METHOD FOR IMPROVING CORROSION RESISTANCE OF GOLD FINGER
Provided is a method for improving the corrosion resistance of a gold finger, which is applicable to a photovoltaic panel (1) including gold fingers (2), wherein a guide line (3) is arranged at a root portion of the gold fingers (2) of the photovoltaic panel (1). The method comprises the following steps in sequence: 1) electrical connection: using an outer lead (4) to electrically connect all gold fingers (2) of a photovoltaic panel (1); 2) solder resistance: performing solder resistance on an area other than the outer lead (4); 3) gold plating on the gold fingers (2); 4) etching of the outer lead (4); and 5) solder resistance: performing solder resistance on a vacancy after etching of the lead (4). In the method, an outer lead (4) is arranged to electrically connect all gold fingers (2) of a photovoltaic panel (1), so that all sides of the gold fingers (2) are plated with gold, thereby significantly improving the corrosion resistance of the gold fingers (2).
Latest GUANGZHOU FASTPRINT CIRCUIT TECH CO., LTD Patents:
- Hole connecting layer manufacturing method, circuit board manufacturing method and circuit board
- Method for improving corrosion resistance of gold finger
- PCB board assembling method and assembling system
- Method for performing netlist comparison based on pin connection relationship of components
- High-speed printed circuit board and differential wiring method thereof
The present disclosure relates to the field of PCB (Printed Circuit Board) processing, and in particular, to a method for improving corrosion resistance of a gold finger.
BACKGROUNDAt present, the gold plating of a gold finger of a photovoltaic panel in the industry is generally performed as follows: making a connection of a lead to a main guide line at the front end of the gold finger, connecting to an edge of the panel to realize electrical connection, and then removing the lead manually or etching the lead by using a wet film. The gold finger obtained is covered with gold in three sides, while copper is exposed at the front end of the gold finger. The reliability of such product is poor, and the gold finger is impossible to pass MFG (Mixed Corrosive Gas) test.
SUMMARYIn order to overcome deficiencies of the prior art, the present disclosure aims at providing a method for improving corrosion resistance of a gold finger.
To solve the above problems, the technical solution adopted by the present disclosure is as follows.
A method for improving corrosion resistance of a gold finger is provided, which is applicable to a photovoltaic panel including gold fingers, wherein a guide line is arranged at a root of the gold finger of the photovoltaic panel. The method includes following steps in sequence:
1) electrical connection: electrically connecting all the gold fingers of the photovoltaic panel by using an outer lead, wherein the outer lead is disposed on both sides of the guide line;
2) soldermask coating: performing soldermask coating on areas outside the outer lead;
3) plating gold on the gold finger;
4) etching the outer lead; and
5) soldermask coating: performing soldermask coating on a vacancy formed after etching the outer lead.
Preferably, plated-through holes are made in an area of the gold fingers of the photovoltaic panel, and inner leads are disposed in the plated-through holes in the step 1).
Preferably, adjacent gold fingers in the photovoltaic panel are connected by the outer lead or the inner lead in the step 1).
Preferably, a position of the outer lead is disposed 1-10 mm away from the root of the gold finger in the step 1).
Preferably, the soldermask coating in the step 2) is performed as follows: performing soldermask coating on the photovoltaic panel, and performing soldermask coating and development in a position of the outer lead to expose the outer lead, so that the outer lead is not covered by a solder mask.
Preferably, an area uncovered by the solder mask is 1 to 10 mils greater than a width of the outer lead in the step 2).
Preferably, the step of plating gold on the gold finger in the step 3) includes:
a) covering a dry film on an outer surface to only expose the area of the gold fingers;
b) plating gold on the gold finger; and
c) removing the dry film in the step a).
Preferably, hard gold plating is performed with a current density of 3-5ASF in the step 3).
Preferably, the step of etching the outer lead in the step 4) includes:
i) covering the dry film on the outer surface, wherein a position of the outer lead is designed to open a window without being covered by the dry film;
ii) etching the outer lead; and
iii) removing the dry film in the step i).
Compared with the prior art, the present disclosure has the following beneficial effects.
For the method for improving corrosion resistance of a gold finger provided in the present disclosure, all the gold fingers of the photovoltaic panel are electrically connected by disposing the outer leads, so that the four sides of the gold fingers can be plated with gold, thereby improving the corrosion resistance of the gold fingers. The leads are designed at the two sides of the guide lines, and the leads do not have to be removed at the front end, therefore the deficiency of the remnant leads of the gold fingers can be remedied to improve the quality.
Details of the present disclosure are further presented in following drawings and descriptions.
In
A method for improving corrosion resistance of a gold finger is provided in the present disclosure, which is applicable to a photovoltaic panel including gold fingers. As shown in
1) electrical connection: electrically connecting all the gold fingers of the photovoltaic panel by using an outer lead 4, wherein the outer lead is disposed on both sides of the guide line;
2) soldermask coating: performing soldermask coating on areas outside the outer lead;
3) plating gold on the gold finger;
4) etching the outer lead; and
5) soldermask coating: performing soldermask coating on a vacancy formed after etching the outer lead.
By using the method, all the gold fingers of the photovoltaic panel are electrically connected by disposing the outer leads, so that the four sides of the gold fingers can be plated with gold, thereby improving the corrosion resistance of the gold fingers. In the present disclosure, the guide lines are connected by the outer leads, so that all the gold fingers of the photovoltaic plate are electrically connected. The soldermask coating in the step 2) means performing soldermask coating on areas outside the outer lead. The plating gold on the gold finger in the step 3) means plating gold on the gold finger only. The etching the outer lead in the step 4) should ensure other parts will not be affected. The soldermask coating in the step 5) means covering the vacancy after etching the outer lead.
Embodiment OneProvided is a method for improving corrosion resistance of a gold finger, which is applicable to a photovoltaic panel including the gold finger. A guide line is arranged at a root of the gold finger of the photovoltaic panel as shown in
1) electrically connecting all the gold fingers of the photovoltaic panel by using the outer lead, wherein the outer lead is disposed on both sides of the guide line, and a position of the outer lead is disposed 1-10 mm away from the root of the gold finger;
2) performing a first soldermask coating, except for the outer lead, which should be exposed without the soldermask coating covered, wherein single-side windowing is 1-10 mils greater than the width of the outer lead;
3) covering a dry film on an outer surface to only expose the area of the gold fingers;
4) plating gold on the gold finger and removing the dry film in the step 3);
5) covering the dry film on the outer surface again to only expose the outer lead, wherein the single-side windowing is 1-10 mils greater than the width of the outer lead;
6) etching the outer lead and removing the dry film in the step 5); and
7) performing a second soldermask coating on a vacancy after etching the outer lead.
The method in the Embodiment One is applicable to a photovoltaic panel of a normal type. If plated-through holes are made in the area of the gold fingers of the photovoltaic panel, and inner leads are disposed in the plated-through holes, then part of the adjacent gold fingers are connected by the inner lead, while the other adjacent gold fingers are connected by the outer lead.
In the Embodiment One, the outer leads are designed at two sides of the guide lines, the outer leads are designed at two sides of the guide lines, and the leads do not have to be removed at the front end, therefore the deficiency of the remnant leads of the gold fingers can be remedied to improve the quality.
In the Embodiment One, the first soldermask coating in the step 2) is performed by super-roughening pre-processing to reduce the risk of falling off of the solder mask. What described above is the preferred embodiment of the present disclosure, and it is not intended to limit the scope of the present disclosure. All immaterial modifications and substitutions made by those skilled in the art are within the scope of the present disclosure.
Claims
1. A method for improving corrosion resistance of a gold finger, applicable to a photovoltaic panel comprising gold fingers, wherein a guide line is arranged at a root of the gold finger of the photovoltaic panel, and the method comprises following steps in sequence:
- 1) electrical connection: electrically connecting all the gold fingers of the photovoltaic panel by using an outer lead, wherein the outer lead is disposed on both sides of the guide line;
- 2) soldermask coating: performing soldermask coating on areas outside the outer lead;
- 3) plating gold on the gold finger;
- 4) etching the outer lead; and
- 5) soldermask coating: performing soldermask coating on a vacancy formed after etching the outer lead.
2. The method according to claim 1, wherein plated-through holes are made in an area of the gold fingers of the photovoltaic panel, and inner leads are disposed in the plated-through holes in the step 1).
3. The method according to claim 2, wherein adjacent gold fingers in the photovoltaic panel are connected by the outer lead or the inner lead in the step 1).
4. The method according to claim 1, wherein a position of the outer lead is disposed 1-10 mm away from the root of the gold finger in the step 1).
5. The method according to claim 1, wherein the soldermask coating in the step 2) is performed as follows: performing soldermask coating on the photovoltaic panel, and performing soldermask coating and development in a position of the outer lead to expose the outer lead, so that the outer lead is not covered by a solder mask.
6. The method according to claim 5, wherein an area uncovered by the solder mask is 1 to 10 mils greater than a width of the outer lead in the step 2).
7. The method according to claim 1, wherein the step of plating gold on the gold finger in the step 3) includes:
- a) covering a dry film on an outer surface to only expose the area of the gold fingers;
- b) plating gold on the gold finger; and
- c) removing the dry film in the step a).
8. The method according to claim 1, wherein hard gold plating is performed with a current density of 3-SASF in the step 3).
9. The method according to claim 1, wherein the steps of etching the outer lead comprises in the step 4):
- i) covering the dry film on the outer surface, wherein a position of the outer lead is designed to open a window without being covered by the dry film;
- ii) etching the outer lead; and
- iii) removing the dry film in the step i).
Type: Application
Filed: Mar 31, 2017
Publication Date: Jun 27, 2019
Patent Grant number: 10978599
Applicants: GUANGZHOU FASTPRINT CIRCUIT TECH CO., LTD (Guangdong), SHENZHEN FASTPRINT CIRCUIT TECH CO., LTD. (Guangdong), GUANGZHOU FASTPRINT ELECTRONIC CO., LTD. (Guangdong)
Inventors: Liyang Chen (Guangzhou), Shuxiao Qiao (Guangzhou)
Application Number: 16/092,928