SYSTEMS AND METHODS FOR CONTROLLING SOFT BIAS THICKNESS FOR TUNNEL MAGNETORESISTANCE READERS

Systems and methods for controlling a thickness of a soft bias layer in a tunnel magnetoresistance (TMR) reader are provided. One such method involves providing a magnetoresistive sensor stack including a free layer and a bottom shield layer, performing contiguous junction milling on the sensor stack, depositing an insulating layer on the sensor stack, depositing a spacer layer on the insulating layer, performing an angled milling sub-process to remove preselected portions of the spacer layer, depositing a soft bias layer on the sensor stack, and depositing a top shield layer on the sensor stack and the soft bias layer. The method can further involve adjusting an alignment of a top surface of the spacer layer with respect to the free layer. In one such case, the top surface of the spacer layer is adjust to be below the free layer.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and the benefit of U.S. Provisional Application No. 61/946,444, filed on Feb. 28, 2014, having Attorney Docket No. F6843.P, and entitled, “SYSTEMS AND METHODS FOR MINIMIZING SOFT BIAS MATERIAL ON PIN LAYER FOR TUNNEL MAGNETORESISTANCE READERS”, the entire content of which is incorporated herein by reference. This application is a divisional of U.S. application Ser. No. 14/308,366, filed on Jun. 18, 2014, having Attorney Docket No. F6843, and entitled, “SYSTEMS AND METHODS FOR CONTROLLING SOFT BIAS THICKNESS FOR TUNNEL MAGNETORESISTANCE READERS”, the entire content of which is incorporated herein by reference.

BACKGROUND

Magnetic storage systems, such as a hard disk drive (HDD), are utilized in a wide variety of devices in both stationary and mobile computing environments. Examples of devices that incorporate magnetic storage systems include desktop computers, portable notebook computers, portable hard disk drives, digital versatile disc (DVD) players, high definition television (HDTV) receivers, vehicle control systems, cellular or mobile telephones, television set top boxes, digital cameras, digital video cameras, video game consoles, and portable media players.

A typical disk drive includes magnetic storage media in the form of one or more flat disks. The disks are generally formed of two main substances, namely, a substrate material that gives it structure and rigidity, and a magnetic media coating that holds the magnetic impulses or moments that represent data. Such typical disk drives also typically include a read head and a write head, generally in the form of a magnetic transducer which can sense and/or change the magnetic fields stored on the disks. Perpendicular magnetic recording (PMR) involves recorded bits that are stored in a generally planar recording layer but in a generally perpendicular or out-of-plane orientation with respect to the recording layer. A PMR read head and a PMR write head are usually formed as an integrated read/write head along an air-bearing surface (ABS). In a PMR reader, a tunnel magnetoresistance (TMR) sensor is frequently employed in the read head.

A TMR sensor generally includes a patterned TMR structure or stack having two ferromagnetic layers separated by an insulating barrier layer (e.g., MgO). One ferromagnetic layer is magnetically oriented in a fixed direction (the “pinned layer”) and the other ferromagnetic layer rotates in response to an external magnetic field (the “free layer”). The TMR sensor also typically includes a hard or soft bias (SB) layer disposed on either side of the TMR stack. The hard or soft bias layer can include a permanent or soft magnetic material and can provide a bias field along a direction perpendicular to layers of the TMR stack. The resistance of the device is dependent on the relative orientation between the two ferromagnetic layers. In a TMR read head, a sense current passes perpendicularly through layers of the TMR stack. The magnetic transitions between adjacent oppositely-directed magnetized regions cause changes in electrical resistance that are detected by the TMR sensor.

One such TMR sensor design involves use of an extended pin layer (XPL). The extended pin layer (XPL) design provides extra pinned layer and anti-ferromagnetic (AFM) layer volume to enhance pinning thermal stability of the sensor, and thereby improve device stability at smaller stripe heights (SH) and free layer track widths (FLTW). However, when this extra layer volume is incorporated with the soft bias (SB) layer, the performance of the sensor can be degraded.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top schematic view of a disk drive including a slider with a tunnel magnetoresistance (TMR) reader including a spacer layer for controlling the thickness of a soft bias layer during TMR reader fabrication in accordance with one embodiment of the invention.

FIG. 2 is a side schematic view of the slider of FIG. 1 with the tunnel magnetoresistance (TMR) reader including the spacer layer for controlling a thickness of the soft bias layer during TMR reader fabrication in accordance with one embodiment of the invention.

FIG. 3 is a flowchart of a general process for controlling a thickness of a soft bias layer during fabrication of a tunnel magnetoresistance (TMR) reader using a spacer layer in accordance with one embodiment of the invention.

FIGS. 4a to 4g illustrate a sequence of views from an air bearing surface (ABS) of a tunnel magnetoresistance (TMR) reader in a fabrication process for controlling a thickness of a soft bias layer using a spacer layer in accordance with one embodiment of the invention.

FIG. 4g-AA is a cross sectional view of the TMR reader of FIG. 4g taken across the section A-A which extends both vertically through the sensor stack and into the page to illustrate a rear area of the sensor stack including the extended pin layer.

FIG. 4g-BB is a cross sectional view of the TMR reader of FIG. 4g taken across the section B-B which extends both vertically through a peripheral area of the sensor stack and into the page to illustrate a rear area of the soft bias structure.

FIG. 5a is a graph of tunnel magnetoresistance (TMR) reader resistance illustrating performance testing results for a reader with a patterned spacer layer (“Spacer Layer XPL”) as compared to reference readers including a “Ref-1 XPL” reader and a “Ref-2 XPL” reader in accordance with one embodiment of the invention.

FIG. 5b is a graph of tunnel magnetoresistance (TMR) reader (DR/R) performance testing results for a reader with a patterned spacer layer (“Spacer Layer XPL”) as compared to reference readers including a “Ref-1 XPL” reader and a “Ref-2 XPL” reader in accordance with one embodiment of the invention.

DETAILED DESCRIPTION

Referring now to the drawings, embodiments of systems and methods for controlling a thickness of a soft bias layer in a tunnel magnetoresistance (TMR) reader are provided. The methods can involve providing a magnetoresistive sensor stack including a free layer and a bottom shield layer, performing a contiguous junction milling on the sensor stack, depositing an insulating layer on the sensor stack, depositing a spacer layer on the insulating layer, performing an angled milling sub-process to remove preselected portions of the spacer layer, depositing a soft bias layer on the sensor stack, where at least a portion of the soft bias layer is on the spacer layer, and depositing a top shield layer on the sensor stack and the soft bias layer.

A TMR reader fabricated using one of the methods described herein can include a magnetoresistive sensor stack including a free layer and a bottom shield layer and having angled sides, a soft bias structure adjacent to the sensor stack, where the soft bias structure includes a portion of the bottom shield layer, an insulating layer on the portion of the bottom shield layer and on the angled sides of the sensor stack, a spacer layer on the insulating layer, a soft bias layer on the spacer layer, and a top shield layer on the soft bias layer, where a top surface of the spacer layer is below the free layer.

The patterned spacer layer can ensure a preferred vertical positioning of the soft bias layer with respect to the free layer in the sensor stack. The patterned spacer layer can also ensure that a rear area of the soft bias structure (disposed adjacent to the sensor stack and behind the sensor stack in a direction away from an air bearing surface or ABS of the sensor stack) is substantially free of the soft bias layer. This preferred vertical positioning of the soft bias layer and the substantial elimination of the soft bias layer in the noted rear areas can provide improved performance for a TMR reader.

FIG. 1 is a top schematic view of a disk drive 100 including a slider 108 with a tunnel magnetoresistance (TMR) reader including a spacer layer for controlling a thickness of a soft bias layer during TMR reader fabrication in accordance with one embodiment of the invention. Disk drive 100 may include one or more of the disks/media 102 to store data. Disks/media 102 reside on a spindle assembly 104 that is mounted to drive housing 106. Data may be stored along tracks 107 in the magnetic recording layer of disk 102. The reading and writing of data is accomplished with the slider/head 108 that can have both read and write elements. The write element (see 108a in FIG. 2) is used to alter the properties of the magnetic recording layer of disk 102 and thereby write information thereto. In one embodiment, head 108 may have tunnel magneto-resistance (TMR) elements. The reader element (see 108b in FIG. 2) is used to read information stored on the magnetic recording layer of disk 102.

In operation, a spindle motor (not shown) rotates the spindle assembly 104, and thereby rotates disk 102 to position head 108 at a particular location along a desired disk track 107. The position of head 108 relative to disk 102 may be controlled by position control circuitry 110.

FIG. 2 is a side schematic view of the slider 108 of FIG. 1 with the tunnel magnetoresistance (TMR) reader 108b including the spacer layer for controlling the thickness of the soft bias layer during TMR reader fabrication in accordance with one embodiment of the invention. The slider 108 includes both the writer 108a and TMR reader 108b disposed along an air bearing surface (ABS) 108c of the slider. The ABS 108c is the bottom surface of the slider 108 and is the slider surface that is closest to the media 102. As will be discussed in further detail below, the TMR reader 108b includes a spacer layer (not visible but see component 422 in FIG. 4c) for controlling the thickness of the soft bias layer (not visible but see component 424 in FIG. 4e) during fabrication of the TMR reader.

FIG. 3 is a flowchart of a general process 200 for controlling a thickness of a soft bias layer during fabrication of a tunnel magnetoresistance (TMR) reader using a spacer layer in accordance with one embodiment of the invention. In several embodiments, process 200 can be used to fabricate TMR readers such as the TMR reader 108b of FIG. 2. In block 202, the process provides a magnetoresistive sensor stack including a free layer and a bottom shield layer. In several embodiments, the sensor stack can also include an anti-ferromagnetic pinning layer on the bottom shield layer, a pinned layer on the anti-ferromagnetic pinning layer, a barrier layer on the pinned layer, the free layer on the barrier layer, and a capping layer on the free layer. In block 204, the process performs a contiguous junction milling on the sensor stack. In block 206, the process deposits an insulating layer on the sensor stack. In one embodiment, the pinned layer is a bi-layer.

In block 208, the process deposits a spacer layer on the insulating layer. In several embodiments, the spacer layer is made of one or more non-magnetic materials. For example, in one such embodiment, the spacer layer is made of an alloy such as NiFeCr, NiCr, Ta, Ru, Cr, and oxides of NiFeCr, NiCr, Ta, and Cr, and combinations thereof. In one embodiment, the spacer layer consists of one or more non-magnetic materials.

In block 210, the process performs an angled milling sub-process to remove preselected portions of the spacer layer. In some embodiments, the process performs an angled milling sub-process to effectively adjust an alignment of a top surface of the spacer layer with respect to the free layer. In one such case, the process adjusts an alignment of the top surface of the spacer layer such that it is below the free layer. In block 212, the process deposits a soft bias layer on the sensor stack, where at least a portion of the soft bias layer is on the spacer layer. In block 214, the process deposits a top shield layer on the sensor stack and the soft bias layer.

In one embodiment, the bottom shield layer can be made of NiFe, NiCo, CoFe, NiFeCo, CoB, CoFeB, and/or combinations thereof. The anti-ferromagnetic pinning layer can be made of IrMn, IrMnCr, and/or combinations thereof. In one embodiment, the pinned layer can be made of CoFe, CoB, CoFeB, and/or combinations thereof. The barrier layer can be made of MgO, AlOx, and combinations thereof, where x is a positive integer. In one embodiment, the free layer can be made of NiFe, NiCo, CoFe, Fe, NiFeCo, CoB, CoFeB, Ru, Ta, and/or combinations thereof. In one embodiment, the capping layer can be made of Ru, Ta, Ti, MgO, and/or combinations thereof. In other embodiments, other suitable materials known in the art can be used for any of the sensor stack layers.

In one embodiment, the soft bias layer is made of NiFe, NiCo, CoFe, NiCoFe, CoB, CoFeB, Ru, and/or combinations thereof. In some embodiments, the insulating layer is made of alumina, MgO, SiN, SiO2, and/or combinations thereof.

FIGS. 4a to 4g illustrate a sequence of views from the ABS of a tunnel magnetoresistance (TMR) reader 400 in a fabrication process 300 for controlling a thickness of a soft bias layer using a spacer layer in accordance with one embodiment of the invention.

In FIG. 4a, the process first provides (302) a magnetoresistive sensor stack 402 including a free layer 414 and a bottom shield layer 404. The sensor stack 402 includes the bottom shield layer 404, an anti-ferromagnetic pinning layer 406 on the bottom shield layer 404, a first pinned layer 408 on the anti-ferromagnetic pinning layer 406, a second pinned layer 410 on the first pinned layer 408, a barrier layer 412 on the second pinned layer 410, the free layer 414 on the barrier layer 412, and a capping layer 416 on the free layer 414. A thick resist layer 418 is on the capping layer 416. In FIG. 4a, the process also performs (304) contiguous junction milling on the sensor stack 402 to give it the tapered/angled sides. The resist layer 418 can protect the sensor stack 402 during the contiguous junction milling and other fabrication sub-processes. In FIG. 4a, the sensor stack 402 is shown to have a structure with particular layers. In other embodiments, the sensor stack 402 may have another suitable arrangement of layers as is known in the art. For example, in one embodiment, the sensor stack 402 may have only one pinned layer. The sensor stack 402 also has angled sides such that a width of the sensor stack 402 narrows as the sensor stack 402 extends in a direction substantially perpendicular to the bottom shield layer 404 and toward the capping layer 416 from the bottom shield layer 404.

In FIG. 4b, the process deposits (306) an insulating layer 420 on the sensor stack 402. In one embodiment, the insulating layer 420 can be made of alumina (e.g., Al2O3). In other embodiments, the insulating layer 420 can be made of MgO, SiN, SiO2, and/or combinations thereof.

In FIG. 4c, the process deposits (308) a spacer layer 422 on the insulating layer 420. In several embodiments, the spacer layer 422 can be made of one or more non-magnetic materials. In one such embodiment, the spacer layer 422 can be made of a non-magnetic material with properties such as good soft bias growth seed and better angular milling selectivity. As to the good soft bias growth property, in one embodiment, the spacer layer (e.g., seed layer) can have small grain size to provide a smooth surface and include materials that provide favorable growth texture to enable the soft bias layer to be sufficiently soft. As to the angular milling selectivity property, in one aspect, the materials for the spacer layer can have a suitable angular etch selectivity such that it can preferentially enable cleaning (e.g., easy removal) of the spacer materials along the angled sides of the sensor stack. In one embodiment, the spacer layer 422 can be made of NiFeCr, NiCr, Ta, Ru, Cr, oxides of these materials, and/or combinations thereof.

In FIG. 4d, the process performs (310) an angled milling sub-process to remove preselected portions of the spacer layer 422. More specifically, process can remove portions of the spacer layer 422 along the angled sides of the sensor stack 402. In one embodiment, the process removes portions of the spacer layer 422 along the angled sides of the sensor stack 402 that are above the free layer 414 such that a top surface of the spacer layer 422 is positioned below the free layer 414. In some embodiments, the process also removes portions of the insulating layer 420 along the angled sides of the sensor stack 402. In one embodiment, the angled milling sub-process can be referred to as a tip mill sub-process. In one embodiment, the angled milling sub-process can use a milling angle of about 70 degrees to about 86 degrees, with reference to a line perpendicular to layers of the sensor stack 402. In another embodiment, the angled milling sub-process can use a milling angle of about 78 degrees to about 82 degrees.

In FIG. 4e, the process deposits (312) a soft bias layer 424 on the sensor stack 402, where at least a portion of the soft bias layer 424 is on the spacer layer 422. As can be seen in FIG. 4e, at least a portion of the soft bias layer 424 is also on the insulating layer 420 (e.g., along the angled sides of the sensor stack 402). In one embodiment, the soft bias layer is made of NiFe, NiCo, CoFe, NiCoFe, CoB, CoFeB, Ru, and/or combinations thereof.

In FIG. 4f, the process removes (314) a portion of the soft bias layer 424 and a portion of the resist layer 418. In one embodiment, the process removes these components using a milling sub-process. In other embodiments, other suitable sub-processes for removing these sorts of layer can be used.

In FIG. 4g, the process performs (316) reactive ion etching (RIE) and chemical mechanical polishing (CMP) on a top surface of the sensor stack 402. In FIG. 4g, the process then deposits (318) a top shield layer 426 on the sensor stack 402 and the soft bias layer 424. In some embodiments, the top shield layer 426 may also be planarized.

In one embodiment, a portion of the TMR reader 400 peripheral to the sensor stack 402 (e.g., along section line B-B) can be referred to as a soft bias structure. The soft bias structure can include a portion of the bottom shield layer 404, the insulating layer 420 on the portion of the bottom shield layer 404 and on the angled sides of the sensor stack 402, the spacer layer 422 on the insulating layer 420, the soft bias layer 424 on the spacer layer 422, and the top shield layer 426 on the soft bias layer 424.

FIG. 4g-AA is a cross sectional view of the TMR reader 400 of FIG. 4g taken across the section A-A which extends both vertically through the sensor stack 402 and into the page to illustrate a rear area of the sensor stack 402 including the extended pin layer (408, 410). The air bearing surface (ABS) of the TMR reader 400 is along the left edge in FIG. 4g-AA. Note that the view of the TMR reader 400 depicted in FIG. 4g is a view from the ABS. Note also that no (or minimal) soft bias layer or spacer layer materials are found in FIG. 4g-AA (e.g., none behind sensor stack 402).

FIG. 4g-BB is a cross sectional view of the TMR reader 400 of FIG. 4g taken across the section B-B which extends both vertically through a peripheral area of the sensor stack 402 (e.g., the soft bias structure) and into the page to illustrate a rear area of the soft bias structure. The air bearing surface (ABS) of the TMR reader 400 is along the left edge in FIG. 4g-BB. As can be seen in FIG. 4g-BB, while the spacer layer 422 is present, the soft bias layer 424 is substantially eliminated from a rear area (e.g., area beyond the rear edge of the free layer 414 of the sensor stack 402 in FIG. 4g-AA) of the soft bias structure. As can be seen in FIG. 4g-BB, the soft bias structure (e.g., from soft bias layer 424 extended along projection of the width of the soft bias layer 424 downward through the bottom shield layer 404) is positioned between the rear area and the ABS.

In one embodiment, the processes of FIG. 3 and FIG. 4 can perform the sequence of actions in a different order than depicted. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.

FIG. 5a is a graph of tunnel magnetoresistance (TMR) reader resistance illustrating performance testing results for a reader with a patterned spacer layer (“Spacer Layer XPL”) as compared to reference readers including a “Ref-1 XPL” reader and a “Ref-2 XPL” reader in accordance with one embodiment of the invention. The graph of FIG. 5a contains diamond shapes representing minimum resistance values (Rmin measured in ohms) measured during testing on TMR readers from various wafers (e.g., Wafer1, Wafer2, etc.), and square shapes representing standard deviation of the Rmin values measured in percentage. Effectively, the graph illustrates that the spacer layer reader (“Spacer Layer XPL”) provides sufficient or better minimum resistance values (Rmin) as compared to the “Ref-1 XPL” type readers and the “Ref-2 XPL” type readers that do not include a patterned spacer layer.

FIG. 5b is a graph of tunnel magnetoresistance (TMR) reader (DR/R) performance testing results for a reader with a patterned spacer layer (“Spacer Layer XPL”) as compared to reference readers including a “Ref-1 XPL” reader and a “Ref-2 XPL” reader in accordance with one embodiment of the invention. The graph of FIG. 5b contains diamond shapes representing the giant magnetoresistive (GMR) ratio (DR/R measured in percentage) measured during testing on TMR readers from various wafers (e.g., Wafer1, Wafer2, etc.), and square shapes representing standard deviation of the DR/R values also measured in percentage. Effectively, the graph illustrates that the spacer layer reader (“Spacer Layer XPL”) provides sufficient or better minimum GMR ratio values (DR/R) as compared to the “Ref-1 XPL” type readers and the “Ref-2 XPL” type readers that do not include a patterned spacer layer.

In several embodiments, the systems and methods for controlling a thickness of a soft bias layer in a tunnel magnetoresistance (TMR) reader described in this disclosure relate to incorporating a controllable milling step at grazing incidence after non-magnetic spacer layer depositions to remove junction sidewall deposition of a portion of the spacer layer material. In such case, the systems and methods described in this disclosure can control and optimize separation between the soft bias layer and the free layer. The systems and methods described in this disclosure can provide a number of advantages. In one aspect for example, they can provide a reduced thickness of the soft bias layer without sacrificing preferred spacing between the soft bias and free layers. The preferred spacing depends on the overall design to facilitate the best performance by sufficiently biasing free layer to stabilize free layer response. For example, a reduction of the spacer layer thickness might provide more bias and stability to the free layer, while increasing the space layer thickness might reduces the biasing field to the free layer. In another aspect, the systems and methods described in this disclosure can enable a soft bias type reader with an extended pin layer (XPL) to be free, or substantially free, of soft bias residue behind the MR stripe (e.g., sensor stack).

In some aspects, the systems and methods described herein can ensure that zero or very few AFM layer corrosion and atomic layer deposition recess problems result in the fabricated TMR reader. In addition, use of a full contiguous junction milling sub-process can allow for better reader physical control and narrow track reader extendibility, thereby making the overall fabrication process easier. In one aspect, the systems and methods described herein also help to maintain full reader magnetic benefits with reduced soft bias thickness and better reader track width control and extendibility.

The terms “above,” “below,” and “between” as used herein refer to a relative position of one layer with respect to other layers. As such, one layer deposited or disposed above or below another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers.

It shall be appreciated by those skilled in the art in view of the present disclosure that although various exemplary fabrication methods are discussed herein with reference to magnetic read heads. In several embodiments, the deposition of such layers can be performed using a variety of deposition sub-processes, including, but not limited to physical vapor deposition (PVD), sputter deposition and ion beam deposition, and chemical vapor deposition (CVD) including plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD) and atomic layer chemical vapor deposition (ALCVD). In other embodiments, other suitable deposition techniques known in the art may also be used.

While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other suitable manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.

Claims

1. A method for controlling a thickness of a soft bias layer during fabrication of a tunnel magnetoresistance reader, the method comprising:

providing a magnetoresistive sensor stack comprising a free layer and a bottom shield layer;
performing a contiguous junction milling on the sensor stack;
depositing an insulating layer on the sensor stack;
depositing a spacer layer on the insulating layer, wherein the spacer layer is entirely below the free layer;
performing an angled milling sub-process to remove preselected portions of the spacer layer;
depositing a soft bias layer on the sensor stack, wherein at least a portion of the soft bias layer is on the spacer layer; and
depositing a top shield layer on the sensor stack and the soft bias layer.

2. The method of claim 1, wherein the performing the angled milling sub-process to remove the preselected portions of the spacer layer comprises adjusting an alignment of a top surface of the spacer layer with respect to the free layer.

3. The method of claim 1, wherein the sensor stack comprises:

an anti-ferromagnetic pinning layer on the bottom shield layer;
a pinned layer on the anti-ferromagnetic pinning layer;
a barrier layer on the pinned layer;
the free layer on the barrier layer; and
a capping layer on the free layer.

4. The method of claim 3:

wherein the bottom shield layer comprises one or more materials selected from the group consisting of NiFe, NiCo, CoFe, NiFeCo, CoB, CoFeB, and combinations thereof;
wherein the anti-ferromagnetic pinning layer comprises one or more materials selected from the group consisting of IrMn, IrMnCr, and combinations thereof;
wherein the pinned layer comprises one or more materials selected from the group consisting of CoFe, CoB, CoFeB, and combinations thereof;
wherein the barrier layer comprises one or more materials selected from the group consisting of MgO, AlOx, and combinations thereof, where x is a positive integer;
wherein the free layer comprises one or more materials selected from the group consisting of NiFe, NiCo, CoFe, Fe, NiFeCo, CoB, CoFeB, Ru, Ta, and combinations thereof; and
wherein the capping layer comprises one or more materials selected from the group consisting of Ru, Ta, Ti, MgO, and combinations thereof.

5. The method of claim 4, wherein the spacer layer comprises one or more non-magnetic materials.

6. The method of claim 5, wherein the spacer layer comprises one or more materials selected from the group consisting of NiFeCr, NiCr, Ta, Ru, Cr, and oxides of NiFeCr, NiCr, Ta, and Cr, and combinations thereof.

7. The method of claim 6, wherein the soft bias layer comprises one or more materials selected from group consisting of NiFe, NiCo, CoFe, NiCoFe, CoB, CoFeB, Ru, and combinations thereof.

8. The method of claim 6, wherein the insulating layer comprises one or more materials selected from group consisting of alumina, MgO, SiN, SiO2, and combinations thereof.

9. The method of claim 1:

wherein the sensor stack comprises angled sides such that a width of the sensor stack narrows as the sensor stack extends in a direction substantially perpendicular to the bottom shield layer; and
wherein the performing the angled milling sub-process to remove preselected portions of the spacer layer comprises removing portions of the spacer layer along the angled sides of the sensor stack.

10. The method of claim 9, wherein the removing portions of the spacer layer along the angled sides of the sensor stack comprises removing portions of the spacer layer along the angled sides of the sensor stack that are above the free layer.

11. The method of claim 1:

wherein the sensor stack comprises angled sides such that a width of the sensor stack narrows as the sensor stack extends in a direction substantially perpendicular to the bottom shield layer; and
wherein the performing the angled milling sub-process to remove preselected portions of the spacer layer comprises removing portions of the insulating layer along the angled sides of the sensor stack.

12. The method of claim 1:

wherein the providing the magnetoresistive sensor stack comprising the free layer and the bottom shield layer comprises providing the magnetoresistive sensor stack comprising the free layer and the bottom shield layer and providing a resist layer on the sensor stack; and
the method further comprising: removing, after the depositing the soft bias layer on the sensor stack, a portion of the soft bias layer and a portion of the resist layer.

13. The method of claim 12, wherein the removing the portion of the soft bias layer and the portion of the resist layer comprises:

performing a reactive ion etching of a top surface area of the sensor stack; and
planarizing the top surface area of the sensor stack.

14. The method of claim 1, wherein the spacer layer consists of a substantially flat layer.

15. The method of claim 1:

wherein a soft bias structure adjacent to the sensor stack comprises: a portion of the bottom shield layer; the insulating layer; the spacer layer; the soft bias layer; the top shield layer; and an air bearing surface;
wherein a rear area of the soft bias structure is substantially free of the soft bias layer;
wherein the soft bias structure is positioned between the rear area and the air bearing surface; and
wherein a portion of the insulating layer forms the rear area of the soft bias structure.

16. The method of claim 1:

wherein a soft bias structure adjacent to the sensor stack comprises: a portion of the bottom shield layer; the insulating layer; the spacer layer; the soft bias layer; the top shield layer; and an air bearing surface; and
wherein a depth of the spacer layer from the air bearing surface is greater than a depth of the soft bias layer from the air bearing surface.

17. The method of claim 16, wherein a depth of the insulating layer from the air bearing surface is greater than the depth of the spacer layer from the air bearing surface.

18. The method of claim 1, wherein the spacer layer is comprised of non-magnetic materials.

19. The method of claim 1:

wherein the depositing the spacer layer on the insulating layer comprises depositing the spacer layer directly on the insulating layer;
wherein the depositing the soft bias layer on the sensor stack comprises depositing the soft bias layer directly on the sensor stack; and
wherein the depositing the top shield layer on the sensor stack and the soft bias layer comprises depositing the top shield layer directly on the sensor stack and the soft bias layer.

20. The method of claim 19, wherein the spacer layer is comprised of non-magnetic materials.

Patent History
Publication number: 20160284989
Type: Application
Filed: Jun 10, 2016
Publication Date: Sep 29, 2016
Inventors: YI ZHENG (SAN RAMON, CA), MING JIANG (SAN JOSE, CA), ANUP G. ROY (FREMONT, CA), GUANXIONG LI (FREMONT, CA), MING MAO (DUBLIN, CA), DANIELE MAURI (SAN JOSE, CA)
Application Number: 15/179,931
Classifications
International Classification: H01L 43/12 (20060101); G01R 33/09 (20060101); H01L 43/10 (20060101); H01L 43/02 (20060101); H01L 43/08 (20060101);