Fluorescence endoscopy video systems with no moving parts in the camera
A fluorescence endoscopy video system includes a multi-mode light source that produces light for white light and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for white light and fluorescence imaging, which may be located in the insertion portion of the endoscope, or attached to the portion of the endoscope outside the body. The camera can be utilized for both white light imaging and fluorescence imaging, and in its most compact form, contains no moving parts.
Latest Xillix Technologies Corp. Patents:
- CAMERAS FOR FLUORESCENCE AND REFLECTANCE IMAGING
- Device for short wavelength visible reflectance endoscopy using broadband illumination
- Filter for use with imaging endoscopes
- Filter for use with imaging endoscopes
- Portable system for detecting skin abnormalities based on characteristic autofluorescence
The present invention relates to medical imaging systems in general, and in particular to fluorescence endoscopy video systems.
BACKGROUND OF THE INVENTIONFluorescence endoscopy utilizes differences in the fluorescence response of normal tissue and tissue suspicious for early cancer as a tool in the detection and localization of such cancer. The fluorescing compounds or fluorophores that are excited during fluorescence endoscopy may be exogenously applied photo-active drugs that accumulate preferentially in suspicious tissues, or they may be the endogenous fluorophores that are present in all tissue. In the latter case, the fluorescence from the tissue is typically referred to as autofluorescence or native fluorescence. Tissue autofluorescence is typically due to fluorophores with absorption bands in the UV and blue portion of the visible spectrum and emission bands in the green to red portions of the visible spectrum. In tissue suspicious for early cancer, the green portion of the autofluorescence spectrum is significantly suppressed. Fluorescence endoscopy that is based on tissue autofluorescence utilizes this spectral difference to distinguish normal from suspicious tissue.
Since the concentration and/or quantum efficiency of the endogenous fluorophores in tissue is relatively low, the fluorescence emitted by these fluorophores is not typically visible to the naked eye. Fluorescence endoscopy is consequently performed by employing low light image sensors to acquire images of the fluorescing tissue through the endoscope. The images acquired by these sensors are most often encoded as video signals and displayed on a color video monitor. Representative fluorescence endoscopy video systems that image tissue autofluorescence are disclosed in U.S. Pat. No. 5,507,287, issued to Palcic et al.; U.S. Pat. No. 5,590,660, issued to MacAulay et al.; U.S. Pat. No. 5,827,190, issued to Palcic et al., U.S. patent application Ser. Nos. 09/615,965, and 09/905,642, all of which are herein incorporated by reference. Each of these is assigned to Xillix Technologies Corp. of Richmond, British Columbia, Canada, the assignee of the present application.
While the systems disclosed in the above-referenced patents are significant advances in the field of early cancer detection, improvements can be made. In particular, it is desirable to reduce the size, cost, weight, and complexity of the camera described for these systems by eliminating moving parts.
SUMMARY OF THE INVENTIONA fluorescence endoscopy video system in accordance with the present invention includes an endoscopic light source that is capable of operating in multiple modes to produce either white light, reflectance light, fluorescence excitation light, or fluorescence excitation light with reference reflectance light. An endoscope incorporates a light guide for transmitting light to the tissue under observation and includes either an imaging guide or a camera disposed in the insertion portion of the endoscope for receiving light from the tissue under observation. A compact camera with at least one low light imaging sensor that receives light from the tissue and is capable of operating in multiple imaging modes to acquire color or multi-channel fluorescence and reflectance images. The system further includes an image processor and system controller that digitizes, processes and encodes the image signals produced by the image sensor(s) as a color video signal and a color video monitor that displays the processed video images.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
As shown in
A processor/controller 64 controls the multi-mode camera 100 and the light source 52, and produces video signals that are displayed on a video monitor 66. The processor/controller 64 communicates with the multi-mode camera 100 with wires or other signal carrying devices that are routed within the endoscope. Alternatively, communication between the processor/controller 64 and the camera 100 can be conducted over a wireless link.
The light from the arc lamp 70 is coupled to a light guide 54 of the endoscope 60 through appropriate optics 74, 76, and 78 for light collection, spectral filtering and focusing respectively. The light from the arc lamp is spectrally filtered by one of a number of optical filters 76A, 76B, 76C . . . that operate to pass or reject desired wavelengths of light in accordance with the operating mode of the system. As used herein, “wavelength” is to be interpreted broadly to include not only a single wavelength, but a range of wavelengths as well.
An intensity control 80 that adjusts the amount of light transmitted along the light path is positioned at an appropriate location between the arc lamp 70 and the endoscope light guide 54. The intensity control 80 adjusts the amount of light that is coupled to the light guide 54. In addition, a shutter mechanism 82 may be positioned in the same optical path in order to block any of the light from the lamp from reaching the light guide. A controller 86 operates an actuator 77 that moves the filters 76A, 76B or 76C into and out of the light path. The controller 86 also controls the position of the intensity control 80 and the operation of the shutter mechanism 82.
The transmission characteristics of filters 76A, 76B, 76C, . . . , the characteristics of the actuator 77 mechanism, and the time available for motion of the filters 76A, 76B, 76C, . . . , into and out of the light path, depend on the mode of operation required for use with the various camera embodiments. The requirements fall into two classes. If the light source shown in
A light source 52A of a second class is illustrated in
The transmission characteristics of light source filters, the characteristics of the filter actuator mechanism, and the time available for motion of the filters into and out of the light path, for the two different classes of light sources are described in more detail below in the context of the various camera embodiments.
Because fluorescence endoscopy is generally used in conjunction with white light endoscopy, each of the various embodiments of the multi-mode camera 100 described below may be used both for color and fluorescence/reflectance and/or fluorescence/fluorescence imaging. These camera embodiments particularly lend themselves to incorporation within a fluorescence video endoscope due to their compactness and their ability to be implemented with no moving parts.
In a first embodiment, shown in
In
The low light image sensor 104 preferably comprises a charge coupled device with charge carrier multiplication (of the same type as the Texas Instruments TC253 or the Marconi Technologies CCD65), electron beam charge coupled device (EBCCD), intensified charge coupled device (ICCD), charge injection device (CID), charge modulation device (CMD), complementary metal oxide semiconductor image sensor (CMOS) or charge coupled device (CCD) type sensor. The monochrome image sensor 102 is preferably a CCD or a CMOS image sensor.
An alternative configuration of the camera 100B is shown in FIG. 4C. All aspects of this embodiment of this camera 110C are similar to the camera 100B shown in
The processor/controller 64 as shown in
Based on operator input, the processor/controller 64 also provides control functions for the fluorescence endoscopy video system. These control functions include providing control signals that control the camera gain in all imaging modes, coordinating the imaging modes of the camera and light source, and providing a light level control signal for the light source.
The reason that two separate images in different wavelength bands are acquired in fluorescence imaging modes of the fluorescence endoscopy video systems described herein, and the nature of the fluorescence/reflectance and fluorescence/fluorescence imaging, will now be explained. It is known that the intensity of the autofluorescence at certain wavelengths changes as tissues become increasingly abnormal (i.e. as they progress from normal to frank cancer). When visualizing images formed from such a band of wavelengths of autofluorescence, however, it is not easy to distinguish between those changes in the signal strength that are due to pathology and those that are due to imaging geometry and shadows. A second fluorescence image acquired in a band of wavelengths in which the image signal is not significantly affected by tissue pathology, utilized for fluorescence/fluorescence imaging, or a reflected light image acquired in a band of wavelengths in which the image signal is not significantly affected by tissue pathology consisting of light that has undergone scattering within the tissue (known as diffuse reflectance), utilized for fluorescence/reflectance imaging, may be used as a reference signal with which the signal strength of the first fluorescence image can be “normalized”. Such normalization is described in two patents previously incorporated herein by reference: U.S. Pat. No. 5,507,287, issued to Palcic et al. describes fluorescence/fluorescence imaging and U.S. Pat. No. 5,590,660, issued to MacAulay et al. describes fluorescence/reflectance imaging.
One technique for performing the normalization is to assign each of the two image signals a different display color, e.g., by supplying the image signals to different color inputs of a color video monitor. When displayed on a color video monitor, the two images are effectively combined to form a single image, the combined color of which represents the relative strengths of the signals from the two images. Since light originating from fluorescence within tissue and diffuse reflectance light which has undergone scattering within the tissue are both emitted from the tissue with a similar spatial distribution of intensities, the color of a combined image is independent of the absolute strength of the separate image signals, and will not change as a result of changes in the distance or angle of the endoscope 60 to the tissue sample 58, or changes in other imaging geometry factors. If, however, there is a change in the shape of the autofluorescence spectrum of the observed tissue that gives rise to a change in the relative strength of the two image signals, such a change will be represented as a change in the color of the displayed image. Another technique for performing the normalization is to calculate the ratio of the pixel intensities at each location in the two images. A new image can then be created wherein each pixel has an intensity and color related to the ratio computed. The new image can then be displayed by supplying it to a color video monitor.
The mixture of colors with which normal tissue and tissue suspicious for early cancer are displayed depends on the gain applied to each of the two separate image signals. There is an optimal gain ratio for which tissue suspicious for early cancer in a fluorescence image will appear as a distinctly different color than normal tissue. This gain ratio is said to provide the operator with the best combination of sensitivity (ability to detect suspect tissue) and specificity (ability to discriminate correctly). If the gain applied to the reference image signal is too high compared to the gain applied to the fluorescence image signal, the number of tissue areas that appear suspicious, but whose pathology turns out to be normal, increases. Conversely, if the relative gain applied to the reference image signal is too low, sensitivity decreases and suspect tissue will appear like normal tissue. For optimal system performance, therefore, the ratio of the gains applied to the image signals must be maintained at all times. The control of the gain ratio is described in two patent applications previously incorporated herein by reference: U.S. patent application Ser. Nos. 09/615,965, and 09/905,642.
In vivo spectroscopy has been used to determine which differences in tissue autofluorescence and reflectance spectra have a pathological basis. The properties of these spectra determine the particular wavelength bands of autofluorescence and reflected light required for the fluorescence/reflectance imaging mode, or the particular two wavelength bands of autofluorescence required for fluorescence/fluorescence imaging mode. Since the properties of the spectra depend on the tissue type, the wavelengths of the important autofluorescence band(s) may depend on the type of tissue being imaged. The specifications of the optical filters described below are a consequence of these spectral characteristics, and are chosen to be optimal for the tissues to be imaged.
As indicated above, the filters in the light source and camera should be optimized for the imaging mode of the camera, the type of tissue to be examined and/or the type of pre-cancerous tissue to be detected. Although all of the filters described below can be made to order using standard, commercially available components, the appropriate wavelength range of transmission and degree of blocking outside of the desired transmission range for the described fluorescence endoscopy images are important to the proper operation of the system. The importance of other issues in the specification of such filters, such as the fluorescence properties of the filter materials and the proper use of anti-reflection coatings, are taken to be understood.
The operation of the preferred embodiment of the fluorescence endoscopy video system will now be described. The cameras 100A as shown in
The processor/controller 64 also protects the sensitive low light image sensor 104 during color imaging by decreasing the gain of the amplification stage of the sensor. The light reflected by the tissue 58 is collected and transmitted by the endoscope image guide 56 to the camera where it is projected through beamsplitter 106 onto the monochrome image sensor 102, or the light is directly projected through the camera beamsplitter 106 onto the monochrome image sensor 102 if the sensor is located within the insertion portion of the endoscope. The image projected during each of red, green, and blue illuminations is transduced by the monochrome image sensor 102 and the resulting image signals are transmitted to the processor/controller 64.
Based on the brightness of the images captured, the processor/controller 64 provides a control signal to the multi-mode light source 52 to adjust the intensity control 80 and thereby adjust the level of light output by the endoscope light guide 54. The processor/controller 64 may also send a control signal to the camera 100A, 100B or 100C to adjust the gain of the monochrome image sensor 102.
The processor/controller 64 interpolates the images acquired during sequential periods of red, green, and blue illumination to create a complete color image during all time periods, and encodes that color image as video signals. The video signals are connected to color video monitor 66 for display of the color image. All of the imaging operations occur at analog video display rates (30 frames per second for NTSC format and 25 frames per second for PAL format).
When switching to the fluorescence/reflectance imaging mode, the processor/controller 64 provides a control signal to the multi-mode light source 52 to indicate that it should be operating in fluorescence/reflectance mode. In response to this signal, the light source filter wheel 79 stops rotating and the light source 52 selects and positions the appropriate blue optical filter 79A continuously into the optical path between the arc lamp 70 and the endoscope light guide 54. This change from sequentially changing filters to a static filter occurs in a period of approximately one second. Filter 79A transmits only those wavelengths of light that will induce the tissue 58 under examination to fluoresce. All other wavelengths of light are substantially blocked as described above. The filtered light is then projected into the endoscope light guide 54 and transmitted to the tip of the endoscope 60 to illuminate the tissue 58.
As part of setting the system in the fluorescence/reflectance mode, the processor/controller 64 also increases the gain of the amplification stage of the low light image sensor 104. The fluorescence emitted and excitation light reflected by the tissue 58 are either collected by the endoscope image guide 56 and projected through the camera beamsplitter 106 onto the low light image sensor 104 and the image sensor 102, or are collected and directly projected through the camera beamsplitter 106 onto the low light image sensor 104 and the image sensor 102 at the insertion tip of the endoscope 60. Spectral filter 118 limits the light transmitted to the low light image sensor 104 to either green or red autofluorescence light only and substantially blocks the light in the excitation wavelength band. The autofluorescence image is transduced by the low light image sensor 104. The reference reflected excitation light image is transduced by the monochrome image sensor 102 and the resulting image signals are transmitted to the processor/controller 64.
Based on the brightness of the transduced images, the processor/controller 64 may provide a control signal to the multi-mode light source 52 to adjust the intensity control 80 and thereby adjust the level of light delivered to the endoscope 60. The processor/controller 64 may also send control signals to the cameras 100A, 100B or 100C to adjust the gains of the low light image sensor 104 and the monochrome image sensor 102, in order to maintain constant image brightness while keeping the relative gain constant.
After being processed, the images from the two sensors are encoded as video signals by processor/controller 64. The fluorescence/reflectance image is displayed by applying the video signals to different color inputs on the color video monitor 66.
In order for the combined image to have optimal clinical meaning, for a given proportion of fluorescence to reference light signals emitted by the tissue and received by the system, a consistent proportion must also exist between the processed image signals that are displayed on the video monitor. This implies that the (light) signal response of the fluorescence endoscopy video system is calibrated. The calibration technique is described in two patent applications previously incorporated herein by reference: U.S. patent application Ser. Nos. 09/615,965, and 09/905,642.
The cameras 100A, 100B, 100C can be operated in a variation of the fluorescence/reflectance mode to simultaneously obtain fluorescence images and reflectance images with red, green, and blue illumination. The operation of the system is similar to that described previously for color imaging, so only the points of difference from the color imaging mode will be described.
In this variation of the fluorescence/reflectance mode, instead of changing from sequential red, green, and blue illumination to static blue illumination when switching from color imaging to fluorescence/reflectance imaging, the multi-mode light source 52 provides the same sequential illumination utilized in the color imaging mode, for all imaging modes. Capture and display of the light reflected by the tissue is similar to that described previously for the color imaging mode. However, in addition to the reflectance images captured in that mode, the gain of the amplification stage of the low light image sensor 104 is adjusted to a value that makes it possible to capture autofluorescence images during blue illumination. During red and green illumination, the gain of amplification stage of the low light sensor is decreased to protect the sensor while the image sensor 102 captures reflectance images.
In this modified fluorescence/reflectance mode, the camera captures both reflectance and fluorescence images during the blue illumination period, in addition to reflected light images during the red and green illumination periods. As for the color imaging mode, the reflectance images are interpolated and displayed on the corresponding red, green and blue channels of a color video monitor to produce a color image. Like the previously described fluorescence/reflectance mode, a fluorescence/reflectance image is produced by overlaying the fluorescence image and one or more of the reflectance images displayed in different colors on a color video monitor.
Since individual reflectance and fluorescence images are concurrently captured, both a color image and a fluorescence/reflectance image can be displayed simultaneously on the color video monitor. In this case, there is no need to utilize a separate color imaging mode. Alternatively, as described for the previous version of fluorescence/reflectance operation, only the fluorescence/reflectance image may be displayed during fluorescence/reflectance imaging and a color image displayed solely in the color imaging mode.
Yet another embodiment of this invention will now be described. All points of similarity with the first embodiment will be assumed understood and only points that differ will be described.
In this second embodiment, all aspects of the fluorescence endoscopy video system are similar to those of the first embodiment except for the camera and the light source. A camera 100D for this embodiment of a system is as shown in FIG. 7A. It differs from the cameras 100A, 100B or 100C as described above in that all imaging modes utilize a single, low light color image sensor 103 (preferably a color CCD with charge carrier multiplication such as the Texas Instruments TC252) and that no beamsplitter is required. Alternatively, the color image sensor 103 may be a three-CCD with charge carrier multiplication color image sensor assembly, a color CCD, a three-CCD color image sensor assembly, a color CMOS image sensor, or a three-CMOS color image sensor assembly.
Each of the pixel elements on the low light color sensor 103 is covered by an integrated filter, typically red, green or blue. These filters define the wavelength bands of fluorescence and reflectance light that reach the individual pixel elements. Such mosaic filters typically have considerable overlap between the red, green, and blue passbands, which can lead to considerable crosstalk when imaging dim autofluorescence light in the presence of intense reflected excitation light. Therefore, a separate filter 118 is provided to reduce the intensity of reflected excitation light to the same level as that of the autofluorescence light and, at the same time, pass autofluorescence light.
In this embodiment, the primary fluorescence and reference images are projected onto the same image sensor 103, but, because of the individual filters placed over each pixel, these different images are detected by separate sensor pixels. As a result, individual primary fluorescence and reference image signals can be produced by processor/controller 64 from the single CCD image signal.
In
The operation of a system based on camera 100D of
In the color imaging mode, the processor/controller 64 provides a control signal to the multimode light source 52 that it should be in white light mode. The light source selects and positions the appropriate optical filter 76A into the optical path between the arc lamp 70 and endoscope light guide 54. Given the presence of filter 118 in cameras 100D, 100E which have reduced transmission for excitation light at blue wavelengths, the light source filter 76A should incorporate reduced transmission at red and green wavelengths to obtain a balanced color image at image sensor 103 with the proper proportions of red, green, and blue components.
Image signals from the color low light sensor 103 are processed by processor/controller 64. Standard techniques are utilized to produce a color image from a single color sensor: the image signals from pixels having the same filter characteristics are interpolated by processor/controller 64 to produce an image signal, related to the pass band of each element of the mosaic filter (e.g. red, green, and blue), at every pixel location. The resulting multiple images, which when combined produce a color image, are encoded by processor/controller 64 as video signals. The color image is displayed by connecting the video signals to the appropriate inputs of color video monitor 66.
Processor/controller 64 also maintains the overall image brightness at a set level by monitoring the brightness of the image signal at each pixel and adjusting the intensity of the light source output and camera amplifier gains according to a programmed algorithm.
When switching to the fluorescence/fluorescence imaging mode, processor/controller 64 provides a control signal to the multi-mode light source 52 to indicate that it should be in fluorescence/fluorescence mode. The light source 52 moves light source filter 76B into position in the light beam. Filter 76B transmits excitation light and blocks the transmission of light at the green and red fluorescence detection wavelengths, as described below. The characteristics of light source fluorescence excitation filter 76B and excitation filter 118, along with the mosaic filter elements on the color sensor 103, are such that the intensity of blue light at the color sensor is less than the intensities of red and green autofluorescence at the sensor, and are such that the ratio of the intensity of red autofluorescence to the intensity of green autofluorescence at the color sensor 103 has the appropriate value for optimal differentiation between normal and abnormal tissue. The fluorescence images are processed, as previously described for color imaging, by processor/controller 64 to produce separate images corresponding to each of the pass bands of the mosaic filter (e.g. red, green, and blue). These separate images are encoded as video signals by processor/controller 64. A composite fluorescence/fluorescence image is displayed on the color video monitor 66 by applying the video signals from red and green pass bands of the mosaic filter to different color inputs of the monitor.
When switching to the fluorescence/reflectance imaging mode, processor/controller 64 provides a control signal to the multi-mode light source 52 to indicate that it should be in fluorescence/reflectance mode. The light source 52 moves light source filter 76C into position in the light beam. Filter 76C transmits both excitation light and reference light and blocks the transmission of light at fluorescence detection wavelengths, as described below. The characteristics of the light source filter 76C for fluorescence excitation and the reflectance illumination and the camera filter 118, along with the mosaic filter on the color sensor 103, as detailed below, are such that the intensity of reflected excitation light at the color sensor is comparable to the intensity of autofluorescence at the sensor, and should be such that the ratio of the intensity of autofluorescence to the intensity of reflected reference light at the color sensor 103 has the appropriate value. The fluorescence and reflectance images are processed, as previously described for color imaging, by processor/controller 64 to produce separate images corresponding to each of the pass bands of the mosaic filter (e.g. red, green, and blue). These separate images are encoded as video signals by processor/controller 64. A composite fluorescence/reflectance image is displayed on color video monitor 66 by applying the video signals from the appropriate mosaic filter pass bands (as discussed below) to different color inputs of the monitor.
As indicated above, the filters in the light source and camera should be optimized for the imaging mode of the camera, the type of tissue to be examined and/or the type of pre-cancerous tissue to be detected. Although all of the filters described below can be made to order using standard, commercially available components, the appropriate wavelength range of transmission and degree of blocking outside of the desired transmission range for the described fluorescence endoscopy images modes are important to the proper operation of the system. The importance of other issues in the specification of such filters such as the fluorescence properties of the filter materials and the proper use of anti-reflection coatings are taken to be understood.
As discussed above, the filters in the light source and camera should be optimized for the imaging mode of the camera, the type of tissue to be examined and/or the type of pre-cancerous tissue to be detected, based on in vivo spectroscopy measurements. The preferred filter characteristics for use in the fluorescence endoscopy video systems with a camera of the type shown in
The fluorescence endoscopy video systems described in the above embodiments have been optimized for imaging endogenous tissue fluorescence. They are not limited to this application, however, and may also be used for photo-dynamic diagnosis (PDD) applications. As mentioned above, PDD applications utilize photo-active drugs that preferentially accumulate in tissues suspicious for early cancer. Since effective versions of such drugs are currently in development stages, this invention does not specify the filter characteristics that are optimized for such drugs. With the appropriate light source and camera filter combinations, however, a fluorescence endoscopy video system operating in either fluorescence/fluorescence or fluorescence/reflectance imaging mode as described herein may be used to image the fluorescence from such drugs.
As will be appreciated, each of the embodiments of a camera for a fluorescence endoscopy video system described above, due to their simplicity, naturally lend themselves to miniaturization and implementation in a fluorescence video endoscope, with the camera being incorporated into the insertion portion of the endoscope. The cameras can be utilized for both color imaging and fluorescence imaging, and in their most compact form contain no moving parts.
Claims
1. A color and fluorescence endoscopy video system including:
- an endoscope for directing the light from a multi-mode light source into a patient to illuminate a tissue sample and to collect reflected light or fluorescence light produced by the tissue;
- a camera positioned to receive the light collected by the endoscope to produce color or fluorescence images, the camera including: a low light color image sensor having integrated filters with color output; one or more filters positioned in front of the low light color image sensor for selectively blocking light with wavelengths below 450 nm and transmitting visible light with wavelengths greater than 470 nm; and
- one or more optical imaging components that project images onto the low light color image sensor;
- an image processor/controller that receives image signals from the low light color image sensor and combines and interpolates image signals from pixels having filters with the same integrated filter characteristics to fluorescence or reflectance light and then encodes the images as video signals;
- a multi-mode light source for producing light for color imaging and/or for fluorescence excitation and/or for fluorescence excitation with reference reflectance, including a filter selectively positioned in the light path of the light source for producing light for color imaging that simultaneously transmits blue light at wavelengths less than 480 nm and amounts of green and red light, wherein the amounts of green and red light transmitted are adjusted to be a fraction of the transmitted blue light, such that, when reflected from a gray surface, the intensity of the green and red light projected onto the low light color image sensor matches the intensity of blue light also projected onto the low light color image sensor in such a way that the resulting color images are white balanced; and
- a color video monitor for displaying superimposed video images from the pixels of the low light color image sensor.
2. The system of claim 1, wherein the camera is attached to the portion of the endoscope that remains outside of the body.
3. The system of claim 1, wherein the camera is built into the insertion portion of the endoscope.
4. The system of claim 2 or 3, further comprising a light source filter selectively positioned in the light path of the light source for producing light for fluorescence excitation and reference reflection that simultaneously transmits the fluorescence excitation light at wavelengths less than 450 nm and an amount of reference reflectance light not in a fluorescence detection wavelength band, wherein the amount of reference reflectance light transmitted is a fraction of the fluorescence excitation light, such that the intensity of the reflected reference light projected onto the low light color image sensor approximately matches the intensity of fluorescence light also projected onto the low light color image sensor, the light source filter also blocking light from the light source at wavelengths in the fluorescence detection wavelength band such that the fluorescence light received by the low light color image sensor is substantially composed of light resulting from tissue fluorescence and minimally composed of light originating from the light source.
5. The system of claim 4, wherein the fluorescence light, transmitted by the one or more filters positioned in front of the low light color image sensor, is green light.
6. The system of claim 5, wherein the reference reflectance light, not in the detected fluorescence band, transmitted by the light source filter is red light.
7. The system of claim 4, wherein the fluorescence light, transmitted by the one or more filters positioned in front of the low light color image sensor, is red light.
8. The system of claim 6, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from green fluorescence light and an image created from red reflectance light that are superimposed and displayed in different colors on a color video monitor.
9. The system of claim 7, wherein the reference reflectance light, not in the detected fluorescence band, transmitted by the light source filter is green light.
10. The system of claim 7, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from red fluorescence light and an image created from green reflectance light that are superimposed and displayed in different colors on a color video monitor.
11. The system claim 2 or 3, further comprising a filter positioned in the light path of the light source that transmits fluorescence excitation light at wavelengths less than 450 nm and blocks light at visible wavelengths longer than 450 nm, from reaching the low light color image sensor to the extent that the light received by the low light color image sensor is substantially composed of light resulting from tissue fluorescence and minimally composed of light originating from the light source.
12. The system of claim 11, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from green fluorescence light and an image created from red fluorescence light that are superimposed and displayed in different colors on a color video monitor.
13. The system of claim 1 wherein the image processor/controller produces a composite color image comprising red reflectance light, green reflectance light, and blue reflectance light images that are superimposed and displayed respectively on red, green, and blue channels of a color video monitor, when the light source filter for producing light for color imaging is inserted into the light path of the light source.
14. A color and fluorescence endoscopy video system including:
- an endoscope for directing the light from a multi-mode light source into a patient to illuminate a tissue sample and to collect reflected light or fluorescence light produced by the tissue;
- a camera positioned to receive the light collected by the endoscope to produce color or fluorescence images, the camera including: a low light color image sensor having integrated filters with color output; one or more filters positioned in front of the low light color image sensor for selectively blocking light with wavelengths below 450 nm and transmitting visible light with wavelengths greater than 470 nm; and one or more optical imaging components that project images onto the low light color image sensor;
- an image processor/controller that receives image signals from the low light color image sensor and combines and interpolates image signals from pixels having filters with the same integrated filter characteristics to fluorescence or reflectance light and then encodes the images as video signals;
- a multi-mode light source for producing light for color imaging and/or for fluorescence excitation and/or for fluorescence excitation with reference reflectance, including a light source filter selectively positioned in the light path of the light source that simultaneously transmits the fluorescence excitation light at wavelengths less than 450 nm and an amount of reference reflectance light not in a fluorescence detection wavelength band, wherein the amount of reference reflectance light transmitted is a fraction of the fluorescence excitation light, such that the intensity of the reflected reference light projected onto the low light color image sensor is approximately matched to the intensity of fluorescence light also projected onto the low light color image sensor, the light source filter also blocking light from the light source at wavelengths in the fluorescence detection wavelength band such that the fluorescence light received by the low light color image sensor is substantially composed of light resulting from tissue fluorescence and minimally composed of light originating from the light source; and
- a color video monitor for displaying superimposed video images from the pixels of the low light color image sensor.
15. The system of claim 14, wherein the camera is attached to the portion of the endoscope that remains outside of the body.
16. The system of claim 14, wherein the camera is built into the insertion portion of the endoscope.
17. The system of claim 15 or 16, further comprising a filter selectively positioned in the light path of the light source that transmits fluorescence excitation light at wavelengths less than 450 nm and blocks light at visible wavelengths longer than 450 nm, from reaching the low light color image sensor to the extent that the light received by the low light color image sensor is substantially composed of light resulting from tissue fluorescence and minimally composed of light originating from the light source.
18. The system of claim 17, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from green fluorescence light and an image created from red fluorescence light that are superimposed and displayed in different colors on a color video monitor.
19. The system of claim 15 or 16, further comprising a filter selectively positioned in the light path of the light source for producing light for color imaging that simultaneously transmits blue light at wavelengths less than 480 nm and amounts of green and red light, wherein the amounts of red and green light transmitted are adjusted to be a fraction of the transmitted blue light, such that, when reflected from a gray surface, the intensity of the green and red light projected onto the low light color image sensor matches the intensity of blue light also projected onto the low light color image sensor in such a way that the resulting color images are white balanced.
20. The system of claim 14, wherein the fluorescence light, transmitted by the one or more filters positioned in front of the low light color image sensor, is green light.
21. The system of claim 20, wherein the reference reflectance light, not in the detected fluorescence band, transmitted by the light source filter is red light.
22. The system of claim 21, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from green fluorescence light and an image created from red reflectance light that are superimposed and displayed in different colors on a color video monitor.
23. The system of claim 14, wherein the fluorescence light, transmitted by the one or more filters positioned in front of the low light color image sensor, is red light.
24. The system of claim 23, wherein the reference reflectance light, not in the detected fluorescence band, transmitted by the light source filter is green light.
25. The system of claim 24, wherein the image processor/controller produces a composite fluorescence/reflectance image comprising an image created from red fluorescence light and an image created from green reflectance light that are superimposed and displayed in different colors on a color video monitor.
26. The system of claim 14, wherein the image processor/controller produces a composite color image comprising red reflectance light, green reflectance light, and blue reflectance light images that are superimposed and displayed respectively on red, green, and blue channels of a color video monitor.
3971068 | July 20, 1976 | Gerhardt et al. |
4115812 | September 19, 1978 | Akatsu |
4149190 | April 10, 1979 | Wessler et al. |
4200801 | April 29, 1980 | Schuresko |
4378571 | March 29, 1983 | Handy |
4449535 | May 22, 1984 | Renault |
4532918 | August 6, 1985 | Wheeler |
4556057 | December 3, 1985 | Hiruma et al. |
4638365 | January 20, 1987 | Kato |
4768513 | September 6, 1988 | Suzuki |
4786813 | November 22, 1988 | Svanberg et al. |
4821117 | April 11, 1989 | Sekiguchi |
4837625 | June 6, 1989 | Douziech et al. |
4930516 | June 5, 1990 | Alfano et al. |
4951135 | August 21, 1990 | Sasagawa et al. |
4954897 | September 4, 1990 | Ejima et al. |
5007408 | April 16, 1991 | Ieoka |
5034888 | July 23, 1991 | Uehara et al. |
5134662 | July 28, 1992 | Bacus et al. |
5165079 | November 17, 1992 | Schulz-Hennig |
5214503 | May 25, 1993 | Chiu et al. |
5225883 | July 6, 1993 | Carter et al. |
5255087 | October 19, 1993 | Nakamura et al. |
5365057 | November 15, 1994 | Morley et al. |
5371355 | December 6, 1994 | Wodecki |
5377686 | January 3, 1995 | O'Rourke et al. |
5408263 | April 18, 1995 | Kikuchi et al. |
5410363 | April 25, 1995 | Capen et al. |
5419323 | May 30, 1995 | Kittrell et al. |
5420628 | May 30, 1995 | Poulsen et al. |
5421337 | June 6, 1995 | Richards-Kortum et al. |
5424841 | June 13, 1995 | Van Gelder et al. |
5430476 | July 4, 1995 | Häfele et al. |
5485203 | January 16, 1996 | Nakamura et al. |
5507287 | April 16, 1996 | Palcic et al. |
5585846 | December 17, 1996 | Kim |
5590660 | January 7, 1997 | MacAulay et al. |
5596654 | January 21, 1997 | Tanaka |
5646680 | July 8, 1997 | Yajima |
5647368 | July 15, 1997 | Zeng et al. |
5749830 | May 12, 1998 | Kaneko et al. |
5772580 | June 30, 1998 | Utsui et al. |
5827190 | October 27, 1998 | Palcic et al. |
5891016 | April 6, 1999 | Utsui et al. |
5986271 | November 16, 1999 | Lazarev et al. |
6002137 | December 14, 1999 | Hayashi |
6008889 | December 28, 1999 | Zeng et al. |
6021344 | February 1, 2000 | Lui et al. |
6028622 | February 22, 2000 | Suzuki |
6059720 | May 9, 2000 | Furusawa et al. |
6069689 | May 30, 2000 | Zeng et al. |
6070096 | May 30, 2000 | Hayashi |
6099466 | August 8, 2000 | Sano et al. |
6120435 | September 19, 2000 | Eino |
6148227 | November 14, 2000 | Wagniëres et al. |
6161035 | December 12, 2000 | Furusawa |
6192267 | February 20, 2001 | Scherninski et al. |
6212425 | April 3, 2001 | Irion et al. |
6280378 | August 28, 2001 | Kazuhiro et al. |
6293911 | September 25, 2001 | Imaizumi et al. |
6364829 | April 2, 2002 | Fulghum |
6422994 | July 23, 2002 | Kaneko et al. |
6603552 | August 5, 2003 | Cline et al. |
195 35 114 | March 1996 | DE |
196 08 027 | September 1996 | DE |
2 671 405 | July 1992 | EP |
0 512 965 | November 1992 | EP |
0 774 685 | May 1997 | EP |
0 792 618 | September 1997 | EP |
60-246733 | December 1985 | JP |
61-159936 | July 1986 | JP |
07-155285 | June 1995 | JP |
07-155286 | June 1995 | JP |
07-155290 | June 1995 | JP |
07-155291 | June 1995 | JP |
07-155292 | June 1995 | JP |
07-204156 | August 1995 | JP |
07-222712 | August 1995 | JP |
07-250804 | October 1995 | JP |
07-250812 | October 1995 | JP |
08-224208 | September 1996 | JP |
08-224209 | September 1996 | JP |
08-224210 | September 1996 | JP |
08-224240 | September 1996 | JP |
10-127563 | May 1998 | JP |
10-151104 | June 1998 | JP |
10-201700 | August 1998 | JP |
10-225426 | August 1998 | JP |
10-243915 | September 1998 | JP |
10-243920 | September 1998 | JP |
10-308114 | November 1998 | JP |
10-309281 | November 1998 | JP |
10-309282 | November 1998 | JP |
10-328129 | December 1998 | JP |
11-089789 | April 1999 | JP |
11-104059 | April 1999 | JP |
11-104060 | April 1999 | JP |
11-104061 | April 1999 | JP |
11-104070 | April 1999 | JP |
11-113839 | April 1999 | JP |
11-155812 | June 1999 | JP |
08-252218 | October 1999 | JP |
11-332819 | December 1999 | JP |
WO 95/26673 | October 1995 | WO |
WO 98/24360 | June 1998 | WO |
WO 99/01749 | January 1999 | WO |
WO 99/53832 | October 1999 | WO |
WO 00/42910 | July 2000 | WO |
- Alfano, R.R., et al., “Fluorescence Spectra From Cancerous and Normal Human Breast and Lung Tissues,” IEEE Journal of Quantum Electronics. QE-23(10):1806-1811, 1987.
- Andersson-Engles, S. et al., “Tissue Diagnostics Using Laser Induced Fluorescence,” Ber. Bunsenges Physical Chemistry (93):335-342, 1989.
- Hung, J., et al., “Autofluorescence of Normal and Malignant Bronchial Tissue,” Lasers in Surgery and Medicine (11):99-105, 1991.
Type: Grant
Filed: Jan 15, 2002
Date of Patent: May 31, 2005
Patent Publication Number: 20030135092
Assignee: Xillix Technologies Corp. (Richmond)
Inventors: Richard W. Cline (Vancouver), John J. P. Fengler (North Vancouver)
Primary Examiner: John P. Leubecker
Assistant Examiner: Aaron Roane
Attorney: Christensen O'Connor Johnson Kindness PLLC
Application Number: 10/050,601