Monovinylaromatic polymer with improved stress crack resistance

- Fina Technology, Inc.

The present invention discloses a composition of matter consisting of a high impact polystyrene exhibiting improved environmental stress crack resistance. The HIPS material is formed utilizing polybutadiene, polyisoprene, and copolymers thereof with styrene, having a Mooney viscosity exceeding about 35 and a gel content of up to about 28%. The present invention discloses the use of a combination of lubricant additives to obtain a HIPS material with higher ESCR values than either additive alone could provide, and also discloses the optimum level of each additive.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to thermoplastic compositions utilizing polymers of monovinylaromatic compounds which have been modified with rubber to increase their impact strength and which are particularly useful for manufacturing articles requiring increased environmental stress crack resistance (ESCR). More particularly, the present invention discloses a high impact polystyrene (HIPS) material which is particularly advantageous for use in food product containers which are normally subject to environmental stress cracking.

BACKGROUND OF THE INVENTION

It is well known that rubber-reinforced polymers of monovinylaromatic compounds, such as styrene, alphamethyl styrene and ring substituted styrenes are desirable for a variety of uses. More particularly, rubber reinforced polymers of styrene having included therein discrete particles of a crosslinked rubber, for example, polybutadiene, the discrete particles of rubber being dispersed throughout the styrene polymer matrix, can be used in a variety of applications including refrigerator linings, packaging applications, furniture, household appliances and toys. The conventional term for such rubber reinforced polymers is "High Impact Polystyrene" or "HIPS". The physical characteristics and mechanical properties of HIPS are dependent upon many factors, including the particle size of the cross-linked rubber particles. One of the most desirable characteristics of HIPS material is the ability of such material to resist environmental articles such as food containers. In addition, other such properties which must be maintained for such articles include flexural strength and tensile strength.

The property of stress crack resistance, or environmental stress crack resistance (ESCR), is particularly important in thermoplastic polymers utilized in food containers. The food content of such polymer containers might not normally degrade the type of polymeric material of which the container is made, but when a thermoplastic polymer is thermoformed from extruded sheet material, residual stresses are locked into the molded article. These stresses open the polymer up to attack by substances which it would normally be totally resistant to. Such articles made from styrene polymers modified with rubber to increase impact strength are prone to stress cracking when they come into contact with common agents found in organic food products such as fats and oils. Likewise, such products are also subject to stress cracking when coming into contact with organic blowing agents such as halohydrocarbons, containing fluorine and chlorine. These polymers generally are found in household items such as refrigerator liners, which may crack when the cavities in the refrigerators are filled with a polyurethane foam as a result of the blowing agent utilized in the foam.

In the past, environmental stress cracking has been prevented by complex procedures usually involving multiple layer polymer construction wherein an intermediate protective layer of polymer is placed between the polystyrene layer and the blowing agent or the fatty food materials. One such layer of material utilized to insulate the styrene from these agents is the terpolymer material known as ABS, or acrylonitrile-butadiene-styrene. Other attempts to improve the stress crack resistance of high impact monovinylaromatic polymers have been to increase the amount of rubber mixed in the polymer. Unfortunately the higher rubber content decreases the tensile and flexural strengths. Other solutions have involved the use of tightly controlling process conditions to maintain strict control over particle size of the rubber particles cross linked within the polystyrene matrix. One such patent disclosing this technique is that granted to the assignee of the present invention, U.S. Pat. No. 4,777,210, issued Oct. 11, 1988, in which a continuous flow process for producing high impact polystyrene and for providing reliable and reproducible methods for varying particle sizes was disclosed. In that patented process, a pre-inversion reactor was utilized to convert a solution of styrene, polystyrene, rubber (such as polybutadiene) and a peroxide catalyst into a high impact polystyrene material exhibiting high environmental stress crack resistance.

Another attempt to improve stress crack resistance was that disclosed in U.S. Pat. No. 4,144,204 to Mittnacht, et al., dated Mar. 13, 1979 in which a monovinylaromatic compound was modified with rubber to increase the ESCR and wherein the amount of rubber dissolved in the monomer prior to polymerization was chosen so that the content of the soft component (gel phase) in the impact resistance polymer was at least 28% by weight and preferably 38% by weight or more, based on the weight of the impact resistant polymer. The upper limit of the content of soft component was about 50 to 60% by weight and a preferable range of 30 to 40% by weight was found advantageous.

A third method used conventionally to increase ESCR in HIPS is that disclosed in British patent specification 1,362,399 in which a liquid hydrocarbon telomer having an unsaturated carbon chain is added to the HIPS material in amounts ranging from 0.2 up to 5 parts per hundred. Telomers are defined in Websters unabridged dictionary as the products of chemical reaction involving the addition of fragments of one molecule (such as alcohol, acetal or chloroform) to the ends of a polymerizing olefin chain. In the British patent, the specific number average molecular weights in the range of 1000 to 6000. Experiments attempting to utilize low molecular weight polybutadienes to manufacture ESCR-HIPS have been unsuccessful because of cross-linking, indicating that this patented process utilizes butadienes which are compounded or blended with polystyrene rather than being added during the polymerization reaction.

Another attempt to improve the stress crack resistance of HIPS material can be found in British patent No. GB 2,153,370A, wherein a HIPS material was manufactured utilizing a high molecular weight rubber material having a stated molecular mass of at least 300,000, a viscosity greater than or equal to 140 centipoise; the resulting HIPS containing between 7 and 10% by weight of rubber, and the polymerization being carried out in the presence of alphamethyl styrene dimer or a compound chosen from n-dodecylmercaptan, tertiarydodecylmercaptan, diphenyl 1,3 butadiene, or various other compounds or mixtures thereof. Also, this process was carried out in the presence of cyclohexane and ethylbenzene equal to at least 7% by weight of the total ingredients. In addition, additives including monotriglycerides of stearates from polyethylene waxes were also necessary.

On the other hand, additives are used for reasons besides ESCR improvement. U.S. Pat. No. 3,506,740 to Dempsey, et al. teaches the use of low molecular weight polyolefins as internal lubricants for impact polystyrene compositions. Listed examples include polypropylenes and polybutylenes with molecular weights in the range of 800 to 1600 (as measured by vapor pressure osmometry).

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantage of the known high impact polystyrene materials by providing a polystyrene material containing a polybutadiene or styrene-butadiene rubber and also containing a synergistic combination of lubricant additives. The high impact polystyrene disclosed by the present invention demonstrates a high resistance to environmental stress cracking, high impact strength, good tensile strength and good flexural strength.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention discloses a thermoplastic composition containing a polymer of a monovinylaromatic compound which has been modified with a rubber to increase its impact strength and environmental stress crack resistance, which compound is obtained by polymerizing the monovinylaromatic material in the presence of the rubber. In the composition, the portion of the soft component in the polymer, which has been modified to increase the impact strength, is less than 28% by weight based on the polymer, the soft component being defined as the toluene-insoluble constituent of the polymer which has been modified to increase its impact strength, minus any pigment which may be present. The particular rubber utilized in the present invention could be one of several types, for example the type sold by Firestone and designated as Diene 55 having a Mooney viscosity of approximately 55, a number molecular weight of about 150,000, weight average molecular weight of about 300,000, and a Z molecular weight of about 500,000 as measured by the gel permeation technique. Another type of advantageous rubber material includes the high-Cis rubbers.

The high impact polymers may be manufactured in accordance with any conventional process, provided the constituents mentioned hereinabove are utilized. Normal manufacturing processes include mass polymerization and solution polymerization such as that disclosed in U.S. Pat. No. 2,694,692 or mass suspension polymerization such as that disclosed in U.S. Pat. No. 2,862,906. Other processes of manufacture may also be used, provided the processes are capable of utilizing the constituents mentioned hereinabove.

Suitable monovinylaromatic compounds utilizing the present invention include styrene as well as styrenes alkylated in the nucleus or side-chain such as alphamethyl styrene and vinyltoluene. The monovinylaromatic compounds may be employed singly or as mixtures. In one preferred embodiment, styrene was the monovinylaromatic compound of preference. The high impact polystyrene manufactured according to the present invention is formed by polymerizing the monovinylaromatic compound in the presence of the rubber. The level of rubber utilized is preferably in the range of about 5-15% by weight of the solution. The polymerization is carried out in a conventional manner by mass polymerization, solution polymerization, or polymerization in aqueous dispersion, the rubber first being dissolved in the polymerizable monomer and this solution then being subjected to polymerization. Suitable polymerization initiators, e.g., peroxides or azo-type compounds, may be used to obtain desirable polymerization rates. When using solution polymerization, the starting solution may be mixed with up to about ten percent (10%) by weight based on the monovinylaromatic compound employed of an inert diluent. Preferred inert diluents include aromatic hydrocarbons or mixtures of aromatic hydrocarbons such as toluene, ethylbenzene, xylenes, or mixtures of these compounds. Suitable chain transfer agents, e.g., mercaptans or alphamethyl styrene dimer, may also be added to control polymer molecular weight and rubber particle size.

The present invention may also be utilized in a continuous flow process for producing polystyrene utilizing a pre-inversion reactor in which a solution of styrene and rubber are polymerized to a point below the inversion and then introduced into a second stirred tank reactor. The viscosity of the solutions in the pre-inversion and in the second stirred tank reactor are closely controlled to produce desirable HIPS. The particular process for manufacturing the preferred embodiment may be found in U.S. Pat. No. 4,777,210 to Sosa, et al., dated Oct. 11, 1988, the entire disclosure of which is hereby incorporated herein by reference.

The ESCR-enhancing additives may be added to the initial monomer/rubber feed stream or at any point in the polymerization process up to and including the final polymerization reactor. The synergistic additive combination which was found to provide unexpected increases in ESCR properties comprised polyisobutylene (PIB) and more specifically, PIB with viscosity in the range of 196-233 cst at 99.degree. C., and mineral oil. These additives are utilized in varying proportions with a preferable ratio of approximately equal proportions in amounts of about 0.5 up to about 3.0% by weight, with a preferable final ratio of about 2.0% mineral oil and 2.0% PIB (by weight) in the final product.

In a first embodiment of the invention, a mixture of conventional rubber having a molecular weight corresponding to a Mooney viscosity of approximately 55 and styrene monomer was polymerized into a high impact polystyrene material by the above-mentioned patented process. During the later stages of polymerization of this HIPS material, a combination of lubricant additives comprising 1.25% of mineral oil and 1.25% PIB by weight was added in one intermediate stage reactor. The PIB exhibited a viscosity of about 196-233 cst at 99.degree. C., and the mineral oil exhibited a viscosity of about 78.7 cst at 38.degree. C. The mineral oil selected was a commercially available product sold by Pennzoil Products Company (Penreco Div.), and identified as "Penreco Supreme Mineral Oil". The particular PIB utilized was a commercially available product sold by Amoco Corporation and designated as H100, having a measured viscosity range of 196-233 cst at 99.degree. C. and M.sub.n of 965 as determined by gel permeation chromatography ("gpc"). The finished product was then tested for environmental stress crack resistance and tensile strength, with the results set out below in Table I as Sample "F", which compared HIPS materials with varying levels of mineral oil or PIB lubricants.

It can be seen from Table I that the conventional mineral-oil-modified high impact polystyrene and PB-modified high impact polystyrene both exhibit a much lower ESCR than the material manufactured with the blend of equal proportions of mineral oil and PIB lubricants.

For example, Sample "A" represents a conventional HIPS material, or Control, of straight HIPS material with no lubricant. The ESCR value is 41.1 for this material. Sample "B" is a HIPS material manufactured with only 1.5% mineral oil as a lubricant. The resulting ESCR value for this sample was significantly higher at 52.2. By increasing the mineral oil content to 2.5% by weight as in Sample "C", the ESCR value of the HIPS material was increased to 61.7.

Samples "D" and "E" utilized a PIB lubricant in place of the mineral oil of the earlier samples. The first contained PIB at a level of 1.5% by weight, obtaining an ESCR value of 85. The second PIB sample utilized a 2.5% level of PIB and improved the ESCR to 90.6.

Sample "F" however, contained moderate but relatively equal amounts of PIB and mineral oil and exhibited by far the best ESCR value of all: 96.3. The last example, "G", was a HIPS material using a blend of PIB and mineral oil additives in which the mineral oil was doubled and the PIB held constant from Example "F". The resulting ESCR was much lower at 83. Thus it can be seen that relatively equal and moderate amounts of both mineral oil and PIB additives provide an unexpected increase in the ESCR value of HIPS material.

                                    TABLE I
     __________________________________________________________________________
     Characterization of HIPS Samples Produced for ESCR Study
                B    C    D    E    F     G
           A    1.5% 2.5% 1.5% 2.5% 1.25% MO +
                                          2.5% MO +
     Property
           Control
                MO   MO   H100 H100 1.25% H100
                                          1.25% H100
     __________________________________________________________________________
     Tg    108.0
                100.2
                     100.9
                          104.8
                               105.0
                                    99.58 94.11
     % Rubber
           8.48 8.81 8.34 8.9  8.79 8.74  8.61
     Swell Index
           7.63 8.37 7.28 8.2  8.18 8.43  8.46
     Gels  20.81
                20.51
                     19.79
                          20.4 19.19
                                    20.85 19.4
     Grafting
           145  133  137  129  118  139   125
     Toluene
     M-RPS, .mu.
           6.17 6.68 6.38 6.48 6.62 6.59  6.57
     Mw    280750
                271520
                     278700
                          284960
                               279500
                                    274650
                                          269600
     Mn    115690
                106000
                     112600
                          115390
                               120400
                                    109380
                                          106600
     MWD   2.43 2.56 2.48 2.47 2.32 2.51  2.53
     ESCR  41.1 52.2 61.7 85   90.6 96.3  83
     Control
           3923 2651 2741 3271 3111 2595  2594
     Tens. Str @
     Max, psi
     ESCR  1614 1733 1690 2780 2820 2499  2153
     Tens. Str @
     Max, psi
     __________________________________________________________________________
      Notes:
      1) Viscosities  Mineral Oil, 78.7 cst @ 38.degree. C., H100196-233 cst @
      99.degree. C.
      2) The concentrations of these additives in the final product will be
      higher than the amounts added due to the loss of a considerable portion o
      styrene (20-35%) during the devolatilization process.
                                    TABLE II
     __________________________________________________________________________
                              F
                          E   1.5%
                                  G   H   I           L   M    N
              B   C   D   1.5%
                              H25 1.5%
                                      1.5%
                                          3.0%
                                              J   K   3.0%
                                                          3.0% 2.5%
          A   1.5%
                  2.5%
                      3%  Low Low Med High
                                          Low 2.5%
                                                  2.5%
                                                      MO +
                                                          MO + H100 +
     Property
          Control
              MO  MO  MO  PIB Med PIB PIB PIB H25 H100
                                                      ZnSt2
                                                          500NDM
                                                               500NDM
     __________________________________________________________________________
     Tg in .degree.C.
          108 100.2
                  100.9
                      n.d 100.9
                              103.0
                                  104.8
                                      n.d n.d 102.4
                                                  105.0
                                                      n.d n.d  101.3
     Melt Flow
          0.86
              1.35
                  n.d 1.66
                          1.2 n.d 1.06
                                      0.99
                                          141 n.d n.d 1.83
                                                          4.01 n.d
     % Rubber
          8.5 7.8 8.3 8.5 8.1 8.8 8.6 7.2 8.8 9.3 8.8 7.7 7.8  9.4
     Swell
          7.11
              9.31
                  7.28
                      9.31
                          8.86
                              7.76
                                  8.36
                                      10.1
                                          8.53
                                              7.3 8.18
                                                      7.85
                                                          8.57 9.2
     Index
     Gels 22.4
              19.4
                  19.8
                      20.0
                          19.6
                              19.8
                                  20.7
                                      18.6
                                          20.5
                                              19.7
                                                  19.2
                                                      20.6
                                                          18.8 17.1
     Grafting
          163 150 137 137 142 125 141 158 134 113 118 166 132  75
     Toluene
     M-RPS, .mu.
          5.54
              6.37
                  6.38
                      6.22
                          6.02
                              6.64
                                  5.88
                                      6.42
                                          6.12
                                              6.23
                                                  6.62
                                                      5.82
                                                          5.91 6.79
     Mw   276100
              278200
                  278700
                      282590
                          275750
                              275000
                                  270800
                                      278300
                                          274000
                                              281550
                                                  279500
                                                      272000
                                                          233000
                                                               232670
     Mn   105500
              117650
                  112600
                      114000
                          114700
                              107500
                                  104300
                                      114300
                                          112000
                                              115160
                                                  120400
                                                      112600
                                                          80500
                                                               80100
     MWD  2.6 2.4 2.5 2.5 2.4 2.6 2.6 2.4 2.4 2.4 2.32
                                                      2.4 2.9  2.9
     ESCR 39  61  62  76  56  69  86  75  55  85  91  84  40   95
     __________________________________________________________________________
      Notes:
      1) n.d.,--not determined
      2) Viscosities  Mineral oil, 78.7 @ 38.degree. C.
      Low PIB, 27-33 cst @ 38.degree. C.
      H25, 48-56 cst @ 99.degree. C.
      H100, 196-233 cst @ 99.degree. C.
      High PIB, 4069-4380 cst @ 99.degree. C.
      3) NDM--ndodecyl mercaptan
      4) ZnSt.sub.2 --zinc stearate
      5) The concentrations of these additives in the final product will be
      higher than the amounts added due the loss of a considerable portion of
      styrene (20-35%) during the devolatilization process

In another embodiment of the invention, it was found that ESCR values could be improved up to a certain point solely by adding PIB to the HIPS material, as long as the molecular weight of the PIB being added is controlled within a specific range. Although ESCR values of PIB-only HIPS materials are not as good as those of MO/PIB HIPS materials, they are better than the ESCR values of HIPS without mineral oil or PIB. In low-stress HIPS applications, such PIB-only HIPS materials would provide acceptably good ESCR values, an improvement over conventional HIPS materials.

For example, in Table II, Samples "E"-"K" represent HIPS materials containing different molecular weight PIBs and different levels of PIBs. More specifically, Samples "E"-"H" represent samples of HIPS all having the same percent by weight of PIB but having PIBs of increasing molecular weight (as measured by viscosity). Sample "E" uses a low molecular weight PIB with indicated viscosity of 27-33 cst and results in a HIPS material with ESCR value of 56. Sample "F" uses a low/medium weight PIB with viscosity of 48-56 cst to obtain an ESCR value of 69.

Sample "G" uses a medium molecular weight PIB (viscosity 196-233 cst) in a HIPS material with the result that ESCR is 86. Sample "H" utilizes a high molecular weight PIB (viscosity=4069-4350 cst) and results in a drop-off in ESCR to 75.

Thus, the optimum level of PIB viscosity (molecular weight) for ESCR improvement appears to be between about 196 and 4069.

The same results are apparent in Samples "I"-"K" wherein higher levels of PIB are added to the HIPS materials and the viscosities of the PIB are varied from one sample to the other. The highest ESCR value, 91, is obtained in Sample "K" which utilizes the medium viscosity PIB (196-233 cst@99.degree. C.).

Yet another embodiment of the present invention can also be discerned from Samples "L"-"N" of Table II wherein various additives have been tried in the HIPS formulations. Sample "L" utilizes a relatively high level of mineral oil (MO) and a zinc stearate, with a resulting ESCR value of 84, which while not outstanding, is marginally acceptable.

Sample "M" utilizes a combination of mineral oil and n-dodecyl mercaptan (NDM), which serves as a chain transfer agent (CTA). The ESCR value of 40 is unacceptable in HIPS material and primarily results from the presence of the CTA. On the other hand, in Sample "N", formulation comprising medium viscosity PIB and NDM resulted in a HIPS material having an outstanding ESCR value of 95. (The NDM was added in amounts of 500 PPM of the final solution.) Although chain transfer agents such as the mercaptan above, as well as t-dodecylmercaptan and alphamethyl styrene dimer, do not improve ESCR, but normally tend to degrade ESCR as shown by sample "M", they do allow the manufacturer to control certain critical properties of the HIPS material, such as polystyrene molecular weight, rubber particle size and melt flow index (i.e., ease of processing characteristics.) The use of PIB additives in conjunction with CTAs therefore is an enabling type of system where the use of PIB allows the maker of HIPS to control the above-mentioned characteristics with CTAs, while still maintaining high ESCR values.

When referring to the "gel" level or "gel" content of the HIPS material, it is intended that this term represent the disperse phase contained in the continuous polymerized monovinylaromatic compound phase. The disperse phase, or gel, consists essentially of particles of graft copolymers of the polybutadiene rubber and polymerized monovinylaromatic compound, plus mechanically occluded particles of the polymerized monovinylaromatic compound located in the rubber particles. Gel level may be measured as the toluene-insoluble component of the rubber modified high impact compound. Gel levels are indicated in weight percents.

When referring to monovinylaromatic monomer or compound, it is intended that this include styrenes, alphamethyl styrene, and ring-substituted styrenes. When referring to rubber, it is intended that such phrase refer to natural rubber, polybutadiene, polyisoprene and copolymers of butadiene and/or isoprene with styrene.

ESCR values are determined according to the procedures set forth in the above micorporated patent, U.S. Pat. No. 4,777,210 at columns 10 and 11 thereof.

Mooney viscosity is determined using the procedures set forth at pages 109 and 110 of RUBBER TECHNOLOGY, Third Edition, a publication sponsored by the Rubber Division of the American Chemical Society, and published by Van Nostrand Reinhold Company of New York.

Claims

1. A high impact monovinylaromatic polymeric compound consisting essentially of an impact resistant rubber-modified polymer having improved environmental stress crack resistance, said polymer formed by the polymerization of the monovinylaromatic compound in the presence of the rubber selected from the group consisting of natural rubbers, polybutadienes, polyisoprenes, and copolymers of butadienes or isoprene with styrene: blended with equal portions of mineral oil and polyisobutylene in the range of from about 0.5 up to about 3.0 percent each, by weight of finished compound.

2. The composition of claim 1 wherein said rubber consists essentially of polybutadiene.

3. The composition of claim 1 wherein said first and second additives are each present in the amount of about 2.0 percent by weight.

4. The composition of claim 3 wherein said monovinylaromatic compound is polystyrene and said additives are added to said compound prior to the final polymerization thereof.

5. The composition of claim 1 wherein said monovinylaromatic compound is selected from the group consisting of styrene, alphamethyl styrene and ring-substituted styrenes.

6. A process for producing a high impact polymerized monovinylaromatic compound having improved environmental stress crack resistance, comprising:

polymerizing a mixture of a monovinylaromatic monomer and rubber, said monovinylaromatic monomer being selected from the group consisting of styrene, alphamethyl styrene and ring-substituted styrenes, and said rubber being selected from the group consisting of polybutadiene, polyisoprene, copolymers of butadiene or isoprene with styrene, and natural rubbers; and,
adding to said mixture of monomer and rubber, during said polymerizing step, about equal shares of two additives comprising mineral oil and polyisobutylene.

7. The process of claim 6 wherein said monovinylaromatic monomer is styrene, and said rubber is selected from the group consisting of butadienes, styrene-butadiene copolymers and styrene-butadiene-styrene copolymers.

8. The process of claim 6 wherein each said share of additives initially comprises about 0.5 to 3 percent by weight of the total mixture.

Referenced Cited
U.S. Patent Documents
3506740 April 1970 Dempsey et al.
3987124 October 19, 1976 Hardwicke et al.
Foreign Patent Documents
1078077 August 1967 GBX
Patent History
Patent number: 5861455
Type: Grant
Filed: Mar 20, 1997
Date of Patent: Jan 19, 1999
Assignee: Fina Technology, Inc. (Dallas, TX)
Inventors: B. Raghava Reddy (Baytown, TX), Kenneth P. Blackmon (Houston, TX)
Primary Examiner: Jeffrey Mullis
Attorneys: Michael J. Caddell, M. Norwood Cheairs
Application Number: 8/821,136