Diamond Coated Electrodes for Electrochemical Processing and Applications Thereof
An electrode for an ozone generator or chlorine generator includes an electrically conductive substrate, a doped-Si layer disposed over the conductive substrate, and a boron-doped diamond (BDD) layer disposed over the doped-silicon layer. The doped-silicon layer defines a discrete architecture that maintains adhesion throughout a high temperature CVD boron-doped diamond process. Another electrode having a PVD nitrogen-doped diamond (ta-C:N) layer disposed over a conductive substrate is also provided.
This application claims the benefit of U.S. provisional application Ser. No. 62/017,555 filed Jun. 26, 2014, the disclosure of which is hereby incorporated in its entirety by reference herein.
TECHNICAL FIELDIn at least one aspect, the present invention relates to electrodes for water electrolyzers and ozonizers.
BACKGROUNDOzone is a strong oxidant that is used for water treatment and disinfection. In many applications, ozone replaces chlorine because of unwanted by-product formation connected with the latter. Ozone dissolved in water is used for disinfection of microbes and organic pollutants, wastewater treatment, and the like. The electrochemical production of ozone has advantages over the conventional technologies such as corona discharge. Ozone from electrochemical production is directly dissolved in water; thereby minimizing technical problems associated with handling ozone gas which is toxic at high concentrations.
During water electrolysis, oxygen evolution is the main rival reaction to ozone production. Thermodynamically, oxygen evolution is strongly favored versus ozone production. Therefore, high current efficiencies for electrochemical ozone production are only possible for anode materials with a high overpotential for oxygen evolution. In the recent years, doped diamond electrodes have been developed and investigated for generation of dissolved ozone. Besides other interesting properties, doped diamond is distinguished by an exceptionally high overvoltage for oxygen evolution in aqueous electrolytes which makes even highly efficient OH radical production possible. In addition, diamond and related materials are stable in aqueous electrolytic processes.
Another prior art SPE ozonizer design is described in detail in Sang-Do Han et. al. “Electro-chemical production of ozone using water electrolysis cell of solid polymer electrolyte (SPE)”, Indian Journal of Chemical Technology Vol. 13, March 2006, pp. 156-161. In this design, the NAFION® SPE membrane is sandwiched between two porous titanium electrodes having electrocatalytic oxi-ceramic coatings on the sides facing the membrane. The electrode-SPE assembly is pressed together by two current collector flow plates also made of titanium positioned on opposite sides of the assembly. The current collector flow plates have grooves serving as channels for conducting a flow of gas and/or liquid. These grooves ensure sufficient and uniform supply of water during electrolysis and also an escape route for oxygen and ozone gases in the anodic compartment and hydrogen and water molecules in a cathodic compartment. On the anode side, the water flow provides a supply of water for the electrolysis. The water flow on the anode side also serves as a carrier to transport oxygen and ozone as products of the electrochemical reaction taking place at the electrode-SPE interface. The hydrogen ions first diffuse through the NAFION® SPE membrane; then, react at the cathode electrode creating hydrogen gas. On the cathode side of the cell, the hydrogen is removed either by gas transport or water carrier transport along the channels in the cathode current collector. In this SPE-based design, a porous anode electrode can include a doped diamond electrocatalytic layer on the side facing the NAFION® membrane. The boron-doped diamond features both a large overpotential for evolution of oxygen and a sufficient electrical conductivity—both of which are necessary for high efficiency production of ozone by water electrolysis. The active part of the diamond electrode is the area in close vicinity to the boundary where the diamond surface, polymer electrolyte and water meet.
A SPE-based electrolytic cell utilizing boron-doped diamond electro-catalytic layer deposited by CVD process is also described in U.S. Pat. Appl. No. 2010/0320082. A refinement of this design utililizes a boron-doped diamond coating on the surface of a porous anode interfacing the SPE membrane (NAFION®). This approach is described in Alexander Kraft et.al. “Electrochemical ozone production using diamond anodes and a solid polymer electrolyte,” Electrochemistry Communications 8 (2006) 883-886. In this work, the anode electrode is porous niobium coated with boron-doped diamond, a few nm thick, on the side facing a NAFION® SPE membrane. Alternatively, amorphous tetrahedral nitrogen-doped films can be deposited by condensation of a highly-ionized carbon ion beam or carbon plasma using either ion beams or filtered cathodic arc deposition or another suitable PVD coating processes as described in U.S. Pat. No. 6,423,193.
One disadvantage of all of the approaches is the precipitation of calcium salt on and near the surface of the cathode during operation in tap water. To minimize such precipitation, the polarity of the potential on the anode and cathode can be switched periodically. However, materials that are resistant to both oxidation during the anodic polarity and hydrogen embrittlement during the cathodic polarity are limited and can be both costly (e.g. standalone diamond) and difficult to process (e.g. silicon). Having different materials for the anode and cathode can be more cost-effective and allow a larger flexibility in design of the cell. Another disadvantage of some of these approaches is insufficient flow of water near the surface in which ozone is formed. Insufficient flow of water promotes degradation of the material at the surface of the anode through prolonged exposure to the generated chemical species and limits efficient transfer of the ozone into solution.
Deposition of polycrystalline diamond coatings by CVD or plasma assisted CVD (PACVD) processes is a well-known technology. Examples of process for forming diamond coating include hot filament CVD (HFCVD); combustion flame CVD CFCVD); arc jet plasma-assisted CVD (AJCVD); laser-assisted CVD (LCVD); and RF or microwave plasma-assisted CVD (RF or MW CVD). Typically, a polycrystalline diamond CVD coating deposition process includes the following steps:
-
- (1) Cleaning in an ultrasonic bath with acetone;
- (2) Seeding in submicron diamond slurry in ultrasonic bath to increase the density of diamond nucleation sites;
- (3) Cleaning in acetone;
- (4) Drying by isopropyl alcohol;
- (5) Subjecting to polycrystalline diamond coating deposition process in CVD reactor.
The gas composition coatings in hot filament reactors, DC arc plasma reactors and MW reactors is typically consists of less than 1% CH4 in H2 which can be mixed with argon as a buffer gas. For deposition of boron-doped diamond coating which is necessary for ozone generating electrodes, trimethylborane can be added to reactive gas atmosphere in proportion ranging from 0.1 to 1% of hydrocarbon (HC) gas. The pressure during deposition of diamond CVD coating can range from 1 mtorr to atmospheric pressure and typically ranging from 1 to 100 torr. The substrate temperature during deposition of CVD diamond coatings is typically ranging from 600 to 950 deg C.
CVD diamond coatings can be deposited on many different substrates, but substrates materials which can form carbides in HC contained atmospheres at high temperatures are preferable for achieving better coating properties like a continuous film, no voids or holes and a density near the theoretical value of 3.5 g/cm3. The electrodes in an electrolytic ozone generator can be subjected to periodic switching of the polarity which shifts them from anode to cathode during operation. During exposure as a cathode, the electrodes are subjected to reducing conditions with a high concentration of nascent hydrogen. During exposure as an anode, they are subjected to intense oxidizing conditions. Because of these operating conditions the electrodes must be stable against degradation both as anode and as a cathode in electrochemical process. Moreover, any exposed metal in contact with water as a part of anode in electrochemical process, has a much lower overpotential than that of diamond coating. In this case, oxygen will be generated on the metal surface competing with ozone generated on surface of diamond, which reduces the effectiveness of the ozone generating process. To overcome this drawback, the metal substrate must have the ability to passivate by forming a stable and dense oxide film when exposed as an anode in electrochemical process. Metals such as Nb, Ta, W, Mo and Si are known as favorable substrates for growing polycrystalline diamond coatings by CVD and PACVD processes. Nb and Ta form a stable oxide in an oxidizing (anodic) environment, but are prone to hydrogen embrittlement and subsequent cracking and degradation as cathodes. W and Mo are stable as cathodes, but as anodes they form unstable oxides transforming their surface into powder. Conductive boron- or phosphorus-doped silicon is stable both as anode and as a cathode, but it is brittle and requires expensive micromachining to form electrodes for electrochemical processes. As a result, a need exists for improved electrodes for the electrochemical production of ozone to treat water.
Accordingly, there is a need for improved design for the electrochemical production of ozone to treat water.
SUMMARYThe present invention solves one or more problems of the prior art by providing in at least one embodiment an electrode for an ozone generator or a chlorine generator. The electrode includes an electrically conductive substrate, a doped-Si layer disposed over the electrically conductive substrate, and a boron-doped diamond (BDD) layer disposed over the doped-silicon layer. The doped-silicon layer defines a discrete architecture that maintains adhesion throughout a high temperature CVD boron-doped diamond process.
In another embodiment, an electrode for an ozone generator or a chlorine generator is provided. The electrode includes an electrically conductive substrate and a PVD nitrogen-doped diamond (ta-C:N) layer disposed over the electrically conductive substrate. Typically, the substrate is a doped-Si substrate or doped-Si coating on an electrically conductive substrate.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In general, the present invention provides coating architecture that includes a doped-Si sublayer that can be continuous, patterned, modulated or discrete. The boron-doped diamond coated electrodes overcome many of the disadvantages of the prior art thin polycrystalline boron-doped diamond films over metallic substrates. In particular, the present embodiment provides an electrically conductive doped-silicon barrier interlayer which effectively protects metal substrates against degradation during exposure at both the anode and the cathode in an electrochemical process. Moreover, the present embodiment advantageously retains a surface composition favorable for growing polycrystalline diamond chemical vapor deposition (CVD) films. A silicon sublayer, barrier coating positioned between the metal substrate and top diamond CVD layer allows the use of virtually any refractory metal as a substrate for boron-doped diamond coated electrodes in electrochemical water treatment. Alternatively, the ferrous metals, even when coated with a thin film of silicon, are still unfavorable as a substrate material due to high inward carbon diffusion rate through thin silicon interlayer into bulk ferrous metal substrate. Examples of the metal substrates which can be used for diamond coated electrodes with silicon barrier sublayer include Ti, W, Mo, Nb, Ta, Cr, Zr, V. Among these metals, Ti is economical and forms a passivating oxide film in anodic mode.
With reference to
With reference to
Coating adhesion and stability of boron-doped diamond (BDD) layer 36 (
With reference to
The discrete coating approach set forth above is also beneficial for deposition of nitrogen-doped amorphous diamond coating or tetrahedral amorphous nitrogen doped carbon (ta-C:N) which can be used for electrodes in chlorine generators. Typically, ta-C:N coatings can be deposited on different substrates such as W, Mo, Nb, Ta, Cr, Zr, V, Pt, Au and Si in addition to metal substrates with a Si, Pt or Au barrier coating. For example, ta-C:N coatings can be deposited by physical vapor deposition (PVD) processes such as filtered cathodic arc deposition with magnetically steered cathodic arc spots. In this process, a carbon plasma is generated by vacuum cathodic arc spots on the surface of a graphite cathode target. Unwanted macroparticles and neutrals are filtered, either mechanically or magnetically, by bending the carbon vapor plasma stream in the curvilinear magnetic field while neutrals, which are not affected by electromagnetic field, are trapped by the baffles. A schematic illustration of such a coating deposition process is provided by
Still referring to
In general, ta-C:N coatings usually have a high level of stress that makes it difficult to deposit thick ta-C:N coatings on different metal substrates. As illustrated by
Conductive doped Si layers can be deposited on different metal substrates by a number of methods known to those skilled in the art. For example, doped Si layers can be deposited by CVD or plasma assisted CVD (PACVD) processes in a reactive atmosphere containing disilane (Si2H6) as a source of silicon and phosphine (PH3) and /or diborane (B2H6) as a source of phosphorus and boron. The conductive doped Si layers can also be deposited by a chemically enhanced physical vapor deposition (CAPVD) method using either e-beam evaporation of silicon or magnetron sputtering of silicon target as a source of silicon with phosphorus and/or boron doping achieved by adding phosphine and/or diborane to the reactive gas atmosphere or by using a silicon target that is already doped. Boron doped silicon has p-type conductivity while phosphorus-doping silicon has n-type conductivity. Such electrical conductivity is necessary for sub-layers in water treatment diamond coated electrodes.
A number of techniques can be employed to roughen the substrate surface prior to deposition of the doped silicon interlayer. For example, texturing can be created by wet or dry grit or bead blasting, vibratory tumbling or etching. Moreover, patterns on the surface can be produced by a programmed laser ablation technique, which can provide a precisely controlled surface profile.
In another variation, a random pattern with both micron and nanometer-sized features can be generated on a surface by chemical and/or electrochemically etching and/or grit blasting. Examples of chemical etchants for titanium are ammonium bifluoride, sulfuric acid with or without an oxidizer (e.g., hydrogen perioxide) and other strong acids (e.g., trifluoromethanesulfonic acid, trifluoroacetic acid) and ammonium hydroxide and combinations thereof. The article Fiorenzo Vetrone et. al. “Nanoscale Oxidative Patterning of Metallic Surfaces to Modulate Cell Activity and Fate”, Nano Letters Vol. 09, No. 2, 2009, pp. 659-665 provides examples of suitable etchants; the entire disclosure of this article is hereby incorporated by reference.
To determine if a Ti-coated substrate with a doped-Si coating can survive the high temperature cycling of the CVD BDD process, samples were exposed to a heating cycle in an argon atmosphere in a quartz tube furnace from MTI Corporation (model number GSL-1100X). In these experiments, samples were placed in the quartz tube which was sealed and then flushed for 20 minutes with Ar gas at 3 l/min while maintaining a slight overpressure of 0.08 MPa. Flushing and overpressure continued while ramping the temperature from room temperature to 800 ° C. over a 30 minute period followed by a slow cooling over 4 hrs to room temperature. Subsequently, SCOTCH® tape was pressed on the coating and then pulled off to test the adhesion of the doped-Si coating. The Table below shows the results of coating adhesion after the heating cycle as related to the texturing operation. The Si coating deposited on the etched-only surface fully survived the heating process.
As shown illustratively in
Doped silicon deposited over a modulated surface profile of a metal substrate includes elevated islands separated from each other by small gaps. Modulating the topography of the coating limits both stress in the coating and mismatch with the thermal expansion of the substrate. Depositing a silicon sublayer directly on a metal substrate is possible. Alternatively, the doped silicon sublayer, which is conductive, is deposited on top of a passive sublayer composed of semiconductor oxide, nitride or oxinitride. For example, titanium substrate can be coated initially with semiconducting titanium oxide and/or titanium nitride having a thickness ranging from 1 to 1000 nm followed by a boron-doped silicon coating having a thickness ranging from 1 to 10 μm.
A titanium plate 3 cm×3 cm×0.1 cm with a 10×10 array of holes, each hole having a diameter of 0.5 mm with a spacing of 1.5 mm between, is used as a substrate. First, the substrate is etched. For this, 50% sulfuric acid is poured into a 500 ml beaker. A TEFLON®-coated stirring bar is dropped into the beaker. The beaker is stirred using a magnetic stirring device. The titanium plates are submerged into the sulfuric acid and held under for 4 hrs to create a textured surface with features on the scale of nanometers. The titanium is then removed and rinsed in de-ionized water. The substrates are then installed on a rotatable holder in a vacuum coating processing chamber with a DC magnetron sputtering source equipped with a boron-doped silicon target. After evacuation, the chamber is filled with argon to a pressure of 30 mT. Subsequently, a glow discharge is ignited on the substrate by applying 500 volts bias to the holder. The holder is rotated at 10 rpm. After 30 min of ion cleaning in glow discharge in argon, oxygen is introduced at a 30% partial pressure in relation to argon. Substrate treatment continues in the Ar/O2 mixture for 1 hr to produce a titanium oxide interlayer. Optionally, a TiN sublayer can be deposited by magnetron sputtering and/or cathodic arc evaporation prior to silicon coating. The TiN sublayer serves as a barrier against silicon diffusion into bulk metal substrate. After this stage, the oxygen is evacuated and the DC magnetron sputtering of boron-doped silicon is started to produce a modulated boron-doped conductive silicon interlayer coating deposited on a titanium substrate. The silicon coating process lasts 2 hrs to produce a 1.5 um thick modulated boron-doped silicon interlayer. After this stage, the coating process is interrupted and the substrate is removed from the chamber. For the next stage, the substrate with the modulated conductive boron-doped silicon coating is subjected to diamond seeding by exposure in an ultrasonic bath with a nano-diamond suspension for 1 hr. After the seeding stage, the substrate is cleaned in acetone and dried in isopropyl alcohol before loading in a hot-filament CVD reactor for deposition of a boron-doped polycrystalline diamond coating that is 2-3 um thick. This process lasts for 5 hrs at a substrate temperature of 950 ° C. in a mixture of hydrogen/0.3% methane/0.001% triethylborane mixture at 100 torr. After this step, the substrate is removed from the chamber and assembled with a NAFION® SPM and a counter electrode made of tungsten to form an electrolytic cell for water treatment. The diamond coated electrode is connected to the positive pole of the power supply to serve as an anode and the counter electrode is connected to the negative pole to serve as a cathode in water treatment electrochemical process. The polarity of the electrodes is switched periodically to minimize build-up of mineral deposits on the cathode. The NAFION® can be either a solid piece or have holes aligned and perhaps concentric with the holes of the electrodes. If solid, the NAFION® would separate the water and reactive species in the cathodic and anodic regions. If perforated with holes, the anodic and cathodic regions would not be separated and water could flow through the cell.
In a preferred embodiment of the invention, the water flow can be forced through the channels between the electrodes and the NAFION® SPE membrane.
In a refinement of the forced flow design, the electrolytic cell design features flow through a perforated SPE membrane as shown schematically in a cross-sectional view in
A solid titanium plate 3 cm×12 cm×0.1 cm is used as a substrate. First, the substrate is cleaned in acetone and dried in isopropyl alcohol. After, a stainless steel mask screen with 0.15 mm opening and 0.05 mm diameter wire is attached to the front side of the substrate with a spacing of 0.1 mm from the substrate. The substrate-mask assembly is then installed on rotatable holder in a vacuum coating processing chamber with a DC magnetron sputtering source equipped with a boron-doped silicon target. After evacuation, the chamber is filled with argon to a pressure of 30 mT. Subsequently, a glow discharge is ignited on the substrate by applying 500 volts bias to the holder. The holder is rotated at 10 rpm. Substrate treatment continues in the Ar plasma for 1 hr to clean the surface of the titanium. After this stage, the DC magnetron sputtering of boron-doped silicon is started to produce a modulated boron-doped conductive silicon interlayer coating deposited on a titanium substrate through the mask. The silicon coating process lasts for 2 hrs to produce a 1.5 um thick modulated boron-doped silicon interlayer. After this stage, the argon flow is replaced by a flow of nitrogen gas and the background pressure is held at 0.05 mT to prepare for a deposition of nitrogen-doped tetrahedral amorphous carbon (ta-C:N). For this, a current of 140 amperes is ignited on a graphite plate. Carbon ions are evaporated from the graphite plate and steered using an electromagnetic field onto the substrates, which are held at a 50 V bias. The samples are rotated around the graphite plate and exposed intermittently to the carbon ions for a period of 4 hrs to build the thickness of ta-C:N to about 1.5 microns. After this stage, the substrate is removed from the chamber and assembled with a counter electrode made of tungsten to form an electrolytic cell for generation of chlorine in saltwater. The diamond coated electrode is connected to the positive pole of the power supply to serve as an anode, and the counter electrode is connected to the negative pole to serve as a cathode in saltwater treatment electrochemical process. The polarity of the electrodes is switched periodically to minimize build-up of mineral deposits on the cathode.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Claims
1.-7. (canceled)
8. An electrode for an ozone generator or chlorine generator, the electrode comprising:
- an electrically conductive substrate;
- a physical vapor deposited nitrogen-doped diamond (ta-C:N) layer disposed over the electrically conductive substrate.
9. The electrode of claim 8 wherein the substrate is a doped-silicon substrate or doped-silicon coating on an electrically conductive substrate
10. The electrode of claim 8 wherein the ta-C:N layer has a thickness from 10 nm to 5 microns.
11. The electrode of claim 8 wherein the thickness is achieved by depositing the ta-C:N in a discrete architecture.
12. The electrode of claim 8 wherein the electrically conductive substrate can also act as an electrical contact between a power source and the ta-C:N catalyst.
Type: Application
Filed: Jul 13, 2021
Publication Date: Nov 4, 2021
Inventors: Vladimir GOROKHOVSKY (Lafayette, CO), Patrick A. SULLIVAN (Longmont, CO), Klaus BRONDUM (Ann Arbor, MI), Patrick Byron JONTE (Zionsville, IN)
Application Number: 17/374,918