in <110> or <100> directions), multiple fins 310 may be positioned substantially parallel or perpendicular to the direction as defined by the notch (or flat) pointing to <110> or <100> direction. Multiple fins 310 may exhibit a rectangular shape with an upper surface of (100) crystallographic surface orientation and a (110) crystallographic surface on the sidewall surfaces in case the notch pointing to <110> direction. Alternatively, the crystallographic orientation of the upper surface and the sidewall surface of multiple fins 310 may include a (100) surface orientation, in the case of the substrate including a notch aligned toward <100> direction.
Diamond-shaped bumps 320, may be epitaxially grown from respective upper portions of multiple fins 310 using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD, LPCVD, or other applicable methods. In one example, first diamond-shaped bumps 320 may include or be fabricated of materials, such as silicon doped with carbon and phosphorous Si:C(P), where the atomic percentage of carbon may be about 1 percent to about 3 percent or silicon doped with phosphorus (SiP), where the atomic percentage of phosphorus may vary, for instance, between about 0.1 percent to about 10 percent. In one example, silicon doped with phosphorus may be formed using gases such as, for example, dichlorosilane (SiH2Cl2) gas or silane (SiH4) with phosphine (PH3). In another example, the semiconductor source gas may be a silicon source gas, such as, for example, silane (SiH4) gas, a disilane (Si2H6) gas, a dichlorosilane (SiH2Cl2) gas, a SiHCl3 gas and a SiCl4 gas or may include a carbon source gas for the growth of SiC.
In another example, first diamond-shaped bumps 320 may include or be fabricated of materials, such as, for example, silicon germanium (SiGe) where the atomic percentage of germanium may vary, for instance, between about 0.1 percent to about 10 percent, and may be epitaxially grown above the silicon (Si) fins. The epitaxial growth may be realized using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD or other applicable methods and may be initiated using a silicon germanium source gas, which may include a stoichiometric ratio of silicon source gas and the germanium source gas. The stoichiometric ratio depends on the percentage of SiGe that is being grown. In addition, the SiGe may be doped as well. The semiconductor source gas may instead be, for example, one of the more advanced gases from the family of germyl-silanes, such as H3GeSiH3, (H3Ge)2SiH2, (H3Ge)3SiH, or (H3Ge)4Si.
As illustrated in
As shown in
Next, as illustrated in
Second diamond-shaped bumps 220′, may be epitaxially grown from respective upper portions of first diamond-shaped bumps 220, using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD, LPCVD, or other applicable methods. In one example, second diamond-shaped bumps 220′ may include or be fabricated of materials, such as silicon doped with carbon and phosphorous Si:C(P), where the atomic percentage of carbon may be about 1 percent to about 3 percent or silicon doped with phosphorus (SiP), where the atomic percentage of phosphorus may vary, for instance, between about 0.1 percent to about 10 percent. In one example, silicon doped with phosphorus may be formed using gases such as, for example, dichlorosilane (SiH2Cl2) gas or silane (SiH4) with phosphine (PH3). In another example, the semiconductor source gas may be a silicon source gas, such as, for example, silane (SiH4) gas, a disilane (Si2H6) gas, a dichlorosilane (SiH2Cl2) gas, a SiHCl3 gas and a SiCl4 gas or may include a carbon source gas for the growth of SiC.
In another example, second diamond-shaped bumps 220′ may include or be fabricated of materials, such as, for example, silicon germanium (SiGe) where the atomic percentage of germanium may vary, for instance, between about 0.1 percent to about 10 percent, and may be epitaxially grown above the silicon (Si) fins. The epitaxial growth may be realized using selective epitaxial growth via various methods, such as, for example, CVD, RPCVD or other applicable methods and may be initiated using a silicon germanium source gas, which may include a stoichiometric ratio of silicon source gas and the germanium source gas. The stoichiometric ratio depends on the percentage of SiGe that is being grown. In addition, the SiGe may be doped as well. The semiconductor source gas may instead be, for example, one of the more advanced gases from the family of germyl-silanes, such as H3GeSiH3, (H3Ge)2SiH2, (H3Ge)3SiH, or (H3Ge)4Si.
Referring to
As illustrated in
As shown in
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of a device that “comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of one or more aspects of the invention and the practical application, and to enable others of ordinary skill in the art to understand one or more aspects of the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Claims
1. A method comprising:
- facilitating fabrication of a semiconductor device comprising multiple nanowires, the facilitating comprising:
- forming a first stack structure comprising at least one layer or bump extending above a substrate structure;
- after forming said first stack structure, forming a second stack structure on said first stack structure comprising at least one layer or bump extending above the substrate;
- selectively oxidizing at least a portion of the first and second stack structure to form multiple nanowires extending within each of said first and second stack structure by oxidized material; and
- removing the oxidized material from the first and second stack structure, exposing the multiple nanowires.
2. The method of claim 1, wherein
- the multiple nanowires extending in substantially parallel, vertical alignment.
3. The method of claim 2, comprising growing multiple alternating layers of silicon-germanium (SiGe) and silicon (Si) over the substrate structure and etching the multiple layers to provide the first or second stack structure.
4. The method of claim 3, wherein the selectively oxidizing concentrates the germanium (Ge) of the silicon-germanium (SiGe) layers into the multiple nanowires.
5. The method of claim 1, wherein the selectively oxidizing further comprises oxidizing an upper portion of the substrate structure, and the removing comprises removing oxidized material from the upper portion of the substrate structure to facilitate full 360° exposure of the at least one nanowire.
6. The method of claim 5, wherein the substrate structure comprises silicon (Si), and the at least one layer or bump of said first stack structure or second stack structure comprises silicon-germanium (SiGe).
7. The method of claim 1, wherein the removing comprises etching away the oxidized material to achieve full 360° exposure of at least a portion of the at least one nanowire.
8. The method of claim 1, wherein the at least one layer or bump of the first stack structure or second stack structure comprises at least one bump extending above the substrate structure, each bump being configured as a diamond-shaped bump.
9. The method of claim 8, wherein the forming a first stack structure and, forming a second stack structure comprises epitaxially growing the diamond-shaped bump(s) above the substrate structure.
10. The method of claim 8, wherein the substrate structure comprises at least one fin extending above a substrate, the at least one bump being part of or extending from the at least one fin at an upper portion of the at least one fin.
11. The method of claim 10, wherein the selectively oxidizing comprises selectively oxidizing the upper portion of the at least one fin, and the removing comprises removing, at least in part, the oxidized material from the upper portion of the at least one fin to facilitate full 360° exposure of at least a portion of the at least one nanowire.
12. The method of claim 11, wherein the removing further comprises providing an oxide layer covering over the first or second stack structure, planarizing the oxide layer, and etching back the oxide layer and the oxide material to reveal the at least one nanowire.
13. The method of claim 8, wherein the forming a first stack structure and thereafter, forming a second stack structure results in multiple stacked bumps extending above the substrate structure, the multiple stacked bumps comprising the at least one bump and each being configured as a diamond-shaped bump, with one diamond-shaped bump being disposed above another diamond-shaped bump of the multiple stacked bumps of the at least one stack structure.
14. The method of claim 13, wherein the providing comprises:
- forming, via a first epitaxial process, a first diamond-shaped bump of the multiple stacked bumps extending from an upper portion of the substrate structure;
- providing a hard-mask layer conformally wrapping around the first diamond-shaped bump;
- etching the hard-mask layer to reveal an upper portion of the first diamond-shaped bump;
- forming, via a second epitaxial process, a second diamond-shaped bump extending from the upper portion of the first diamond-shaped bump; and
- removing the hard-mask layer from the first diamond-shaped bump to reveal the multiple stacked bumps.
15. The method of claim 14, wherein the hard-mask layer comprises one of an oxide or a nitride conformally wrapping around the first diamond-shaped bump.
16. The method of claim 13, wherein the forming a first stack structure and thereafter, forming a second stack structure comprises:
- forming, via a first epitaxial process, a first diamond-shaped bump of the multiple stacked bumps extending from an upper portion of the substrate structure;
- depositing an isolation layer covering over the first diamond-shaped bump;
- etching the isolation layer to reveal an upper portion of the first diamond-shaped bump;
- forming, via a second epitaxial process, a second diamond-shaped bump extending from the upper portion of the first diamond-shaped bump; and
- further etching the isolation layer to reveal the first diamond-shaped bump and the second diamond-shaped bump of the multiple stacked bumps.
17. The method of claim 1, wherein the first and second stack structure comprises:
- multiple bumps, the multiple bumps being part of or extending above a fin of the substrate structure, and the multiple bumps comprising the at least one layer or bump of the at least one stack structure, wherein each bump is configured as a diamond-shaped bump; and
- the selectively oxidizing the at least a portion of the at least one stack structure facilitates forming multiple nanowires extending therein surrounded by the oxidized material of the at least one stack structure; and
- the removing of the oxidized material from the at least one stack structure exposes the multiple nanowires, the multiple nanowires extending in substantially parallel, vertical alignment.
18. The method of claim 17, further comprising, prior to the selectively oxidizing, removing an upper portion of an isolation layer at least partially surrounding the fin of the substrate structure to expose an upper portion of the fin, and wherein the selectively oxidizing comprises selectively oxidizing the upper portion of the fin, and the removing comprises removing, at least in part, oxidized material from the upper portion of the fin to facilitate full 360° exposure of at least a portion of one nanowire of the multiple nanowires.
19. The method of claim 17, wherein the selectively oxidizing leaves unoxidized at least a first support portion and a second support portion of the multiple bumps at opposite ends of the multiple nanowires to support the multiple nanowires upon the removing of the oxidized material from the at least one stack structure.
20. The method of claim 19, wherein the semiconductor device comprises a fin field-effect transistor, the first support portion of the multiple bumps is a source region of the fin field-effect transistor, and the second support portion of the multiple bumps is a drain region of the fin field-effect transistor.
21. The method of claim 1, further comprising providing a first support and a second support at opposite ends of the multiple nanowires to support the at least one nanowire upon the removing of the oxidized material from the at least one stack structure, the multiple nanowires existing in part within the first and second support.
Type: Application
Filed: Oct 30, 2015
Publication Date: Apr 7, 2016
Applicant: (Grand Cayman)
Inventors: Jin Ping LIU (Ballston Lake, NY), Jing WAN (Malta, NY), Andy WEI (Kanata)
Application Number: 14/928,057