Electronic battery tester with battery failure temperature determination
A method and apparatus for testing a storage battery is provided that generates a temperature at which the battery will fail to meet performance criteria. The use of a temperature-based system to rate battery performance provides a clearer understanding to those not skilled in the art of battery testing. The critical failure temperature is obtained using the battery parameters of open circuit voltage, temperature and a dynamic parameter such as conductance or resistance.
Latest Midtronics, Inc. Patents:
This application claims benefit of U.S. provisional patent application Serial No. 60/364,656, filed Mar. 14, 2002, and entitled “ELECTRONIC BATTERY TESTER WITH LOW TEMERATURE RATING DETERMINATION.”
BACKGROUND OF THE INVENTIONThe present invention relates to measuring the condition of storage batteries. More specifically, the present invention relates to electronic battery testers capable of determining a battery failure temperature (minimum temperature below which the battery will fail to provide a desired output level). The use of such a temperature-based system to rate battery performance provides a clearer understanding to battery users not skilled in the art of battery testing.
Electronic battery testers are used to test storage batteries. Various examples of such testers are described in U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,416, issued Dec. 10, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997, entitled METHOD FOR OPTIMIZING THE CHARGING LEAD-ACID BATTERIES AND AN INTERACTIVE CHARGER; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000, entitled APPARATUS FOR CHARGING BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000, entitled ELECTRICAL CONNECTION FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELL AND BATTERIES; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,225,808, issued May 1, 2001, entitled TEST COUNTER FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001, entitled ELECTRONIC BATTERY TESTER WITH INTERNAL BATTERY; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX ADMITTANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; entitled METHOD AND APPARATUS FOR MEASURING COMPLEX SELF-IMMITANCE OF A GENERAL ELECTRICAL ELEMENT; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001, entitled APPARATUS FOR CALIBRATING ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001, entitled TESTING PARALLEL STRINGS OF STORAGE BATTERIES; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002, entitled AUTOMOTIVE BATTERY CHARGING SYSTEM TESTER; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002, entitled ALTERNATOR DIAGNOSTIC SYSTEM, U.S. Pat. No. 6,392,414, issued May 21, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002, entitled SUPPRESSING INTERFERENCE IN AC MEASUREMENTS OF CELLS, BATTERIES AND OTHER ELECTRICAL ELEMENTS; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002, entitled APPARATUS AND METHOD FOR TESTING RECHARGEABLE ENERGY STORAGE BATTERIES; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002, entitled VEHICLE ELECTRICAL SYSTEM TESTER WITH ENCODED OUTPUT; U.S. Pat. No. 6,456,045, issued Sep. 24, 2002, entitled INTEGRATED CONDUCTANCE AND LOAD TEST BASED ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002, entitled ALTERNATOR TESTER; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Ser. No. 09/703,270, filed Oct. 31, 2000, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/816,768, filed Mar. 23, 2001, entitled MODULAR BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/960,117, filed Sep. 20, 2001, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 09/908,389, filed Jul. 18, 2001, entitled BATTERY CLAMP WITH INTEGRATED CIRCUIT SENSOR; U.S. Ser. No. 09/908,278, filed Jul. 18, 2001, entitled BATTERY CLAMP WITH EMBEDDED ENVIRONMENT SENSOR; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 09/940,684, filed Aug. 27, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 60/330,441, filed Oct. 17, 2001, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/348,479, filed Oct. 29, 2001, entitled CONCEPT FOR TESTING HIGH POWER VRLA BATTERIES; U.S. Ser. No. 10/046,659, filed Oct. 29, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 09/993,468, filed Nov. 14, 2001, entitled KELVIN CONNECTOR FOR A BATTERY POST; U.S. Ser. No. 09/992,350, filed Nov. 26, 2001, entitled ELECTRONIC BATTERY TESTER, U.S. Ser. No. 60/341,902, filed Dec. 19, 2001, entitled BATTERY TESTER MODULE; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE, U.S. Ser. No. 10/073,378, filed Feb. 8, 2002, entitled METHOD AND APPARATUS USING A CIRCUIT MODEL TO EVALUATE CELL/BATTERY PARAMETERS; U.S. Ser. No. 10/093,853, filed Mar. 7, 2002, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 60/364,656, filed Mar. 14, 2002, entitled ELECTRONIC BATTERY TESTER WITH LOW TEMPERATURE RATING DETERMINATION; U.S. Ser. No. 10/098,741, filed Mar. 14, 2002, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/101,543, filed Mar. 19, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/112,114, filed Mar. 28, 2002; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002; U.S. Ser. No. 10/112,105, filed Mar. 28, 2002, entitled CHARGE CONTROL SYSTEM FOR A VEHICLE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BATTERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/119,297, filed Apr. 9, 2002, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 10/128,790, filed Apr. 22, 2002, entitled METHOD OF DISTRIBUTING JUMP-START BOOSTER PACKS; U.S. Ser. No. 60/379,281, filed May 8, 2002, entitled METHOD FOR DETERMINING BATTERY STATE OF CHARGE; U.S. Ser. No. 10/143,307, filed May 10, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/387,046, filed Jun. 7, 2002, entitled METHOD AND APPARATUS FOR INCREASING THE LIFE OF A STORAGE BATTERY; U.S. Ser. No. 10/177,635, filed Jun. 21, 2002, entitled BATTERY CHARGER WITH BOOSTER PACK; U.S. Ser. No. 10/207,495, filed Jul. 29, 2002, entitled KELVIN CLAMP FOR ELECTRICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 10/200,041, filed Jul. 19, 2002, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 10/217,913, filed Aug. 13, 2002, entitled, BATTERY TEST MODULE; U.S. Ser. No. 60/408,542, filed Sep. 5, 2002, entitled BATTERY TEST OUTPUTS ADJUSTED BASED UPON TEMPERATURE; U.S. Ser. No. 10/246,439, filed Sep. 18, 2002, entitled BATTERY TESTER UPGRADE USING SOFTWARE KEY; U.S. Ser. No. 60/415,399, filed Oct. 2, 2002, entitled QUERY BASED ELECTRONIC BATTERY TESTER; and U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/415,796, filed Oct. 3, 2002, entitled QUERY BASED ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/271,342, filed Oct. 15, 2002, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 10/270,777, filed Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Ser. No. 10/310,515, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 10/310,490, filed Dec. 5, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/310,385, filed Dec. 5, 2002, entitled BATTERY TEST MODULE, U.S. Ser. No. 60/437,255, filed Dec. 31, 2002, entitled REMAINING TIME PREDICTIONS, U.S. Ser. No. 60/437,224, filed Dec. 31, 2002, entitled DISCHARGE VOLTAGE PREDICTIONS, U.S. Ser. No. 10/349,053, filed Jan. 22, 2003, entitled APPARATUS AND METHOD FOR PROTECTING A BATTERY FROM OVERDISCHARGE, which are incorporated herein in their entirety.
It is known that the battery temperature can affect the battery output and therefore influence battery test results. Industry tests often have correction factors for temperature. Thus, various battery testing techniques take into consideration the battery's temperature and accordingly adjust battery output values. However, these techniques are only used to compensate for battery measurements. These techniques do not provide information relating battery usage to temperature.
A standard technique for testing a battery, which is referred to as the Adjustable Load Test, takes into consideration the relationship between the battery output (load test voltage) and the battery temperature. This test is conducted on a charged battery according to the Battery Service Manual of the Battery Council International:
1) Measure the temperature of a center cell. Cover battery with a damp cloth.
2) Connect a voltmeter and load test leads to the appropriate battery terminals. Be sure the terminals are free of corrosion.
3) Apply a test load equivalent to 50% of the Cold Cranking Ampere Performance (CCA) at 0° F. rating of the battery for 15 seconds.
4) Read and record the voltage at 15 seconds; remove the load.
5) Determine the minimum passing voltage based on the battery's test temperature:
a) 70° F. and above: 9.6V b) 60° F. 9.5V c) 50° F. 9.4V d) 40° F. 9.3V e) 30° F. 9.1V f) 20° F. 8.9V g) 10° F. 8.7V h) 0° F. 8.5V6) If the test voltage is above the minimum, return the battery to service.
7) If test voltage is below the minimum and the stable battery open circuit voltage is above 12.4 volts (75% state of charge), the battery should be replaced.
8) If test voltage is below the minimum and the stable battery open circuit voltage is below 12.4 volts, the battery should be charged and the load test repeated. If the battery fails again, it should be replaced.
It is clear that the battery's test temperature influences the minimum passing voltage in the above load test. In general, as the temperature of a battery decreases, its ability to deliver power to a load is reduced. Thus, if a minimum load test voltage or passing voltage is selected (9.6V, for example), there will be a battery temperature below which the battery may not be able to provide this selected minimum passing voltage or load test voltage. Present battery testing techniques do not provide such information relating temperature to load test voltage.
SUMMARY OF THE INVENTIONThe present invention is directed to determining a battery failure temperature (minimum temperature below which the battery will fail to provide a desired output) with the use of a dynamic battery parameter, coupled with the battery open circuit voltage, temperature and Cold Cranking Ampere Performance Rating (CCA). A method and apparatus for testing a storage battery is provided in which a desired output level of the battery is obtained. The battery is measured to obtain a battery dynamic parameter such as conductance. The battery is measured to obtain an open circuit voltage and a battery temperature. The battery failure temperature for the desired output level is determined as a function of the dynamic parameter, the performance rating, the open circuit voltage and the temperature of the battery.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a simplified block diagram of an electronic battery tester in accordance with the present invention.
FIG. 2 is a more detailed block diagram of the battery tester of FIG. 1.
FIG. 3 is a plot illustrating an aspect of the present invention.
FIG. 4 is a simplified flow chart showing steps in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSThe present invention provides a method and apparatus for determining a battery failure temperature (minimum temperature below which the battery will fail to provide a desired output (9.6V, for example)) by employing a dynamic parameter generated in a manner similar to methods described in one or more of the United States patents obtained by Dr. Champlin and Midtronics, Inc. and listed above. As used herein a dynamic parameter is a parameter that is a function of a signal with a time varying component. Although the example embodiments of the present invention described below relate to determining battery fail temperature from battery conductance measurements, dynamic parameters other than battery conductance may be utilized without departing from the spirit and scope of the invention. Examples of other dynamic parameters include dynamic resistance, admittance, impedance, reactance, susceptance or their combinations.
FIG. 1 is a simplified block diagram of electronic battery tester 16 in accordance with the present invention. Apparatus 16 is shown coupled to battery 12 that includes a positive battery terminal 22 and a negative battery terminal 24. Battery 12 is a storage battery having a plurality of individual cells and a voltage such as 12.6 volts, 48 volts, etc.
Tester 16 operates in accordance with the present invention and includes dynamic parameter measurement circuitry 2 that is configured to measure a dynamic parameter of battery 12 through first and second Kelvin connections 8A and 8B. Dynamic parameter measurement circuitry 2 measures a dynamic parameter of battery 12 and provides a dynamic parameter output 4 to calculation circuitry 6. In addition, dynamic parameter measurement circuitry 2 measures an open circuit voltage (OCV) of battery 12 and provides the OCV measurement to calculation circuitry 6. Also included in tester 16 is a temperature sensor (not shown in FIG. 1) that is configured to thermally couple to battery 12 and to provide a battery temperature measurement to calculation circuitry 6. Calculation circuitry 6 receives the dynamic parameter output 4, the OCV measurement, the battery temperature measurement and a rating (for example, a cold cranking amp (CCA) rating) of battery 12. Based upon the rating, the measured dynamic parameter output 4, the OCV, the battery temperature and a desired output level, which may either be stored in a memory within tester 16 or input by an operator, calculation circuitry 6 responsively provides a failure temperature of battery 12 for the desired output level (9.6V, for example).
In general, with the present invention, batteries can be rated based upon the minimum temperature at which they are suitable for a desired purpose, for example, to provide a desired output level for starting. For example, a battery that has a failure temperature value of 50° F. may be suitable for use during summer weather but require replacement during the winter season. Specific uses of the determined battery failure temperature, such as for providing a relative rating of battery strength, are described in detail further below.
FIG. 2 is a more detailed block diagram of circuitry 16 that operates in accordance with one embodiment of the present invention and determines a dynamic parameter such as the conductance (GBAT) of battery 12 and the OCV between terminals 22 and 24 of battery 12. Circuitry 16 includes a forcing function such as current source 50, differential amplifier 52, analog-to-digital converter 54 and microprocessor 56. In this embodiment, dynamic parameter measurement circuitry 2 shown in FIG. 1 generally comprises source 50, amplifier 52, analog to digital converter 54, amplifier 70 and microprocessor 56. Calculation circuitry 6 generally comprises microprocessor 56. The general blocks shown in FIG. 1 can be implemented as desired and are not limited to the configurations shown in FIG. 2. Amplifier 52 is capacitively coupled to battery 12 through capacitors C1 and C2. Amplifier 52 has an output connected to an input of analog-to-digital converter 54. Microprocessor 56 is connected to system clock 58, memory 60, pass/fail indicator 62 and analog-to-digital converter 54. Microprocessor 56 is also capable of receiving an input from input device 66. The input can be, for example, a rating of the battery 12, a desired battery output level, etc. As used herein, “output level” includes but is not limited to voltage, current, cold cranking amps (CCA), power, energy, etc. However, an output of 9.6V at half the CCA rate is employed as the desired output level in the experiments and the specific examples described further below.
In operation, current source 50 is controlled by microprocessor 56 and provides a current I in the direction shown by the arrow in FIG. 2. This can be any type of time varying signal. Source 50 can be an active source or a passive source such as a resistance. Differential amplifier 52 is connected to terminals 22 and 24 of battery 12 through capacitors C1 and C2, respectively, and provides an output related to the voltage potential difference between terminals 22 and 24. In a preferred embodiment, amplifier 52 has a high input impedance. Circuitry 16 includes differential amplifier 70 having inverting and noninverting inputs connected to terminals 24 and 22, respectively. Amplifier 70 is connected to measure the OCV of battery 12 between terminals 22 and 24. The output of amplifier 70 is provided to analog-to-digital converter 54 such that the voltage across terminals 22 and 24 can be measured by microprocessor 56.
Circuitry 16 is connected to battery 12 through a four-point connection technique known as a Kelvin connection. This Kelvin connection allows current I to be injected into battery 12 through a first pair of terminals while the voltage V across the terminals 22 and 24 is measured by a second pair of connections. Because very little current flows through amplifier 52, the voltage drop across the inputs to amplifier 52 is substantially identical to the voltage drop across terminals 22 and 24 of battery 12. The output of differential amplifier 52 is converted to a digital format and is provided to microprocessor 56. Microprocessor 56 operates at a frequency determined by system clock 58 and in accordance with programming instructions stored in memory 60.
Microprocessor 56 determines the conductance of battery 12 by applying a current pulse I using current source 50. This can be, for example, by selectively applying a load such as a resistance. The microprocessor determines the change in battery voltage due to the current pulse I using amplifier 52 and analog-to-digital converter 54. The value of current I generated by current source 50 is known and is stored in memory 60. In one embodiment, current I is obtained by applying a load to battery 12. Microprocessor 56 calculates the conductance of battery 12 using the following equation: Conductance = G BAT = Δ ⁢ ⁢ I Δ ⁢ ⁢ V Equation ⁢ ⁢ 1
where &Dgr;I is the change in current flowing through battery 12 due to current source 50 and &Dgr;V is the change in battery voltage due to applied current &Dgr;I. In some embodiments circuitry 16 also includes a temperature sensor 74, coupled to microprocessor 56, that can be thermally coupled to battery 12 to thereby measure a temperature of battery 12 and provide the measured battery temperature value(s) to microprocessor 56. In the preferred embodiment, the battery temperature would be measured using an infrared signal from the outside of the battery. In other embodiments, instead of being measured, the temperature of battery 12 may be estimated or input by a tester user through input 66, for example. Microprocessor 56 can also use other information input from input device 66 provided by, for example, an operator. This information may consist of the particular type of battery, location, time, the name of the operator, the CCA rating of the battery, the rated load test voltage of the battery, etc.
Under the control of microprocessor 56, battery tester 16 determines a battery failure temperature as a function of the battery conductance GBAT, the OCV, the battery temperature and the CCA rating of battery 12. Details regarding the derivation of an algorithm utilized by battery tester 16 to determine the battery fail temperature are provided below.
From the load testing carried out on the various batteries, it was found that the load test starts out at about 9.6V at 0° F. for a new battery and the battery fails when it hits 9.6V at 70° F. Consequently, a prediction of the 9.6V temperature within this temperature range will give a relative rating of battery strength. FIG. 3, which is a plot of 9.6V temperature in ° F. on the vertical axis versus the load test voltage (LTV) at 70° F. in volts on the horizontal axis, illustrates how the 9.6V temperature can be useful for providing such a relative rating of battery strength.
Using the techniques described above in connection with FIG. 2, battery tester 16 measures the OCV of the battery, battery conductance, and battery temperature. There is a need to relate these parameters to give fully charged battery performance and temperature for 9.6V. Equation 2 below relates these parameters to determine battery voltage under high loads:
V=OCV−f(T)−I*R
or
V=OCV+kT−k1−I/f(GBAT) Equation 2
where k and k1 are constants, T is battery temperature, I is the discharge current, R is the battery resistance, GBAT is the battery conductance and 1/f(GBAT) is equivalent to R.
Under load and especially at low temperatures the battery voltage is reduced from its apparent OCV due to resistance and other polarizations. An activation voltage, which takes into account the non-ohmic polarizations under high discharge rates, can be computed for use with ohmic battery effects using factors of the OCV and the temperature such as in the above equation 2. The activation voltage of the battery is always lower than the OCV.
Further, it is known that battery conductance varies primarily as a result of the variation of the resistance of the contained electrolyte with temperature. It was found that this variation of conductance with temperature occurs in a substantially predictable curvilinear manner. At cold temperatures it drops rapidly, while at high temperatures it is higher and more constant. It was found that the specific conductance (relating the values to a particular value) could be fitted to a third order polynomial equation with temperature. Using the given temperature of the battery, the conductance at any other temperature can then be predicted by multiplying and dividing by the appropriate temperature factors obtained from this temperature curve.
The battery conductance also varies with the state of charge of the battery. Thus, the battery conductance was related to discharge and temperature and a parameter F was determined such that a fully charged battery at standard temperature would have a conductance of GBAT/F.
It was also found that an additional factor comes into Equation 2 when batteries that have lost cranking capacity are discharged for a sustained time. This additional factor is a voltage decay factor or decay voltage (DV) that can be estimated by looking at the initial voltage prediction (V) at 70° F. The lower that value the greater will be the decay.
DV=k2*V−k3 Equation 3
where k2 and k3 are linearity constants. Equation 3 is subtracted from the initial estimate (Equation 2) to provide:
LTV=OCV+kT−k1−I/f(GBAT)−DV Equation 4
It was also discovered that the OCV taken during the in-vehicle testing deviated substantially from stable OCV after stand. A correction estimate was made to correlate the vehicle voltage with the deviation from OCV. This factor is-affected also by temperature.
In accordance with the present invention, the above failure temperature prediction equations and corresponding correction factors are programmed into memory 60 for execution by microprocessor 56. With all correction factors added to the prediction equations, a substantially accurate estimate of the 9.6V (or any specific voltage) temperature of batteries in and out of the vehicle can be obtained by inserting varying temperature factors into the equations until a voltage of 9.6V is achieved. Alternately, an estimate of the voltage at a specific temperature, such as 70° F., can be made and compared to a previously determined relationship of 9.6V temperature versus voltage. Tester 16 can also configured to estimate degrees of health of the battery based on the 9.6V temperature. For example, the battery is determined to be “bad” if the 9.6V temperature is greater than or equal to 70° F., “marginal” if the 9.6V temperature is between 45° F. and 70° F. and “good” if the 9.6V temperature is between 0° F. and 45° F. In general, the calculation circuitry of tester 16 can determine a range of temperature performance of a battery from a point reflecting that of a new battery to one that requires replacement. The temperature performance range can be further divided into degrees of battery performance providing warnings of weakening batteries before complete failure.
The above-included equations of the present invention are derived based on load test values and therefore employ an output of 9.6V at half the CCA rate. However, substantially similar equations to those included above may be used to compute a second temperature, more akin to starting requirements, that relates to an instantaneous output of 7.2V at the full CCA rate without departing from the spirit and scope of the present invention. This temperature range will be lower than that of the load test and can include negative values.
FIG. 4 is a flow chart 100 showing operation of microprocessor 56 based upon programming instructions stored in memory 60. At step 102, a desired output level of the battery is obtained. This can be, for example, retrieved from memory 60 or received from input 66. At step 104, a dynamic parameter of the battery is obtained. At step 106, a temperature of the battery is determined or obtained. At step 108, a rating of the battery is obtained. At step 110, an open circuit voltage of the battery is measured. At step 112, a battery failure temperature for the desired output is obtained as a function of the dynamic parameter, the rating, the open circuit voltage and the temperature of the battery. Different techniques, some of which are set forth above, can be employed to carry out the steps shown in the flow chart of FIG. 4 while maintaining substantially the same functionality without departing from the scope and spirit of the present invention.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. It should be noted that the essence of the present invention is the determination of battery failure temperature for the desired output level as a function of the dynamic parameter, the performance rating, the open circuit voltage and the temperature of the battery. Thus, although a specific dynamic parameter measurement technique has been described above in connection with FIGS. 1 and 2, any suitable technique known in the industry or developed in the future for measuring the conductance/resistance of the battery can be employed without departing from the spirit and scope of the invention.
Claims
1. An electronic battery tester for testing a storage battery, comprising:
- first and second Kelvin connections configured to electrically couple to terminals of the battery;
- dynamic parameter measurement circuitry coupled to the Kelvin connections configured to provide a dynamic parameter output related to a dynamic parameter of the battery;
- a voltage sensor configured to measure an open circuit voltage of the battery;
- a temperature sensor configured to measure a battery temperature; and
- calculation circuitry configured to provide a battery failure temperature for a desired output, the battery failure temperature is a function of the dynamic parameter, a battery rating, the open circuit voltage and the battery temperature.
2. The electronic battery tester of claim 1 wherein the dynamic parameter is measured using a time varying signal.
3. The electronic battery tester of claim 1 wherein the desired output is a discharge power level.
4. The electronic battery tester of claim 1 wherein the desired output is a discharge current level.
5. The electronic battery tester of claim 1 wherein the desired output is a discharge voltage level.
6. The electronic battery tester of claim 1 wherein the desired output is a discharge energy level.
7. The electronic battery tester of claim 1 wherein the temperature sensor employs an infrared signal to measure the battery temperature.
8. The electronic battery tester of claim 1 wherein the dynamic parameter is a battery resistance.
9. The electronic battery tester of claim 1 wherein the dynamic parameter is a battery conductance.
10. The electronic battery tester of claim 1 wherein the battery rating is a cold cranking amp (CCA) battery rating.
11. The electronic battery tester of claim 1 wherein the calculation circuitry is configured to determine that the battery is bad if the battery failure temperature is greater than or equal to 70° F. and the desired output is 9.6 volts.
12. The electronic battery tester of claim 1 wherein the calculation circuitry is configured to determine a range of temperature performance of a battery from a point reflecting that of a new battery to one that requires replacement.
13. The electronic battery tester of claim 12 wherein the temperature performance range is further divided into degrees of battery performance providing warnings of weakening batteries before complete failure.
14. A method for testing a storage battery comprising:
- (a) obtaining a desired output rating of the battery;
- (b) measuring a dynamic parameter of the battery;
- (c) obtaining a temperature of the battery;
- (d) measuring an open circuit voltage of the battery; and
- (e) determining a battery failure temperature for the desired output as a function of the dynamic parameter, a rating of the battery, the temperature of the battery and the open circuit voltage of the battery.
15. The method of claim 14 wherein the measuring the dynamic parameter step (b) is carried out using a time varying signal.
16. The method of claim 14 wherein the desired output is a discharge power level.
17. The method of claim 14 wherein the desired output is a discharge current level.
18. The method of claim 14 wherein the desired output is a discharge voltage level.
19. The method of claim 14 wherein the desired output is a discharge energy level.
20. The method of claim 14 wherein the temperature of the battery is measured using an infrared signal.
21. The method of claim 14 wherein the dynamic parameter is a battery resistance.
22. The method of claim 14 wherein the dynamic parameter is a battery conductance.
23. The method of claim 14 wherein the battery rating is a cold cranking amp (CCA) battery rating.
24. An electronic battery tester implementing the method of claim 14.
2514745 | July 1950 | Dalzell |
3356936 | December 1967 | Smith |
3562634 | February 1971 | Latner |
3593099 | July 1971 | Scholl |
3607673 | September 1971 | Seyl |
3676770 | July 1972 | Sharaf et al. |
3729989 | May 1973 | Little |
3750011 | July 1973 | Kreps |
3750101 | July 1973 | Kreps |
3753094 | August 1973 | Furuishi et al. |
3808522 | April 1974 | Sharaf |
3811089 | May 1974 | Strezelewicz |
3873911 | March 1975 | Champlin |
3876931 | April 1975 | Godshalk |
3886443 | May 1975 | Miyakawa et al. |
3889248 | June 1975 | Ritter |
3906329 | September 1975 | Bader |
3909708 | September 1975 | Champlin |
3936744 | February 3, 1976 | Perlmutter |
3946299 | March 23, 1976 | Christianson et al. |
3947757 | March 30, 1976 | Grube et al. |
3969667 | July 13, 1976 | McWilliams |
3979664 | September 7, 1976 | Harris |
3984762 | October 5, 1976 | Dowgiallo, Jr. |
3984768 | October 5, 1976 | Staples |
3989544 | November 2, 1976 | Santo |
4008619 | February 22, 1977 | Alcaide et al. |
4024953 | May 24, 1977 | Nailor, III |
4047091 | September 6, 1977 | Hutchines et al. |
4053824 | October 11, 1977 | Dupuis et al. |
4070624 | January 24, 1978 | Taylor |
4086531 | April 25, 1978 | Bernier |
4112351 | September 5, 1978 | Back et al. |
4114083 | September 12, 1978 | Benham et al. |
4126874 | November 21, 1978 | Suzuki et al. |
4178546 | December 11, 1979 | Hulls et al. |
4193025 | March 11, 1980 | Frailing et al. |
4207611 | June 10, 1980 | Gordon |
4217645 | August 12, 1980 | Barry et al. |
4297639 | October 27, 1981 | Branham |
4315204 | February 9, 1982 | Sievers et al. |
4316185 | February 16, 1982 | Watrous et al. |
4322685 | March 30, 1982 | Frailing et al. |
4351405 | September 28, 1982 | Fields et al. |
4361809 | November 30, 1982 | Bil et al. |
4363407 | December 14, 1982 | Buckler et al. |
4369407 | January 18, 1983 | Korbell |
4379989 | April 12, 1983 | Kurz et al. |
4379990 | April 12, 1983 | Sievers et al. |
4385269 | May 24, 1983 | Aspinwall et al. |
4390828 | June 28, 1983 | Converse et al. |
4392101 | July 5, 1983 | Saar et al. |
4396880 | August 2, 1983 | Windebank |
4408157 | October 4, 1983 | Beaubien |
4412169 | October 25, 1983 | Dell 'Orto |
4423378 | December 27, 1983 | Marino et al. |
4423379 | December 27, 1983 | Jacobs et al. |
4424491 | January 3, 1984 | Bobbett et al. |
4459548 | July 10, 1984 | Lentz et al. |
4514694 | April 30, 1985 | Finger |
4520353 | May 28, 1985 | McAuliffe |
4564798 | January 14, 1986 | Young |
4633418 | December 30, 1986 | Bishop |
4659977 | April 21, 1987 | Kissel et al. |
4663580 | May 5, 1987 | Wortman |
4665370 | May 12, 1987 | Holland |
4667143 | May 19, 1987 | Cooper et al. |
4667279 | May 19, 1987 | Maier |
4678998 | July 7, 1987 | Muramatsu |
4679000 | July 7, 1987 | Clark |
4680528 | July 14, 1987 | Mikami et al. |
4686442 | August 11, 1987 | Radomski |
4697134 | September 29, 1987 | Burkum et al. |
4707795 | November 17, 1987 | Alber et al. |
4709202 | November 24, 1987 | Koenck et al. |
4710861 | December 1, 1987 | Kanner |
4719428 | January 12, 1988 | Liebermann |
4743855 | May 10, 1988 | Randin et al. |
4745349 | May 17, 1988 | Palanisamy et al. |
4816768 | March 28, 1989 | Champlin |
4820966 | April 11, 1989 | Fridman |
4825170 | April 25, 1989 | Champlin |
4847547 | July 11, 1989 | Eng, Jr. |
4849700 | July 18, 1989 | Morioka et al. |
4876495 | October 24, 1989 | Palanisamy et al. |
4881038 | November 14, 1989 | Champlin |
4888716 | December 19, 1989 | Ueno |
4912416 | March 27, 1990 | Champlin |
4913116 | April 3, 1990 | Katogi et al. |
4929931 | May 29, 1990 | McCuen |
4931738 | June 5, 1990 | MacIntyre et al. |
4937528 | June 26, 1990 | Palanisamy |
4947124 | August 7, 1990 | Hauser |
4956597 | September 11, 1990 | Heavey et al. |
4968941 | November 6, 1990 | Rogers |
4968942 | November 6, 1990 | Palanisamy |
5004979 | April 2, 1991 | Marino et al. |
5032825 | July 16, 1991 | Xuznicki |
5037778 | August 6, 1991 | Stark et al. |
5047722 | September 10, 1991 | Wurst et al. |
5087881 | February 11, 1992 | Peacock |
5095223 | March 10, 1992 | Thomas |
5126675 | June 30, 1992 | Yang |
5140269 | August 18, 1992 | Champlin |
5144218 | September 1, 1992 | Bosscha |
5144248 | September 1, 1992 | Alexandres et al. |
5159272 | October 27, 1992 | Rao et al. |
5160881 | November 3, 1992 | Schramm et al. |
5170124 | December 8, 1992 | Blair et al. |
5179335 | January 12, 1993 | Nor |
5194799 | March 16, 1993 | Tomantschger |
5204611 | April 20, 1993 | Nor et al. |
5214370 | May 25, 1993 | Harm et al. |
5214385 | May 25, 1993 | Gabriel et al. |
5241275 | August 31, 1993 | Fang |
5254952 | October 19, 1993 | Salley et al. |
5266880 | November 30, 1993 | Newland |
5281919 | January 25, 1994 | Palanisamy |
5281920 | January 25, 1994 | Wurst |
5295078 | March 15, 1994 | Stich et al. |
5298797 | March 29, 1994 | Redl |
5300874 | April 5, 1994 | Shimamoto et al. |
5302902 | April 12, 1994 | Groehl |
5313152 | May 17, 1994 | Wozniak et al. |
5315287 | May 24, 1994 | Sol |
5321626 | June 14, 1994 | Palladino |
5325041 | June 28, 1994 | Briggs |
5331268 | July 19, 1994 | Patino et al. |
5336993 | August 9, 1994 | Thomas et al. |
5338515 | August 16, 1994 | Dalla Betta et al. |
5339018 | August 16, 1994 | Brokaw |
5343380 | August 30, 1994 | Champlin |
5347163 | September 13, 1994 | Yoshimura |
5352968 | October 4, 1994 | Reni et al. |
5365160 | November 15, 1994 | Leppo et al. |
5365453 | November 15, 1994 | Startup et al. |
5381096 | January 10, 1995 | Hirzel |
5410754 | April 1995 | Klotzbach et al. |
5412323 | May 2, 1995 | Kato et al. |
5426371 | June 20, 1995 | Salley et al. |
5426416 | June 20, 1995 | Jefferies et al. |
5432426 | July 11, 1995 | Yoshida |
5434495 | July 18, 1995 | Toko |
5435185 | July 25, 1995 | Eagan |
5442274 | August 15, 1995 | Tamai |
5445026 | August 29, 1995 | Eagan |
5449996 | September 12, 1995 | Matsumoto et al. |
5449997 | September 12, 1995 | Gilmore et al. |
5451881 | September 19, 1995 | Finger |
5457377 | October 10, 1995 | Jonsson |
5469043 | November 21, 1995 | Cherng et al. |
5485090 | January 16, 1996 | Stephens |
5488300 | January 30, 1996 | Jamieson |
5519383 | May 21, 1996 | De La Rosa |
5528148 | June 18, 1996 | Rogers |
5537967 | July 23, 1996 | Tashiro et al. |
5541489 | July 30, 1996 | Dunstan |
5546317 | August 13, 1996 | Andrieu |
5548273 | August 20, 1996 | Nicol et al. |
5550485 | August 27, 1996 | Falk |
5561380 | October 1, 1996 | Sway-Tin et al. |
5562501 | October 8, 1996 | Kinoshita et al. |
5563496 | October 8, 1996 | McClure |
5572136 | November 5, 1996 | Champlin |
5574355 | November 12, 1996 | McShane et al. |
5583416 | December 10, 1996 | Klang |
5585728 | December 17, 1996 | Champlin |
5589757 | December 31, 1996 | Klang |
5592093 | January 7, 1997 | Klingbiel |
5596260 | January 21, 1997 | Moravec et al. |
5598098 | January 28, 1997 | Champlin |
5602462 | February 11, 1997 | Stich et al. |
5606242 | February 25, 1997 | Hull et al. |
5621298 | April 15, 1997 | Harvey |
5633985 | May 27, 1997 | Severson et al. |
5637978 | June 10, 1997 | Kellett et al. |
5642031 | June 24, 1997 | Brotto |
5650937 | July 22, 1997 | Bounaga |
5652501 | July 29, 1997 | McClure et al. |
5653659 | August 5, 1997 | Kunibe et al. |
5654623 | August 5, 1997 | Shiga et al. |
5656920 | August 12, 1997 | Cherng et al. |
5675234 | October 7, 1997 | Greene |
5677077 | October 14, 1997 | Faulk |
5699050 | December 16, 1997 | Kanazawa |
5701089 | December 23, 1997 | Perkins |
5705929 | January 6, 1998 | Caravello et al. |
5710503 | January 20, 1998 | Sideris et al. |
5711648 | January 27, 1998 | Hammerslag |
5717336 | February 10, 1998 | Basell et al. |
5717937 | February 10, 1998 | Fritz |
5739667 | April 14, 1998 | Matsuda et al. |
5747909 | May 5, 1998 | Syverson et al. |
5754417 | May 19, 1998 | Nicollini |
5757192 | May 26, 1998 | McShane et al. |
5760587 | June 2, 1998 | Harvey |
5773978 | June 30, 1998 | Becker |
5789899 | August 4, 1998 | van Phuoc et al. |
5793359 | August 11, 1998 | Ushikubo |
5796239 | August 18, 1998 | van Phuoc et al. |
5808469 | September 15, 1998 | Kopera |
5818234 | October 6, 1998 | McKinnon |
5821756 | October 13, 1998 | McShane et al. |
5821757 | October 13, 1998 | Alvarez et al. |
5825174 | October 20, 1998 | Parker |
5831435 | November 3, 1998 | Troy |
5862515 | January 19, 1999 | Kobayashi et al. |
5872443 | February 16, 1999 | Williamson |
5895440 | April 20, 1999 | Proctor et al. |
5914605 | June 22, 1999 | Bertness |
5927938 | July 27, 1999 | Hammerslag |
5929609 | July 27, 1999 | Joy et al. |
5939855 | August 17, 1999 | Proctor et al. |
5939861 | August 17, 1999 | Joko et al. |
5945829 | August 31, 1999 | Bertness |
5951229 | September 14, 1999 | Hammerslag |
5961561 | October 5, 1999 | Wakefield, II |
5961604 | October 5, 1999 | Anderson et al. |
5969625 | October 19, 1999 | Russo |
6002238 | December 14, 1999 | Champlin |
6008652 | December 28, 1999 | Theofanopoulos et al. |
6009369 | December 28, 1999 | Boisvert et al. |
6031354 | February 29, 2000 | Wiley et al. |
6037751 | March 14, 2000 | Klang |
6037777 | March 14, 2000 | Champlin |
6051976 | April 18, 2000 | Bertness |
6055468 | April 25, 2000 | Kaman et al. |
6061638 | May 9, 2000 | Joyce |
6072299 | June 6, 2000 | Kurie et al. |
6072300 | June 6, 2000 | Tsuji |
6081098 | June 27, 2000 | Bertness et al. |
6091245 | July 18, 2000 | Bertness |
6094033 | July 25, 2000 | Ding et al. |
6104167 | August 15, 2000 | Bertness et al. |
6114834 | September 5, 2000 | Parise |
6137269 | October 24, 2000 | Champlin |
6140797 | October 31, 2000 | Dunn |
6144185 | November 7, 2000 | Dougherty et al. |
6150793 | November 21, 2000 | Lesesky et al. |
6161640 | December 19, 2000 | Yamaguchi |
6163156 | December 19, 2000 | Bertness |
6167349 | December 26, 2000 | Alvarez |
6172483 | January 9, 2001 | Champlin |
6172505 | January 9, 2001 | Bertness |
6181545 | January 30, 2001 | Amatucci et al. |
6222369 | April 24, 2001 | Champlin |
6225808 | May 1, 2001 | Varghese et al. |
6236332 | May 22, 2001 | Conkright et al. |
6249124 | June 19, 2001 | Bertness |
6250973 | June 26, 2001 | Lowery et al. |
6254438 | July 3, 2001 | Gaunt |
6259254 | July 10, 2001 | Klang |
6262563 | July 17, 2001 | Champlin |
6263268 | July 17, 2001 | Nathanson |
6294896 | September 25, 2001 | Champlin |
6294897 | September 25, 2001 | Champlin |
6304087 | October 16, 2001 | Bertness |
6307349 | October 23, 2001 | Koenck et al. |
6310481 | October 30, 2001 | Bertness |
6313607 | November 6, 2001 | Champlin |
6313608 | November 6, 2001 | Varghese et al. |
6316914 | November 13, 2001 | Bertness |
6323650 | November 27, 2001 | Bertness et al. |
6329793 | December 11, 2001 | Bertness et al. |
6331762 | December 18, 2001 | Bertness |
6332113 | December 18, 2001 | Bertness |
6346795 | February 12, 2002 | Haraguchi et al. |
6347958 | February 19, 2002 | Tsai |
6351102 | February 26, 2002 | Troy |
6359441 | March 19, 2002 | Bertness |
6359442 | March 19, 2002 | Henningson et al. |
6363303 | March 26, 2002 | Bertness |
6384608 | May 7, 2002 | Namaky |
6388448 | May 14, 2002 | Cervas |
6392414 | May 21, 2002 | Bertness |
6411098 | June 25, 2002 | Laletin |
6417669 | July 9, 2002 | Champlin |
6424157 | July 23, 2002 | Gollomp et al. |
6424158 | July 23, 2002 | Klang |
6441585 | August 27, 2002 | Bertness |
6445158 | September 3, 2002 | Bertness et al. |
6456045 | September 24, 2002 | Troy et al. |
6466025 | October 15, 2002 | Klang |
6466026 | October 15, 2002 | Champlin |
6495990 | December 17, 2002 | Champlin |
6526361 | February 25, 2003 | Jones et al. |
6534993 | March 18, 2003 | Bertness |
6544078 | April 8, 2003 | Palmisano et al. |
6556019 | April 29, 2003 | Bertness |
6566883 | May 20, 2003 | Vonderhaar et al. |
6586941 | July 1, 2003 | Bertness et al. |
6597150 | July 22, 2003 | Bertness et al. |
6667624 | December 23, 2003 | Raichle et al. |
20020010558 | January 24, 2002 | Bertness et al. |
20020171428 | November 21, 2002 | Bertness |
20030025481 | February 6, 2003 | Bertness |
20030184306 | October 2, 2003 | Bertness et al. |
20040000891 | January 1, 2004 | Raichie et al. |
29 26 716 | January 1981 | DE |
0 022 450 | January 1981 | EP |
0 637 754 | February 1995 | EP |
0 772 056 | May 1997 | EP |
2 749 397 | December 1997 | FR |
2 088 159 | June 1982 | GB |
59-17892 | January 1984 | JP |
59-17893 | January 1984 | JP |
59-17894 | January 1984 | JP |
59017894 | January 1984 | JP |
59215674 | December 1984 | JP |
60225078 | November 1985 | JP |
62-180284 | August 1987 | JP |
63027776 | February 1988 | JP |
03274479 | December 1991 | JP |
03282276 | December 1991 | JP |
4-8636 | January 1992 | JP |
04131779 | May 1992 | JP |
04372536 | December 1992 | JP |
5216550 | August 1993 | JP |
7-128414 | May 1995 | JP |
09061505 | March 1997 | JP |
10056744 | February 1998 | JP |
11103503 | April 1999 | JP |
2089015 | August 1997 | RU |
WO 93/22666 | November 1993 | WO |
WO 94/05069 | March 1994 | WO |
WO 98/04910 | February 1998 | WO |
WO 98/58270 | December 1998 | WO |
WO 99/23738 | May 1999 | WO |
WO 00/62049 | October 2000 | WO |
WO 00/67359 | November 2000 | WO |
WO 01/51947 | July 2001 | WO |
WO 01/59443 | August 2001 | WO |
- “Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
- “Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
- “Determining The End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
- “A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394-397.
- “The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
- “A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
- “Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
- Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT & T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128-131.
- IEEE Recommended Practice For Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
- “Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
- “Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
- “JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
- “Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
- “A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
- National Semicondctor Corporation, “High Q Notch Filter”, 3/69, Linear Brief 5, Mar. 1969.
- Burr-Brown Corporation, “Design A 60 Hz Notch Filter with the UAF42”, 1/94, AB-071, 1994.
- National Semiconductor Corporation, “LMF90-4 th -Order Elliptic Notch Filter”, 12/94, RRD-B30M115, Dec. 1994.
- “Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, undated.
- “#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.com, undated.
- “Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexp.com/t_dc-dc.htm, undated.
- “DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InforWeb.design_center/articles/DC-DC/converter.shtm, undated.
- “Notification of Transmittal of The International Search Report or the Declaration”, PCT/US02/29461, Sep. 17, 2002.
- “Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/06577, Mar. 5, 2003.
Type: Grant
Filed: Mar 14, 2003
Date of Patent: Oct 5, 2004
Patent Publication Number: 20030173971
Assignee: Midtronics, Inc. (Willowbrook, IL)
Inventors: Kevin I. Bertness (Batavia, IL), J. David Vonderhaar (Bolingbrook, IL), Dennis V. Brown (Plano, TX), James K. Klang (Downers Grove, IL)
Primary Examiner: N. Le
Assistant Examiner: Amy He
Attorney, Agent or Law Firm: Westman, Champlin & Kelly
Application Number: 10/388,855
International Classification: G01N/27416;