SEMICONDUCTOR APPARATUS AND MANUFACTURING METHOD FOR SAME
The present disclosure relates to the field of semiconductor technologies, and discloses semiconductor apparatus and manufacturing methods for the same. In some implementations, a method may include: providing a substrate structure which includes: a substrate, one or more fins located on the substrate and extending along a first direction, and an isolation region located around one of the fins, an upper surface of the isolation region being lower than an upper surface of the fin, the isolation region including a first isolation region and a second isolation region, where the first isolation region is located on a side surface of the fin that is in the first direction, and the second isolation region is located on a side surface of the fin that is in a second direction that is different from the first direction; forming, on the substrate structure, a sacrificial layer having an opening, the opening exposing an upper surface of the first isolation region and exposing a part, which is located above the first isolation region, of the side surfaces of the fin adjacent to the first isolation region; filling the opening with an insulating material to form a third isolation region on the first isolation region, an upper surface of the third isolation region being higher than the upper surface of the fin; and removing the sacrificial layer.
Latest Semiconductor Manufacturing International (Shanghai) Corporation Patents:
The present application is a divisional application of U.S. patent application Ser. No. 16/032,810 (still pending), filed Jul. 11, 2018, which claims priority to Chinese Patent Appln. No. 201710776468.3, filed Sep. 1, 2017, the entire disclosure of each of which is hereby incorporated by reference.
BACKGROUND Technical FieldThe present application relates to the field of semiconductor technologies, and in particular, to semiconductor apparatus and manufacturing methods for the same.
Related ArtIn a Fin Field Effect Transistor (Fin FET), in order to control critical dimension uniformity (CD uniformity), a pseudo-gate structure is usually formed on a shallow trench isolation (STI) region. In addition, in order to improve the performance of Fin FET devices, it is usually necessary to etch an end portion of a fin adjacent to the pseudo-gate structure, so as to form an indentation, and to epitaxially grow a semiconductor material in the indentation to introduce a stress into a channel.
However, in general cases, as the STI region is lower than the fin, the bottom of the pseudo-gate structure on the STI region is lower than the fin. If there is an error in overlay accuracy or process, the pseudo-gate structure formed on the STI region may be deviated, and therefore, the pseudo-gate structure and the fin are also connected, that is, a bridge is formed. This may cause an electric leakage phenomenon, thereby reducing the reliability of a device. In addition, the deviation of the pseudo-gate structure may also affect the contour of the semiconductor material in epitaxial growth, and this may decrease the value of the stress introduced to the channel, thereby reducing carrier mobility of the device and further reducing the performance of the device.
SUMMARYAn objective of the present disclosure is to improve a reliability of a device. Another objective of the present disclosure is to improve carrier mobility of the device.
In one aspect of the present disclosure, a manufacturing method for a semiconductor apparatus is provided. The method may include: providing a substrate structure that includes: a substrate, one or more fins located on the substrate and extending along a first direction and an isolation region located around the fin, where an upper surface of the isolation region being lower than an upper surface of a fin, the isolation region including a first isolation region and a second isolation region, the first isolation region being located on a side surface of the fine that is in the first direction, and the second isolation region being located on a side surface of the fin that is in a second direction that is different from the first direction; forming, on the substrate structure, a sacrificial layer having an opening, the opening exposing an upper surface of the first isolation region and exposing a part, which is located above the first isolation region, of the side surface of the fin adjacent to the first isolation region; filling the opening with an insulating material to form a third isolation region on the first isolation region, an upper surface of the third isolation region being higher than the upper surface of the fin; and removing the sacrificial layer.
In some implementations, the opening further exposes an end portion of the fin adjacent to the first isolation region, and the third isolation region covers the end portion.
In some implementations, forming, on the substrate structure, a sacrificial layer having an opening includes: forming a sacrificial material layer above the substrate structure; forming a patterned mask layer above the sacrificial material layer; etching the sacrificial material layer using the mask layer as a mask, to form a first opening that exposes the upper surface of the first isolation region; removing the mask layer; and performing wet etching to expand the first opening to be the opening, so that the part, which is located above the first isolation region, of the side surface of the fin adjacent to the first isolation region is exposed, where the remaining sacrificial material layer is used as the sacrificial layer.
In some implementations, forming a sacrificial material layer above the substrate structure includes: forming a protection layer on the substrate structure; and forming the sacrificial material layer on the protection layer; wherein the method further includes: removing the protection layer under the sacrificial layer after removing the sacrificial layer.
In some implementations, filling the opening with an insulating material includes: after forming the sacrificial layer, forming an insulating material covering the substrate structure, so as to fill the opening; and flattening the insulating material using the sacrificial layer as a stop layer, so that an upper surface of the insulating material in the opening is substantially flush with an upper surface of the sacrificial layer.
In some implementations, the sacrificial layer includes a silicon nitride, a silicon oxynitride or silicon oxycarbide; and the insulating material includes a silicon oxide.
In some implementations, the step of providing a substrate structure includes: providing an initial substrate; forming a patterned hard mask on the initial substrate; etching the initial substrate using the hard mask as a mask, so as to form a substrate and the one or more fins located on the substrate; depositing an isolation material to fill space around the fin, an upper surface of the isolation material being substantially flush with an upper surface of the hard mask; performing first back-etching on the isolation material to expose the hard mask; removing the hard mask; and performing second back-etching on the remaining isolation material to form the substrate structure.
In some implementations, the initial substrate includes an initial semiconductor layer and an initial buffer layer located on the initial semiconductor layer; the fin includes a semiconductor layer and a buffer layer located on the semiconductor layer; and the second back-etching further removes the buffer layer.
In some implementations, the method further includes: forming a first gate structure on the fin and forming a second gate structure on the third isolation region.
In some implementations, the method further includes: etching fins on both sides of the first gate structure using the first gate structure and the second gate structure as masks to form indentations; and epitaxially growing a semiconductor material in the indentations to form a source region and a drain region.
In some implementations, the first gate structure includes a first gate dielectric layer on the surface of the fin, a first gate on the first gate dielectric layer, a first hard mask layer on the first gate, and a first spacer on side walls of the first gate dielectric layer, the first gate and the first hard mask layer; and the second gate structure includes a second gate on the third isolation region, a second hard mask layer on the second gate, and a second spacer on side walls of the second gate and the second hard mask layer, the second spacer covering the end portion of the fin adjacent to the third isolation region.
In another aspect of the present disclosure, a semiconductor apparatus is provided, including: a substrate; one or more fins located on the substrate and extending along a first direction; and an isolation region located around the fin, an upper surface of the isolation region being lower than an upper surface of the fin, the isolation region including: a first isolation region located on a side surface, which is in the first direction, of the fin and a second isolation region located on a side surface, which is in a second direction different from the first direction, of the fin; and a third isolation region located on the first isolation region, an upper surface of the third isolation region being higher than the upper surface of the fin.
In some implementations, the third isolation region covers an end portion of the fin adjacent to the first isolation region.
In some implementations, the apparatus further includes: a protection layer between the third isolation region and the fin.
In some implementations, the apparatus further includes: a first gate structure on the fin and a second gate structure on the third isolation region.
In some implementations, the apparatus further includes: a source region and a drain region that are formed by means of epitaxial growth of a semiconductor material on both sides of the first gate structure.
In some implementations, the first gate structure includes a first gate dielectric layer on the surface of the fin, a first gate on the first gate dielectric layer, a first hard mask layer on the first gate, and a first spacer on side walls of the first gate dielectric layer, the first gate and the first hard mask layer; and the second gate structure includes a second gate on the third isolation region, a second hard mask layer on the second gate, and a second spacer on side walls of the second gate and the second hard mask layer, the second spacer covering the end portion of the fin adjacent to the third isolation region.
In some implementations of the present application, a third isolation region whose upper surface is higher than an upper surface of a fin is formed on a first isolation region. Therefore, even if a pseudo-gate structure (corresponding to a subsequent second gate structure) subsequently formed on the third isolation region is deviated, the appearance of a semiconductor material in epitaxial growth is not affected, thus avoiding affecting a stress introduced to a channel, and improving carrier mobility of a device.
Through the following detailed description of exemplary embodiments and implementations of the present disclosure with reference to the accompanying drawings, other features, aspects, and advantages of the present disclosure will become clear.
The accompanying drawings, as a part of the specification, illustrate exemplary embodiments and implementations of the present disclosure and, together with the specification, serve to explain the principles of the present disclousre. In the accompanying drawings:
Various exemplary embodiments and implementations of the present disclosure are described in detail with reference to the accompanying drawings. It should be noted that unless otherwise specified, relative layouts, mathematical expressions, and numeric values of components and steps described in these embodiments and implementations should not be construed as a limitation on the scope of the present disclosure.
Meanwhile, it should be understood that for ease of description, sizes of the components shown in the accompanying drawings are not necessarily drawn according to an actual proportional relation. For example, the thickness or width of some layers may be exaggerated with respect to other layers.
The following description about exemplary embodiments and implementations is for illustrative purposes only, and should by no means be used as a limitation on the present disclosure, as well as the application or use thereof.
Technologies, methods, and apparatuses that are known by a person of ordinary skill in the related fields may not be discussed in detail. However, in proper cases, the technologies, methods, and apparatuses should be considered as a part of the specification.
It should be noted that similar reference signs and letters represent similar items in the following accompanying drawings. Therefore, once an item is defined or described in a figure, the item does not need to be further discussed in the subsequent figures.
As shown in
As shown in
The substrate structure further includes one or more fins 202 located on the substrate 201 and extending along a first direction. The first direction herein is an extension direction of the fin 202 and may also be referred to as a direction along a channel. It should be noted that, the material of the fin 202 may be a semiconductor material the same as that of the substrate 201 or may be a semiconductor material different from that of the substrate 201.
The substrate structure further includes an isolation region located around the fin 202. Here, an upper surface of the isolation region is lower than an upper surface of the fin 202. The isolation region includes a first isolation region 213 and a second isolation region 223. The first isolation region 213 is located on a side surface of the fin 202 that is in the first direction. The second isolation region 223 is located on a side surface of the fin 202 that is in a second direction that is different from the first direction. Here, the second direction may be, for example, a direction substantially perpendicular to the first direction and may also be referred to as a direction perpendicular to the channel. The first isolation region 213 may be located on either side in the first direction of the fin 202 or may be located on both sides in the first direction of the fin 202. Similarly, the second isolation region 223 may be located on either side in the second direction of the fin 202 or may be located on both sides in the second direction of the fin 202. In some implementations, the material of the isolation region may be a dielectric material such as an oxide, a nitride or an oxynitride.
Then, in step 104, a sacrificial layer 302A having an opening 601 is formed on the substrate structure. The opening 601 exposes the upper surface of the first isolation region 213 and exposes a part, which is located above the first isolation region 213, of the side surface of the fin 202 adjacent to the first isolation region 213, as shown in
A specific implementation of step 104 is described hereinafter with reference to
As shown in
As shown in
As shown in
As shown in
In this way, the sacrificial layer 302A having the opening 601 is formed. In some implementations, the opening 601 may further expose an end portion of the fin 202 adjacent to the first isolation region 213.
Then, referring to
A specific implementation of step 106 is described hereinafter with reference to
As shown in
As shown in
Then, in step 108, the sacrificial layer 302A is removed, as shown in
Forms of a manufacturing method for a semiconductor apparatus are described above. In forms of the method, a third isolation region whose upper surface is higher than an upper surface of a fin is formed on a first isolation region. Therefore, even if a pseudo-gate structure (corresponding to a subsequent second gate structure) subsequently formed on the third isolation region is deviated, the appearance of a semiconductor material in epitaxial growth is not affected, thereby avoiding affecting a stress introduced to a channel, and improving carrier mobility of a device.
The present disclosure further provides semiconductor apparatus. Implementations of the semiconductor apparatus may be manufactured using the foregoing method, but is not limited to being manufactured using the foregoing method. Implementations of a semiconductor apparatus are described hereinafter with reference to
As shown in
The semiconductor apparatus further includes a third isolation region 801 located on the first isolation region 213. In some implementations, the third isolation region 801 may cover an end portion of the fin 202 adjacent to the first isolation region 213.
In some implementations, referring to
After the semiconductor apparatus shown in
In some implementations, the first gate structure 1001 may include a first gate dielectric layer 1011, such as silicon oxide, on the fin 202; a first gate 1021, such as polycrystalline silicon, on the first gate dielectric layer 1011; a first hard mask layer 1031, such as silicon nitride, on the first gate 1021; and a first spacer 1041, such as silicon oxide or silicon nitride, on side walls of the first gate 1021 and the first hard mask layer 1031. For example, the first gate dielectric layer 1011 may be formed by means of thermal oxidation.
In some implementations, the second gate structure 1002 may include a second gate 1012, such as polycrystalline silicon, on the third isolation region 801; a second hard mask layer 1022, such as silicon nitride, on the second gate 1012; and a second spacer 1032, such as silicon oxide or silicon nitride, on side walls of the second gate 1022 and the second hard mask layer 1032. Here, the second spacer 1032 covers the end portion of the fin 202 adjacent to the first isolation region 213.
After the first gate structure 1001 and the second gate structure 1002 are formed, in some implementations, the foregoing method may further include the following steps:
Fins 202 on both sides of the first gate structure 1001 are etched using the first gate structure 1001 and the second gate structure 1002 as masks, to form indentations such as a first indentation 1101 and a second indentation 1102, as shown in
The present disclosure further provides another semiconductor apparatus, as shown in
In implementations of the semiconductor apparatus provided in the present application, a third isolation region whose upper surface is higher than an upper surface of a fin is provided on a first isolation region. Therefore, even if a pseudo-gate structure (corresponding to a subsequent second gate structure) subsequently formed on the third isolation region is deviated, the appearance of a semiconductor material in epitaxial growth is not affected, thereby avoiding affecting a stress introduced to a channel, and improving carrier mobility of a device.
The present disclosure further provides exemplary methods for forming the foregoing substrate structure. A detailed description is made hereinafter with reference to
First, as shown in
Then, as shown in
Next, as shown in
Then, as shown in
Then, as shown in
Then, second back-etching is performed on the remaining isolation material 1501 to form the substrate structure shown in
After the substrate structure is formed according to the steps shown in
Above, semiconductor apparatus and manufacturing methods for the same are described in detail. To avoid obstructing the ideas of the present disclosure, some details generally known in the art are not described. According to the foregoing descriptions, a person skilled in the art will understand how to implement the technical solutions disclosed herein. In addition, the embodiments and implementations taught in the disclosure of the specification can be freely combined. A person skilled in the art will understand that the embodiments and implementations described above may be modified without departing from the spirit and scope of the present disclosure as defined by the appended claims.
Claims
1. A semiconductor apparatus, comprising:
- a substrate;
- a fin located on the substrate and extending along a first direction; and
- an isolation region located around the fin, where an upper surface of the isolation region is lower than an upper surface of the fin, the isolation region comprising: a first isolation region located on a side surface of the fin that is in the first direction, and a second isolation region located on a side surface of the fin that is in a second direction that is different from the first direction; and
- a third isolation region located on the first isolation region, where an upper surface of the third isolation region is higher than the upper surface of the fin.
2. The apparatus according to claim 1, wherein:
- the third isolation region covers an end portion of the fin adjacent to the first isolation region.
3. The apparatus according to claim 1, further comprising:
- a protection layer between the third isolation region and the fin.
4. The apparatus according to claim 1, further comprising:
- a first gate structure on the fin, and
- a second gate structure on the third isolation region.
5. The apparatus according to claim 4, further comprising:
- a source region and a drain region that are formed by means of epitaxial growth of a semiconductor material on both sides of the first gate structure.
6. The apparatus according to claim 4, wherein:
- the first gate structure comprises a first gate dielectric layer on the surface of the fin, a first gate on the first gate dielectric layer, a first hard mask layer on the first gate, and a first spacer on side walls of the first gate dielectric layer, the first gate and the first hard mask layer; and
- the second gate structure comprises a second gate on the third isolation region, a second hard mask layer on the second gate, and a second spacer on side walls of the second gate and the second hard mask layer, the second spacer covering the end portion of the fin adjacent to the third isolation region.
Type: Application
Filed: Mar 2, 2020
Publication Date: Jun 25, 2020
Applicants: Semiconductor Manufacturing International (Shanghai) Corporation (Shanghai), Semiconductor Manufacturing International (Beijing) Corporation (Beijing)
Inventor: Hai Zhao (Shanghai)
Application Number: 16/806,105