LIGHT EMITTING DIODE PACKAGES
Solid-state lighting devices including light-emitting diodes (LEDs) and LED packages are disclosed. LED packages are provided with improved thermal and/or electrical coupling between LED chips and submounts or lead frames. Various configurations of submounts with via arrangements are disclosed to provide improved coupling between LED chips and submounts. LED chip contacts are disclosed with one or more openings that are registered with vias to provide more uniform mounting. Multiple LED chips may be arranged around a thermally conductive element on a submount, and a via in the submount may be registered with the thermally conductive element. Subassemblies are provided between LED chips and lead frames to improve electrical and thermal coupling. Underfill materials may be arranged between LED chips and lead frames to provide improved mechanical support.
This application is a division of U.S. patent application Ser. No. 16/249,246, filed Jan. 16, 2019, the disclosure of which is hereby incorporated herein by reference in its entirety.
TECHNICAL FIELDThe present disclosure relates to solid-state lighting devices including light-emitting diodes (LEDs) and more particularly to LED packages.
BACKGROUNDSolid-state lighting devices such as light-emitting diodes (LEDs) are increasingly used in both consumer and commercial applications. Advancements in LED technology have resulted in highly efficient and mechanically robust light sources with a long service life. Accordingly, modern LEDs have enabled a variety of new display applications and are being increasingly utilized for general illumination applications, often replacing incandescent and fluorescent light sources.
LEDs are solid-state devices that convert electrical energy to light and generally include one or more active layers of semiconductor material (or an active region) arranged between oppositely doped n-type and p-type layers. When a bias is applied across the doped layers, holes and electrons are injected into the one or more active layers where they recombine to generate emissions such as visible light or ultraviolet emissions. An LED chip typically includes an active region that may be fabricated, for example, from silicon carbide, gallium nitride, gallium phosphide, aluminum nitride, gallium arsenide-based materials, and/or from organic semiconductor materials. LED packages are solid-state devices that incorporate one or more LED chips into a packaged device. An LED chip may be enclosed in a component package to provide environmental and/or mechanical protection, light focusing and the like.
Typically, it is desirable to operate LED chips and LED packages at the highest light emission efficiencies possible, which can be measured by the emission intensity in relation to the input power (e.g., in lumens per watt). As light emission intensities of LED chips and LED components continue to increase, more heat can be generated from LED chips, which can adversely impact operating efficiencies. Additionally, challenges exist in manufacturing LED packages that incorporate LED chips mounted to die attach pads. The art continues to seek improved LEDs and solid-state lighting devices having increased light output and increased light emission efficiencies without impairing manufacturability and reliability of such devices, while providing desirable illumination characteristics capable of overcoming challenges associated with conventional lighting devices.
SUMMARYThe present disclosure relates to solid-state lighting devices including light-emitting diodes (LEDs), and more particularly to LED packages. LED packages as disclosed herein are configured to provide improved thermal and/or electrical coupling between LED chips and submounts or between LED chips and lead frames. In certain embodiments, LED packages include submounts incorporating electrically conductive vias, with such vias being configured to provide improved thermal contact between LED chips and submounts. LED chips may further include contacts with one or more openings that are registered with vias to provide more uniform mounting between LED chips and submounts. In certain embodiments, multiple LED chips are arranged around a thermally conductive element on a surface of a submount, and a via in the submount may be registered with the thermally conductive element. In certain embodiments, subassemblies are provided between LED chips and lead frames to improve electrical and thermal coupling. In certain embodiments, underfill materials are arranged between LED chips and lead frames to provide improved mechanical support. According to the embodiments disclosed herein, LED packages are provided with thermal capabilities that allow operation at higher powers with increased power densities.
In one aspect, an LED package comprises: a submount comprising a first face, a second face that opposes the first face, a die attach pad on the first face, and at least one via that comprises an electrically conductive material and that extends between the first face and the second face, wherein the die attach pad is registered with the at least one via; and an LED chip comprising a contact pad that is coupled with the die attach pad, wherein the contact pad defines at least one opening that is registered with the at least one via. The die attach pad may be electrically coupled with the at least one via. In certain embodiments, each opening of the at least one opening comprises a recess having a maximum depth smaller than a thickness of the contact pad. In certain embodiments, each opening of the at least one opening comprises an aperture extending through an entire thickness of the contact pad. In certain embodiments, the at least one via comprises a plurality of vias, wherein the die attach pad is registered with the plurality of vias. In certain embodiments, the at least one opening comprises a plurality of openings that are registered with the plurality of vias. In certain embodiments, the at least one via comprises a plurality of vias that overlap with one another to form a trench via. In certain embodiments, the at least one opening comprises a trench opening that is registered with the trench via. In certain embodiments, the LED chip is one of a plurality of LED chips that are mounted on the submount; the at least one via comprises a plurality of vias; the die attach pad is one of a plurality of die attach pads on the first face; and each LED chip of the plurality of LED chips is coupled with a different die attach pad of the plurality of die attach pads, and each LED chip comprises a contact pad that defines an opening registered with a different via of the plurality of vias. The LED chip may comprise a multiple-junction LED chip that is mounted on the submount. In certain embodiments, the at least one via comprises three vias that are positioned relative to one another in the submount to form vertices of a triangle.
In another aspect, an LED package comprises: a submount comprising a first face, a second face that opposes the first face, a first die attach pad on the first face, a second die attach pad on the first face, a first plurality of vias registered with the first die attach pad, and a second plurality of vias registered with the second die attach pad; and an LED chip comprising a primary light emitting face, a mounting face that opposes the primary light emitting face, an anode contact pad on the mounting face, and a cathode contact pad on the mounting face; wherein the anode contact pad is coupled with the first die attach pad, and the cathode contact pad is coupled with the second die attach pad. The LED package of claim B1, wherein the first plurality of vias is electrically coupled with the first die attach pad, and the second plurality of vias is electrically coupled with the second die attach pad. In certain embodiments, the anode contact pad comprises a plurality of openings, and openings of the plurality of openings are registered with vias of the first plurality of vias. In certain embodiments, the cathode contact pad comprises a plurality of openings, and openings of the plurality of openings are registered with vias of the second plurality of vias. In certain embodiments, the anode contact pad comprises a first plurality of openings, and openings of the first plurality of openings are registered with vias of the first plurality of vias; and the cathode contact pad comprises a second plurality of openings, and openings of the second plurality of openings are registered with vias of the second plurality of vias. The submount may comprise at least one additional via that is arranged outside of a mounting area defined by lateral boundaries of the LED chip. In certain embodiments, at least one via of the first plurality of vias extends into but not completely through the first die attach pad, and at least one via of the second plurality of vias extends into but not completely through the second die attach pad. The first plurality of vias and the second plurality of vias may be electrically isolated from the first die attach pad and the second die attach pad. In certain embodiments, at least one via of the first plurality of vias and/or at least one of the second plurality of vias extends in the submount at an oblique angle between the first face and the second face.
In another aspect, an LED package comprise: a first submount comprising a first face and a second face that opposes the first face, the first submount further comprising a plurality of vias that extend between the first face and the second face; a second submount comprising a first die attach pad, wherein the first die attach pad is registered with the plurality of vias; and an LED chip comprising a first contact pad that is coupled with the first die attach pad. In certain embodiments, the second submount is arranged between the LED chip and the first submount. In certain embodiments, the plurality of vias extend less than an entire distance between the first face and the second face of the first submount. In certain embodiments, the plurality of vias extend completely through the first submount.
In another aspect, an LED package comprises: a submount comprising a first face and a second face that opposes the first face, the submount further comprising a via that comprises a thermally conductive material and that extends between the first face and the second face; a thermally conductive element on the first face and registered with the via; and a plurality of LED chips on the first face, wherein each LED chip of the plurality of LED chips is arranged adjacent to a different lateral edge of the thermally conductive element. In certain embodiments, the via is configured with a same cross-sectional width or diameter as the thermally conductive element. In certain embodiments, the via is configured with a larger cross-sectional width or diameter than the thermally conductive element. The LED package may further comprise a package bond pad on the second face of the submount, wherein the package bond pad is registered with the via. In certain embodiments, a corner of each LED chip of the plurality of LED chips is arranged closest to a different corner of the thermally conductive element.
In another aspect, an LED package comprises: an LED chip mounted to a lead frame; and a subassembly arranged between the LED chip and the lead frame, wherein the subassembly comprises a metal submount that is thermally coupled between the LED chip and the lead frame. In certain embodiments, the subassembly further comprises: a first die attach pad that is configured to be electrically coupled with a first contact pad of the LED chip; and a second die attach pad that is configured to be electrically coupled with a second contact pad of the LED chip. In certain embodiments, the first die attach pad and the second die attach pad are electrically coupled to different portions of the lead frame by wirebonds. In certain embodiments, the subassembly further comprises a dielectric layer arranged between the first die attach pad and the metal submount, and arranged between the second die attach pad and the metal submount. In certain embodiments, the LED chip is arranged in a flip-chip configuration on the first die attach pad and the second die attach pad. The LED package may further comprise an underfill material arranged between the subassembly and the lead frame.
In another aspect, an LED package comprises: an LED chip mounted to a lead frame; a underfill material arranged between the LED chip and the lead frame; and an encapsulant material arranged on the LED chip and the underfill material. In certain embodiments, a first contact of the LED chip is electrically and mechanically coupled with a first lead frame portion, and a second contact of the LED chip is electrically and mechanically coupled with a second lead frame portion. In certain embodiments, the underfill material is arranged between the first lead frame portion and the second lead frame portion. In certain embodiments, the underfill material is arranged between the first contact of the LED chip and the second contact of the LED chip. In certain embodiments, the underfill material comprises light altering particles. In certain embodiments, the underfill material comprises a material with a higher durometer value on a Shore D hardness scale than the encapsulant material.
In another aspect, an LED package comprises: a submount comprising a first face, a second face that opposes the first face, a die attach pad on the first face, and a plurality of vias registered with the die attach pad, wherein outermost vias of the plurality of vias are arranged to form vertices of a non-rectangular polygonal shape; and an LED chip comprising a primary light emitting face and a mounting face that opposes the primary light emitting face, and at least a portion of the mounting face is thermally coupled to the die attach pad. In certain embodiments, the plurality of vias are arranged in an asymmetric pattern. In certain embodiments, a spacing between adjacent vias of the plurality of vias is smaller near the center of the die attach pad than along a perimeter of the die attach pad. In certain embodiments, the plurality of vias comprises three vias that are positioned relative to one another in the submount to form vertices of a triangle.
In another aspect, an LED package comprises: a submount comprising a first face, a second face that opposes the first face, a die attach pad on the first face, and a plurality of vias registered with the die attach pad, wherein a spacing between adjacent vias of the plurality of vias is smaller in certain areas of the die attach pad than in other areas the die attach pad; and an LED chip comprising a primary light emitting face and a mounting face that opposes the primary light emitting face, and at least a portion of the mounting face is thermally coupled to the die attach pad. In certain embodiments, the spacing between the adjacent vias of the plurality of vias is smaller near the center of the die attach pad than along a perimeter of the die attach pad. In certain embodiments, the spacing between the adjacent vias of the plurality of vias is smaller along a perimeter of the die attach pad. In certain embodiments, the plurality of vias form an array of closely spaced via clusters along the die attach pad. In certain embodiments, the die attach pad is electrically coupled with the plurality of vias. In certain embodiments, the die attach pad is electrically isolated with the plurality of vias.
In another aspect, any one or more aspects or features described herein may be combined with any one or more other aspects or features for additional advantage.
Other aspects and embodiments will be apparent from the detailed description and accompanying drawings.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The present disclosure relates to solid-state lighting devices including light-emitting diodes (LEDs) and more particularly to LED packages. LED packages as disclosed herein are configured to provide improved thermal and/or electrical coupling between LED chips and submounts or between LED chips and lead frames. In certain embodiments, LED packages include submounts with via arrangements configured to provide improved thermal contact between LED chips and submounts. LED chips may further include contacts with one or more openings that are registered with vias to provide more uniform mounting between LED chips and submounts. In certain embodiments, multiple LED chips are arranged around a thermally conductive element on a surface of a submount, and a via in the submount may be registered with the thermally conductive element. In certain embodiments, subassemblies are provided between LED chips and lead frames to improve electrical and thermal coupling. In certain embodiments, underfill materials are arranged between LED chips and lead frames to provide improved mechanical support. According to the embodiments disclosed herein, LED packages are provided with thermal capabilities that allow operation at higher powers with increased power densities.
An LED chip typically comprises an active LED structure or region that can have many different semiconductor layers arranged in different ways. The fabrication and operation of LEDs and their active structures are generally known in the art and are only briefly discussed herein. The layers of the active LED structure can be fabricated using known processes with a suitable process being fabrication using metal organic chemical vapor deposition. The layers of the active LED structure can comprise many different layers and generally comprise an active layer sandwiched between n-type and p-type oppositely doped epitaxial layers, all of which are formed successively on a growth substrate. It is understood that additional layers and elements can also be included in the active LED structure, including, but not limited to, buffer layers, nucleation layers, super lattice structures, un-doped layers, cladding layers, contact layers, and current-spreading layers and light extraction layers and elements. The active layer can comprise a single quantum well, a multiple quantum well, a double heterostructure, or super lattice structures.
The active LED structure can be fabricated from different material systems, with some material systems being Group III nitride-based material systems. Group III nitrides refer to those semiconductor compounds formed between nitrogen (N) and the elements in Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). Gallium nitride (GaN) is a common binary compound. Group III nitrides also refer to ternary and quaternary compounds such as aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN). For Group III nitrides, silicon (Si) is a common n-type dopant and magnesium (Mg) is a common p-type dopant. Accordingly, the active layer, n-type layer, and p-type layer may include one or more layers of GaN, AlGaN, InGaN, and AlInGaN that are either undoped or doped with Si or Mg for a material system based on Group III nitrides. Other material systems include silicon carbide (SiC), organic semiconductor materials, and other Group III-V systems such as gallium phosphide (GaP), gallium arsenide (GaAs), and related compounds.
The active LED structure may be grown on a growth substrate that can include many materials, such as sapphire, SiC, aluminum nitride (AlN), GaN, with a suitable substrate being a 4H polytype of SiC, although other SiC polytypes can also be used including 3C, 6H, and 15R polytypes. SiC has certain advantages, such as a closer crystal lattice match to Group III nitrides than other substrates and results in Group III nitride films of high quality. SiC also has a very high thermal conductivity so that the total output power of Group III nitride devices on SiC is not limited by the thermal dissipation of the substrate. Sapphire is another common substrate for Group III nitrides and also has certain advantages, including being lower cost, having established manufacturing processes, and having good light transmissive optical properties.
Different embodiments of the active LED structure can emit different wavelengths of light depending on the composition of the active layer and n-type and p-type layers. In some embodiments, the active LED structure emits blue light with a peak wavelength range of approximately 430 nanometers (nm) to 480 nm. In other embodiments, the active LED structure emits green light with a peak wavelength range of 500 nm to 570 nm. In other embodiments, the active LED structure emits red light with a peak wavelength range of 600 nm to 650 nm.
The LED chip can also be covered with one or more lumiphoric or other conversion materials, such as phosphors, such that at least some of the light from the LED chip is absorbed by the one or more phosphors and is converted to one or more different wavelength spectra according to the characteristic emission from the one or more phosphors. In some embodiments, the combination of the LED chip and the one or more phosphors emits a generally white combination of light. The one or more phosphors may include yellow (e.g., YAG:Ce), green (e.g., LuAg:Ce), and red (e.g., Cai-x-ySrxEuyAlSiN3) emitting phosphors, and combinations thereof. Lumiphoric materials as described herein may be or include one or more of a phosphor, a scintillator, a lumiphoric ink, a quantum dot material, a day glow tape, and the like. Lumiphoric materials may be provided by any suitable means, for example, direct coating on one or more surfaces of an LED, dispersal in an encapsulant material configured to cover one or more LEDs, and/or coating on one or more optical or support elements (e.g., by powder coating, inkjet printing, or the like). In certain embodiments, lumiphoric materials may be downconverting or upconverting, and combinations of both downconverting and upconverting materials may be provided. In certain embodiments, multiple different (e.g., compositionally different) lumiphoric materials arranged to produce different peak wavelengths may be arranged to receive emissions from one or more LED chips. In some embodiments, one or more phosphors may include yellow phosphor (e.g., YAG:Ce), green phosphor (e.g., LuAg:Ce), and red phosphor (e.g., Cai-x-ySrxEuyAlSiN3) and combinations thereof. One or more lumiphoric materials may be provided on one or more portions of an LED chip and/or a submount in various configurations. In certain embodiments, one or more surfaces of LED chips may be conformally coated with one or more lumiphoric materials, while other surfaces of such LED chips and/or associated submounts may be devoid of lumiphoric material. In certain embodiments, a top surface of an LED chip may include lumiphoric material, while one or more side surfaces of an LED chip may be devoid of lumiphoric material. In certain embodiments, all or substantially all outer surfaces of an LED chip (e.g., other than contact-defining or mounting surfaces) are coated or otherwise covered with one or more lumiphoric materials. In certain embodiments, one or more lumiphoric materials may be arranged on or over one or more surfaces of an LED chip in a substantially uniform manner. In other embodiments, one or more lumiphoric materials may be arranged on or over one or more surfaces of an LED chip in a manner that is non-uniform with respect to one or more of material composition, concentration, and thickness. In certain embodiments, the loading percentage of one or more lumiphoric materials may be varied on or among one or more outer surfaces of an LED chip. In certain embodiments, one or more lumiphoric materials may be patterned on portions of one or more surfaces of an LED chip to include one or more stripes, dots, curves, or polygonal shapes. In certain embodiments, multiple lumiphoric materials may be arranged in different discrete regions or discrete layers on or over an LED chip.
Light emitted by the active layer or region of an LED chip is typically omnidirectional in character. For directional applications, internal mirrors or external reflective surfaces may be employed to redirect as much light as possible toward a desired emission direction. Internal mirrors may include single or multiple layers. Some multi-layer mirrors include a metal reflector layer and a dielectric reflector layer, wherein the dielectric reflector layer is arranged between the metal reflector layer and a plurality of semiconductor layers. A passivation layer is arranged between the metal reflector layer and first and second electrical contacts, wherein the first electrical contact is arranged in conductive electrical communication with a first semiconductor layer, and the second electrical contact is arranged in conductive electrical communication with a second semiconductor layer. For single or multi-layer mirrors including surfaces exhibiting less than 100% reflectivity, some light may be absorbed by the mirror. Additionally, light that is redirected through the active LED structure may be absorbed by other layers or elements within the LED chip.
As used herein, a layer or region of an LED is considered to be “reflective” or embody a “mirror” or a “reflector” when at least 80% of the emitted radiation that impinges on the layer or region is reflected. In some embodiments, the emitted radiation comprises visible light such as blue and/or green LEDs with or without lumiphoric materials. In other embodiments, the emitted radiation may comprise nonvisible light. For example, in the context of GaN-based blue and/or green LEDs, silver (Ag) may be considered a reflective material (e.g., at least 80% reflective). In the case of ultraviolet (UV) LEDs, appropriate materials may be selected to provide a desired, and in some embodiments high, reflectivity and/or a desired, and in some embodiments low, absorption.
The present disclosure can be useful for LED chips having a variety of geometries, such as vertical geometry or lateral geometry. A vertical geometry LED chip typically includes anode and cathode connections on opposing sides or faces of the LED chip. A lateral geometry LED chip typically includes both anode and cathode connections on the same side of the LED chip that is opposite a substrate, such as a growth substrate. In some embodiments, a lateral geometry LED chip may be mounted on a submount of an LED package such that the anode and cathode connections are on a face of the LED chip that is opposite the submount. In this configuration, wirebonds may be used to provide electrical connections with the anode and cathode connections. In other embodiments, a lateral geometry LED chip may be flip-chip mounted on a surface of a submount of an LED package such that the anode and cathode connections are on a face of the active LED structure that is adjacent to the submount. In this configuration, electrical traces or patterns may be provided on the submount for providing electrical connections to the anode and cathode connections of the LED chip. In a flip-chip configuration, the active LED structure is configured between the substrate of the LED chip and the submount for the LED package. Accordingly, light emitted from the active LED structure may pass through the substrate in a desired emission direction. In some embodiments, the flip-chip LED chip may be configured as described in commonly-assigned U.S. Publication No. 2017/0098746, which is hereby incorporated by reference herein. In some embodiments, an LED package may be configured as set forth in the following commonly-assigned U.S. patents and U.S. publications, which are hereby incorporated by reference herein: U.S. Pat. Nos. 8,866,169; 9,070,850; 9,887,327; and U.S. Publication No. 2015/0179903.
The LED package 10 further includes an encapsulant 20 that may provide both environmental and/or mechanical protection for the LED chip 12. The encapsulant 20 may also be referred to as an encapsulant layer. Many different materials can be used for the encapsulant 20, including silicones, plastics, epoxies or glass, with a suitable material being compatible with molding processes. Silicone is suitable for molding and provides suitable optical transmission properties for light emitted from the LED chip 12. In some embodiments, the encapsulant 20 can be molded into the shape of a lens 20′. Different molding techniques may provide the lens 20′ with many different shapes depending on the desired emission pattern for the LED package 10. One suitable shape as shown in
As illustrated in
In order to electrically couple the package bond pads 34, 36 with the LED chip 12, the submount 18 comprises one or more vias 38 of electrically conductive material that extend between the first face 30 and the second face 32 of the submount 18. In particular, the vias 38 may be configured to be electrically and thermally coupled with the die attach pads 26, 28 and the package bond pads 34, 36. In certain embodiments, the vias 38 extend completely through the submount 18 to provide electrical connections between the package bond pads 34, 36 and the die attach pads 26, 28. In typical manufacturing processes, the vias 38 may be formed by punching, cutting, drilling, laser cutting, or laser drilling of holes in the submount 18, followed by plating or filling the holes with a conductive material such as copper or aluminum, among others. In certain embodiments, the vias 38 may comprise a cross-sectional diameter in a range of about 20 μm to about 200 μm, or in a range of about 50 μm to about 160 μm, or in a range of about 80 μm to about 120 μm. Due to various manufacturing tolerances, the conductive material may include gaps or voids that can trap gas within the vias 38. During subsequent assembly steps for the LED package 10, the vias 38 can be exposed to increased temperatures, such as those experienced during bonding or curing steps. Increased temperatures can cause some vias 38, particularly those with the gaps or voids, to expand and push up or protrude from the submount 18, thereby forming what may be referred to as blistered vias. As illustrated in
According to embodiments disclosed herein, an LED package may include one or more features configured to provide improved thermal and/or electrical coupling between LED chips and submounts. In certain embodiments, LED packages may be configured with one or more openings (e.g., recesses or apertures) that are registered with vias in submounts in a manner that allows the vias to expand without degrading thermal or electrical coupling. Accordingly, LED packages are provided with thermal capabilities that allow operation at higher powers with increased power densities. In certain embodiments, an LED package includes a submount comprising a first face and a second face that opposes the first face. The submount may further comprise a via that extends between the first face and the second face, and a die attach pad that is on the first face and registered with the via. An LED chip may comprise a contact pad that is coupled with the die attach pad, and the contact pad comprises an opening that is registered with the via. In this manner, the via may expand into the opening without degrading thermal or electrical coupling between the contact pad of the LED chip and the die attach pad of the submount.
According to embodiments disclosed herein, an LED package may include multiple LED chips or a multiple-junction LED chip mounted to a common submount. The multiple LED chips or the multiple-junction LED chip may include contact pads with openings that are registered with vias in the submount. In particular, each LED chip or each LED junction of a multiple-junction LED chip may include a separate contact pad that comprises an opening that is registered with a different via of the submount.
According to embodiments disclosed herein, an LED package may include a submount with multiple vias configured in arrangements that allow improved mounting surfaces for LED chips. In certain embodiments, a submount for an LED package comprises vias configured in a triangular arrangement. In particular, a submount may include three vias in a triangular arrangement. As previously described, vias can sometimes expand and protrude from a surface of a submount, thereby creating uneven mounting surfaces for LED chips. By having three vias in a triangular arrangement, the vias will form an arbitrary plane such that the LED chip may be evenly supported by the three vias, regardless of any protruding height differences between the vias.
According to certain embodiments disclosed herein, an LED package may include a plurality of vias in a submount that are registered between a particular die attach pad and a particular package bond pad. In certain embodiments, the plurality of vias are electrically and thermally coupled between the particular die attach pad and the particular package bond pad to form a plurality of electrically and thermally conductive paths. Additionally, the plurality of vias may be arranged in close proximity to one another and, accordingly, the vias will experience similar manufacturing conditions. In this manner, if the plurality of vias protrude out of the submount as previously described, the vias may protrude with similar heights, thereby reducing unevenness with an LED chip after mounting.
According to certain embodiments disclosed herein, an LED package may include a submount with vias configured in arrangements that provide improved thermal dissipation for LED chips. In certain embodiments, at least some of the vias may be electrically isolated from LED chips mounted on the submount. In this regard, electrical connections may be provided to the LED chips by other arrangements, such as wire bonds or other die attach pads that have electrically coupled vias. The electrically isolated vias may be provided in the submount in areas that experience high amounts of heat during operation, such as below an LED chip mounted thereon. The vias may be arranged to extend less than an entire distance through the submount. The vias may be arranged perpendicular to a first face of the submount, or the vias may be arranged at oblique angles within the submount to dissipate heat in more lateral directions. In certain embodiments, a second submount may be arranged between an LED chip and a first submount that includes a plurality of vias.
According to certain embodiments disclosed herein, an LED package may include a submount with vias configured in arrangements that provide improved thermal dissipation for LED chips. In certain embodiments, at least some of the vias may be arranged in close proximity to one another in a manner that certain vias overlap with one another to form a trench via in the submount. In this manner, a trench via provides a larger area for heat that may be dissipated in localized areas of the submount. In certain embodiments, a submount may include combinations of individual vias and trench vias. For example, one or more trench vias may be arranged in a submount underneath a mounting area for an LED chip and other individual vias may be arranged in other areas of the submount. Accordingly, positions of vias and trench vias may be tailored within submounts to accommodate different heat profiles generated by different LED packages.
According to certain embodiments disclosed herein, LED packages with multiple LED chips may include one or more features configured to provide improved thermal and/or electrical coupling between the multiple LED chips and submounts. In certain embodiments, it is desirable for multiple LED chips to be mounted on a submount in close proximity to one another. In this manner, when the multiple LED chips are electrically activated, the multiple LED chips may appear as a larger emitting area for an LED package that is configured to operate at high output powers with increase power densities. The multiple LED chips may be configured to all generate the same color, or one or more of the LED chips may be configured to generate different colors. For LED packages with LEDs configured to generate different colors, having the multiple LEDs in close proximity to one another may additionally provide improved color mixing or provide an emitting area or a pixel that is capable of emitting different colors. When multiple LED chips are arranged in close proximity to one another, heat tends to cluster in areas of the submount that are central to the LED chips, thereby limiting operating powers and efficiencies of the LED chips. In certain embodiments, at least one thermally conductive element may be arranged between the multiple LED chips on a submount. The thermally conductive element may be positioned centrally to the multiple LED chips in areas where heat generation is the highest. In certain embodiments, the submount may further comprise a thermally conductive via that is registered with the thermally conductive element. In this manner, heat that tends to cluster between multiple LED chips may have a thermally conductive path away from the multiple LED chips.
According to certain embodiments disclosed herein, LED packages are configured to provide improved thermal and/or electrical coupling between LED chips and lead frames. In certain embodiments, an LED chip is arranged in a flip-chip configuration on a subassembly that is then mounted to a lead frame in an LED package. The subassembly may comprise one or more die attach pads for the LED chip, one or more dielectric layers, and one or more thermally conductive layers. The subassembly may provide a planar surface for mounting with the lead frame, thereby providing improved thermal coupling between the LED chip and the lead frame. In certain embodiments, an underfill material may be arranged between the lead frame and the LED chip or the subassembly to provide improved mechanical support between the LED chip and the lead frame.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Claims
1. A light emitting diode (LED) package comprising:
- an LED chip mounted to a lead frame;
- a underfill material arranged between the LED chip and the lead frame; and
- an encapsulant material arranged on the LED chip and the underfill material.
2. The LED package of claim 1, wherein a first contact of the LED chip is electrically and mechanically coupled with a first lead frame portion, and a second contact of the LED chip is electrically and mechanically coupled with a second lead frame portion.
3. The LED package of claim 2, wherein the underfill material is arranged between the first lead frame portion and the second lead frame portion.
4. The LED package of claim 2, wherein the underfill material is arranged between the first contact of the LED chip and the second contact of the LED chip.
5. The LED package of claim 1, wherein the underfill material is arranged between lateral edges of the LED chip and the lead frame.
6. The LED package of claim 1, wherein the underfill material comprises light-altering particles.
7. The LED package of claim 6, wherein the light-altering particles comprise titanium dioxide (TiO2) particles that are suspended in a binder.
8. The LED package of claim 7, wherein the binder comprises silicone.
9. The LED package of claim 1, wherein the underfill material comprises epoxy.
10. The LED package of claim 1, wherein the underfill material comprises a material with a higher durometer value on a Shore D hardness scale than the encapsulant material.
11. The LED package of claim 1, wherein the underfill material comprises a material with a durometer value on a Shore D hardness scale of at least 40.
12. The LED package of claim 11, wherein the durometer value is in a range from 40 to 100.
13. The LED package of claim 1, further comprising an insulating material on the lead frame, wherein the insulating material forms sidewalls of a cup in which the LED chip is arranged, and wherein the underfill material is arranged between the sidewalls of the cup.
14. A light emitting diode (LED) package comprising:
- an LED chip mounted to a lead frame; and
- a subassembly arranged between the LED chip and the lead frame, wherein the subassembly comprises a metal submount that is thermally coupled between the LED chip and the lead frame.
15. The LED package of claim 14, wherein the subassembly further comprises:
- a first die attach pad that is configured to be electrically coupled with a first contact pad of the LED chip; and
- a second die attach pad that is configured to be electrically coupled with a second contact pad of the LED chip.
16. The LED package of claim 15, wherein the first die attach pad and the second die attach pad are electrically coupled to different portions of the lead frame by wirebonds.
17. The LED package of claim 15, wherein the subassembly further comprises a dielectric layer arranged between the first die attach pad and the metal submount and arranged between the second die attach pad and the metal submount.
18. The LED package of claim 15, wherein the LED chip is arranged in a flip-chip configuration on the first die attach pad and the second die attach pad.
19. The LED package of claim 14, further comprising an underfill material arranged between the subassembly and the lead frame.
20. The LED package of claim 14, further comprising an insulating material on the lead frame, wherein the insulating material forms sidewalls of a cup in which the LED chip and the subassembly are arranged.
21-39. (canceled)
Type: Application
Filed: Oct 21, 2021
Publication Date: Feb 10, 2022
Inventors: Arthur F. Pun (Raleigh, NC), Colin Blakely (Raleigh, NC), Kyle Damborsky (Apex, NC), Jae-Hyung Jeremiah Park (Apex, NC)
Application Number: 17/507,201