MATERIAL LEVEL INDICATOR
A material level indicator includes a probe, first and second signal compensating units, arranged at first and second ends of the probe respectively, and a controlling module arranged at the first end and includes a signal processor, a signal emitter, and a signal receiver. The second end is opposite to the first end. The signal processor is connected to the signal emitter and the signal receiver. The signal emitter emits an electromagnetic signal from the first end to the second end of the probe. The first and second signal compensating units reflect the electromagnetic signal, and the signal processor generates first and second time interval differences according to the reflected electromagnetic signal received by the signal receiver. The signal processor calibrates an environmental coefficient and indicates a dielectric coefficient of the material according to the first and second time interval differences respectively.
The technical field relates to indicators, more particularly to a material level indicator.
BACKGROUND OF THE INVENTIONWarehouse management is an important subject for storing and preserving materials. In a variety of industries such as the petrochemical industry, bulk food industry, feed industry, steel industry and cement industry, warehouses are used to store materials. The materials stored in warehouses include materials of different states including solids, liquids, and solid-liquid mixtures. For example, these materials are petroleum, coal, iron core, cement, corn, wheat, flour, butter and any other material. When different materials are stored in a warehouse, the temperature, humidity, and amount of stored materials in the warehouse will affect the expiration and preservation quality of the materials stored in the warehouse. For certain specific industries, explosions or other industrial accidents may occur if the temperature of the warehouse is not controlled properly. For instance, dry materials such as corns, soybeans, and conductive dust may lead to smoldering sparks or dust explosion due to temperature change.
However, most general material level indicators are just applicable for measuring a material level only and unable to detect environmental conditions and material conditions in a warehouse.
In view of the aforementioned drawbacks of the prior art, the discloser of this disclosure based on years of experience in the industry to conduct extensive researches and experiments and finally provided a feasible solution to overcome the drawbacks of the prior art effectively.
SUMMARY OF THE INVENTIONIt is a primary objective of this disclosure to provide a material level indicator for measuring the material level in a container, and the material level indicator comprises a probe, a plurality of first signal compensating units, at least one second signal compensating unit and a controlling module. The probe includes a first end and a second end opposite to the first end; the first signal compensating unit is installed at the first end, and a first spacing distance is defined between two adjacent first signal compensating units; and the second signal compensating unit is installed at the second end. The controlling module is disposed at the first end and includes a signal processor, a signal emitter and a signal receiver, and the signal emitter is electrically coupled to the signal processor for generating an electromagnetic signal; and the signal receiver electrically is coupled to the signal processor. The electromagnetic signal generated by the signal emitter is transmitted through the first end to the second end, and the first signal compensating unit reflects the electromagnetic signal, and the signal receiver receives the electromagnetic signal reflected from the first signal compensating units and then transmits the electromagnetic signal to the signal processor to generate a first travel time difference, and the signal processor corrects an environmental coefficient according to the first travel time difference, and the second signal compensating unit reflects the electromagnetic signal, and the signal receiver receives the electromagnetic signal reflected by the second signal compensating units and transmits the electromagnetic signal to the signal processor to generate a second travel time difference, and the signal processor detects a dielectric coefficient of the material according to the second travel time difference.
The technical contents of this disclosure will become apparent with the detailed description of preferred embodiments accompanied with the illustration of related drawings as follows. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
With reference to
The probe 12 is installed at the bottom 102 of the electrical box 10 and extended in a predetermined direction D and includes a first end 120 and a second end 122 opposite to the first end 120. The probe 12 is substantially a circular cylinder or a polygonal cylinder, and it may be an inflexible steel stick or may have a flexible wire.
The probe 12 has a plurality of first signal compensating units 16 disposed at the first end 120 of the probe 12, and arranged equidistantly, and a first spacing distance d1 is defined between two adjacent first signal compensating units 16. In
The probe 12 has a plurality of second signal compensating units 18 disposed at the second end 122 of the probe 12 and arranged equidistantly, and a second spacing distance d2 is defined between two adjacent second signal compensating units 18, and the second spacing distance d2 may be unequal to the first spacing distance d1. In
It is noteworthy that the first signal compensating unit 16 and the second compensating unit 18 as shown in
The controlling module 14 is disposed in a containing space 100 and includes a circuit board 140, a signal processor 142, a signal emitter 144 and a signal receiver 146. With reference to
In
When the environmental coefficient is corrected and the dielectric coefficient of the material is detected in the container, the second end 122 of the probe 12 must be buried in the material, and the first end 120 may be exposed from the material or buried deeply in the material.
The signal emitter 144 for generating an electromagnetic signal may be a quartz oscillator. The electromagnetic signal generated by signal emitter 144 is transmitted along a surface of the probe 12. When the electromagnetic signals are transmitted to the first signal compensating unit 16, some of the electromagnetic signals are reflected by the first signal compensating unit 16 and transmitted to the signal processor 142 to generate a first travel time difference as shown in the curve 40 of
It is noteworthy that the signal processor 142 includes a built-in counter for counting the count value of the electromagnetic signals generated by the signal emitter 144, received by the signal receiver 146, and reflected by the first signal compensating unit 16, and then the signal processor 142 converts the count value into time by a Time Domain Reflectometry (TDR). In addition, the signal processor 142 further has a built-in first predetermined travel time difference as shown in the curve 30 of
When the container contains the material, the first travel time difference is greater than the first predetermined travel time difference since the material is attached to the probe 12 or the material produces steam, so that the signal processor 142 may compare the first travel time difference with the first predetermined travel time difference to correct the error (or the environmental coefficient) caused by a change of the environmental condition.
When the electromagnetic signals generated by the signal emitter 144 are transmitted along a surface of the probe 12 to the second signal compensating unit 18, some of the electromagnetic signals are reflected by the second signal compensating unit 18 and transmitted to the signal processor 142 to generate a second travel time difference. When the second travel time difference is detected, the material has already been put into the container.
The signal processor 142 further builds in a second predetermined travel time difference, wherein the second predetermined travel time difference is generated by reflecting the electromagnetic signal by the second signal compensating unit 18 and transmitting the reflected electromagnetic signal to the signal processor when the material has not been put into the container.
When the material is put into the container, the second travel time difference is greater than the second predetermined travel time difference since the material is attached to the probe 12, so that the signal processor 142 detects the dielectric coefficient of the material by comparing the second travel time difference with the second predetermined travel time difference.
Since the second signal compensating unit 18 is far away from the controlling module 14, therefore the second signal compensating unit 18 reflects a signal generated by reflecting the electromagnetic signal by the second travel time difference, and such signal is weaker than that of the first travel time difference as shown in the curve 50 of
In
Further, the second end 122 of the material level indicator selectively includes a weight 20 instead of the signal booster 19 as shown in
With reference to
With reference to
While this disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of this disclosure set forth in the claims.
Claims
1. A material level indicator, for measuring a material level in a container, comprising:
- a probe, including a first end and a second end opposite to the first end;
- a plurality of first signal compensating units, installed at the first end, and having a first spacing distance defined between two adjacent first signal compensating units;
- a plurality of second signal compensating units, installed at the second end, and having a second spacing distance defined between two adjacent second signal compensating units; and
- a controlling module, disposed at the first end, and comprising:
- a signal processor;
- a signal emitter, electrically coupled to the signal processor, for generating an electromagnetic signal, and the electromagnetic signal being transmitted from the first end to the second end; and
- a signal receiver, electrically coupled to the signal processor;
- wherein, the first signal compensating units reflect the electromagnetic signal, and the signal receiver receives the electromagnetic signal reflected by the first signal compensating units and transmitted to the signal processor to generate a first travel time difference, and the signal processor corrects an environmental coefficient according to the first travel time difference, and the second signal compensating units reflect the electromagnetic signal, and the signal receiver receives the electromagnetic signal reflected by the second signal compensating units and transmitted to the signal processor to generate a second travel time difference, and the signal processor detects a dielectric coefficient of the material according to the second travel time difference.
2. The material level indicator according to claim 1, wherein the first spacing distance is different from the second spacing distance.
3. The material level indicator according to claim 1, wherein the first signal compensating units and the second signal compensating units are recesses respectively.
4. The material level indicator according to claim 1, wherein the first signal compensating units and the second signal compensating units are protrusions respectively.
5. The material level indicator according to claim 4, further comprising a connector installed between two adjacent first signal compensating units or two adjacent second signal compensating units.
6. The material level indicator according to claim 1, further comprising a signal booster coupled to the second end for enhancing signal intensity of the second travel time difference.
7. The material level indicator according to claim 6, wherein the signal booster is circularly coupled to the second end of the probe.
8. The material level indicator according to claim 6, wherein the signal booster comprises a main body and an extension, and the extension has an external diameter decreasing with the distance away from the second end.
9. The material level indicator according to claim 6, wherein the signal booster is substantially in the shape of a funnel, and the signal booster has an external diameter decreasing with the distance away from the second end.
10. The material level indicator according to claim 6, wherein the signal booster comprises a cylinder and a recess, and the recess is formed at an end of the cylinder proximate to the second end.
11. The material level indicator according to claim 1, wherein the probe further comprises a weight coupled to the second end.
12. The material level indicator according to claim 11, wherein the weight has an external diameter increasing with the distance away from the second end.
13. The material level indicator according to claim 11, wherein the weight has a connecting portion, and an upper end and a lower end disposed on two opposite sides of the connecting portion respectively and coupled to the connecting portion, and the upper end is coupled to the second end, and the upper end has an external diameter increasing with the distance away from the second end, and the lower end has an external diameter decreasing with the distance away from the connecting portion.
14. The material level indicator according to claim 11, wherein the weight is comprised of a plurality equidistant ring members.
Type: Application
Filed: Jan 12, 2016
Publication Date: Jul 13, 2017
Inventors: I-Chu LIN (New Taipei City), Liang-Chi CHANG (New Taipei City), Wei-Yu CHEN (New Taipei City), Chun-Han HUANG (New Taipei City), Yi-Liang HOU (New Taipei City)
Application Number: 14/994,132