Method and apparatus for calibrating imaging device circuits
A method of operating an imaging device, an imaging device, a camera system including an imaging device, and a processing system including an imaging device for calibrating an analog-to-digital converter of the imaging device to generate a look-up table of correction values, and correcting an output of the analog-to-digital converter with the correction values.
Latest Micron Technology, Inc. Patents:
- ITERATIVE DECODING TECHNIQUE FOR CORRECTING DRAM DEVICE FAILURES
- ITERATIVE ERROR CORRECTION IN MEMORY SYSTEMS
- Integrated Assemblies Comprising Hydrogen Diffused Within Two or More Different Semiconductor Materials, and Methods of Forming Integrated Assemblies
- APPARATUSES AND METHODS FOR ECC PARITY BIT REDUCTION
- NONLINEAR DRAM DIGITAL EQUALIZATION
Embodiments of the invention relate to methods and apparatuses for calibrating circuits in an imaging device.
BACKGROUND OF THE INVENTIONA CMOS imaging device circuit includes a focal plane array of pixels, each one including a photosensor, for example, a photogate, photoconductor or a photodiode overlying a substrate for accumulating photo-generated charge in the underlying portion of the substrate. Each pixel has a readout circuit that includes at least an output field effect transistor formed in the substrate and a charge storage region formed on the substrate connected to the gate of an output transistor. The charge storage region may be constructed as a floating diffusion region. Each pixel may include at least one electronic device such as a transistor for transferring charge from the photosensor to the storage region and one device, also typically a transistor, for resetting the storage region to a predetermined charge level prior to charge transference.
In a CMOS imaging device, the active elements of a pixel perform the necessary functions of: (1) photon to charge conversion; (2) accumulation of image charge; (3) resetting the storage region to a known state; (4) transfer of charge to the storage region accompanied by charge amplification; (5) selection of a pixel for readout; and (6) output and amplification of a signal representing pixel charge. Photo charge may be amplified when it moves from the initial charge accumulation region to the storage region. The charge at the storage region is typically converted to a pixel output voltage by a source follower output transistor.
CMOS imaging devices of the type discussed above are generally known as discussed, for example, in U.S. Pat. No. 6,140,630, U.S. Pat. No. 6,376,868, U.S. Pat. No. 6,310,366, U.S. Pat. No. 6,326,652, U.S. Pat. No. 6,204,524 and U.S. Pat. No. 6,333,205, assigned to Micron Technology, Inc., which are hereby incorporated by reference in their entirety.
The illustrated pixel 20 includes a photosensor 22 (e.g., a pinned photodiode, photogate, etc.), transfer transistor 24, floating diffusion region FD, reset transistor 26, source follower transistor 28 and row select transistor 30.
The source follower transistor 28 has its gate connected to the floating diffusion region FD and is connected between the array pixel supply voltage Vaa-pix and the row select transistor 30. The source follower transistor 28 converts the stored charge at the floating diffusion region FD into an electrical output voltage signal. The row select transistor 30 is controllable by a row select signal SELECT for selectively connecting the source follower transistor 28 and its output voltage signal to the pixel output line 32.
The column sample and hold circuit 40 includes a bias transistor 56, controlled by a control voltage Vln_bias, that is used to bias the pixel output line 32. The pixel output line 32 is also connected to a first capacitor 44 thru a sample and hold reset signal switch 42. The sample and hold reset signal switch 42 is controlled by the sample and hold reset control signal SAMPLE_RESET. The pixel output line 32 is also connected to a second capacitor 54 thru a sample and hold pixel signal switch 52. The sample and hold pixel signal switch 52 is controlled by the sample and hold pixel control signal SAMPLE_SIGNAL. The switches 42, 52 are typically MOSFET transistors.
A second terminal of the first capacitor 44 is connected to the amplifier 70 via a first column select switch 50, which is controlled by a column select signal COLUMN_SELECT. The second terminal of the first capacitor 44 is also connected to a clamping voltage VCL via a first clamping switch 46. Similarly, the second terminal of the second capacitor 54 is connected to the amplifier 70 by a second column select switch 60, which is controlled by the column select signal COLUMN_SELECT. The second terminal of the second capacitor 54 is also connected to the clamping voltage VCL by a second clamping switch 48.
The clamping switches 46, 48 are controlled by a clamping control signal CLAMP. As is known in the art, the clamping voltage VCL is used to place a charge on the two capacitors 44, 54 when it is desired to store the reset and pixel signals, respectively (when the appropriate sample and hold control signals SAMPLE_RESET, SAMPLE_SIGNAL are also generated).
Referring to
Immediately afterwards, the transfer transistor control signal TX is pulsed, causing charge from the photosensor 22 to be transferred to the floating diffusion region FD. The signal on the floating diffusion region FD is sampled when the sample and hold pixel control signal SAMPLE_SIGNAL is pulsed. At this point, the second capacitor 54 stores a pixel image signal Vsig. A differential signal (Vrst−Vsig) is produced by the differential amplifier 70. The differential signal is digitized by the analog-to-digital converter 80. The analog-to-digital converter 80 supplies the digitized pixel signals to an image processor 90, which forms a digital image output.
Conventional imaging devices such as the imaging device 10 shown in
A method and apparatus for improving the linearity of imaging device analog-to-digital converters is desirable.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof and show by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice them, and it is to be understood that other embodiments may be utilized, and that structural, logical, processing, and electrical changes may be made. The progression of processing steps described is an example; however, the sequence of steps is not limited to that set forth herein and may be changed as is known in the art, with the exception of steps necessarily occurring in a certain order.
The term “pixel,” as used herein, refers to a photo-element unit cell containing a photosensor and associated transistors for converting photons to an electrical signal. For purposes of illustration, a single representative pixel and its manner of formation is illustrated in the figures and description herein; however, typically fabrication of a plurality of like pixels of a pixel array proceeds simultaneously.
Embodiments relate to a method of operating an imaging device, an imaging device, a camera system including an imaging device, and a processing system including an imaging device for calibrating an analog-to-digital converter to generate a look-up table of correction values, and correcting an output of the analog-to-digital converter with the correction values.
Now referring to the figures, where like numerals designate like elements,
During a calibration operation, the linear stimulus 310 provides a known calibration signal to the analog chain 320 and directly to the linearization circuit 340. The output of the analog chain 320 is processed by the ADC 80. The output of the ADC 80 is passed to the linearization circuit 340, where the output is compared to the known calibration signal generated by the linear stimulus 310 to generate a look-up table 350 of possible analog-to-digital converter outputs and corresponding correction values for correcting the linearity of ADC 80 (described below).
During a correction operation, active imaging device pixels (e.g., pixel 20) receive image data, which is processed through the associated readout circuitry, such as the column sample and hold circuit 40 (
In an embodiment, the ADC output may be multiplied by the corresponding correction value stored in the look-up table 350. In another embodiment, the ADC output may be replaced with corresponding correction values from the look-up table 350. Other embodiments may otherwise manipulate, and thereby linearize, the ADC 80 output according to corresponding values stored in the look-up table 350.
The look-up table 350 memory may include e.g., a random access memory (RAM) or a flash memory. Calibration may be performed each time the imaging device 300 is activated, or less often if desired. One entry in look-up table 350 may be used for each possible input value; for example, if the resolution of the ADC 80 is twelve bits, there could be 4,096 entries. Alternatively, a smaller number of entries may be used, for example, with an interpolation of points to cover the entire resolution range. A smaller number could be used if the pixels 20 are similar in linearity, which may be a function of manufacturing. Embodiments include one look-up table 350 for each ADC 80 used in the imaging device 300.
The linear stimulus 310 may be electronic or optical. In an embodiment using an electronic linear stimulus, the stimulus 310 may include a digital-to-analog converter (DAC). In an embodiment using an optical linear stimulus, the stimulus 310 may include a light source, such as a light-emitting diode (LED) producing a light signal to one or more pixel cells 20 of an array.
Embodiments include using an electronic stimulus as a linear stimulus.
Since DAC 210 (or DAC 210′) corresponds to linear stimulus 310, in operation, DAC 210 (or DAC 210′) provides a known analog calibration signal to the analog chain 320 (via pixel 20) where indicated, respectively, in
If DAC 210 (or DAC 210′) outputs a voltage, its connection perturbs the system; for example, a connection to the floating diffusion region FD would increase its capacitance, thereby masking the voltage/charge (V/Q) curve, which would be measured. Therefore, only components downstream from the DAC 210 (or DAC 210′) connection can be measured and calibrated by the electronic stimulus. If the connection is made as illustrated in
In general, the digital-to-analog converters 210, 210′ may function at lower speeds than the analog-to-digital converter 80; therefore, at such lower speeds the digital-to-analog converters 210, 210′ are not subject to nonlinearity caused by high-speed operation. In addition, a digital-to-analog converter or other electronic stimulus may be implemented on the same chip as the imaging device 300.
Embodiments include using an optical stimulus as a linear stimulus.
To calibrate and correct components of the pixel 20 (
The signal generated by the calibration photosensor 460 is used as the linear stimulus 310 (
In this embodiment, camera system 400 is a single-lens reflex (SLR) camera, however, the LED 440 may be used in such a configuration in any camera system having a reflective surface for bouncing light from the LED 440 to a calibration photosensor 460 along a light path 470 as shown. Furthermore, any light source capable of generating a consistent light may be used in place of the LED 440, and multiple light sources for consistent coverage, including a plurality of LEDs 440, may be used. Camera system 400 is also not intended to be limited to a photosensor 460, but may use any appropriate reference detector with a linear output.
The imaging devices described above are not limited to CMOS imaging devices, but may also include CCD, and any imaging technology which includes an analog-to-digital converter in its architecture. Furthermore, the electronic calibration may be performed by any circuit having a linear analog output with known corresponding digital values, and is not limited to a digital-to-analog converter. Nor is the light source of the optical calibration limited to an LED, but may be any light source capable of generating a consistent light. Where intensity of a stimulus is changed, embodiments may include changing the color of the light source, as well as the brightness of the light source. If there are multiple analog-to-digital converters in an array, the calibration and correction may be performed for each analog-to-digital converter separately.
System 700, for example a still or video camera system, generally comprises a central processing unit (CPU) 702, such as a microprocessor, that communicates with one or more input/output (I/O) devices 706 over a bus 704. Imaging device 708 also communicates with the CPU 702 over the bus 704. The processor-based system 700 also includes random access memory (RAM) 710, and can include removable memory 715, such as flash memory, which also communicate with the CPU 702 over the bus 704. The imaging device 708 may be combined with a processor, such as a CPU, digital signal processor, or microprocessor, with or without memory storage on a single integrated circuit or on a different chip than the processor.
The processes and devices in the above description and drawings illustrate examples of methods and devices of many that could be used and produced to achieve the objects, features, and advantages of embodiments described herein. Thus, they are not to be seen as limited by the foregoing description of the embodiments, but only limited by the appended claims.
Claims
1. A method of operating an imaging device comprising:
- providing a linear stimulus to an imaging device to produce a calibration signal, the imaging device comprising an analog-to-digital converter which converts a representation of the calibration signal to a digital value;
- sampling an output of the analog-to-digital converter;
- determining correction values with a linearization circuit for a linear output based on the value of the linear stimulus and the sampled output of the analog-to-digital converter; and
- storing the correction values in a storage circuit.
2. The method of claim 1, further comprising:
- receiving image data in the imaging device;
- processing the image data through the analog-to-digital converter to produce digital values;
- determining output values for the image data based on the digital values and the stored correction values; and
- using the determined output values as the image data values.
3. The method of claim 2, wherein determining output values comprises multiplying the processed image data with the stored correction values.
4. The method of claim 2, wherein determining output values comprises substituting the processed image data with the stored correction values.
5. The method of claim 1, wherein providing a linear stimulus comprises providing an electronic stimulus to the imaging device and to the linearization circuit.
6. The method of claim 5, wherein providing an electronic stimulus comprises providing an output of a digital-to-analog converter to the imaging device and to the linearization circuit.
7. The method of claim 1, wherein providing a linear stimulus comprises providing an optical stimulus to the imaging device and to the linearization circuit.
8. The method of claim 7, wherein providing an optical stimulus comprises:
- providing a reference detector for generating the calibration signal;
- providing light to the reference detector and the imaging device; and
- sampling an output of the reference detector to generate the calibration signal.
9. The method of claim 8, wherein providing a reference detector comprises providing a light-receiving device having linear output characteristics.
10. The method of claim 8, wherein providing a reference detector comprises providing a photo-conversion device.
11. The method of claim 10, further comprising providing an amplifier coupled to the output of the photo-conversion device for generating the calibration signal.
12. The method of claim 1, wherein the storage circuit comprises a look-up table.
13. An imaging device comprising:
- a linear stimulus device for providing a calibration signal;
- an analog chain adapted to receive the calibration signal from the linear stimulus device, the analog chain comprising a pixel and associated pixel readout circuitry;
- an analog-to-digital converter coupled to the analog chain, the analog-to-digital converter converting a representation of the calibration signal to a digital value;
- a linearization circuit adapted to receive an output from the analog-to-digital converter and the calibration signal from the linear stimulus device, the linearization circuit further adapted to determine correction values for linearizing the analog-to-digital converter output based on the analog-to-digital converter output and the calibration signal; and
- a storage circuit adapted to receive and store the correction values from the linearization circuit.
14. The imaging device of claim 13, wherein the correction values comprise multiplicative factors of the analog-to-digital converter output.
15. The imaging device of claim 13, wherein the correction values comprise substitution values for the analog-to-digital converter output.
16. The imaging device of claim 13, wherein:
- the analog chain is further adapted to receive image data;
- the analog-to-digital converter is further adapted to process the image data to produce digital values;
- the linearization circuit is further adapted to: determine corrected values for the image data based on the digital values and the stored correction values; and use the determined output values as the image data values.
17. The imaging device of claim 16, wherein the linearization circuit determines the corrected values by multiplying the processed image data with the stored correction values.
18. The imaging device of claim 16, wherein the linearization circuit determines the corrected values by substituting the processed image data with the stored correction values.
19. The imaging device of claim 13, wherein the linear stimulus device comprises an electronic stimulus device.
20. The imaging device of claim 19, wherein the electronic stimulus device comprises a digital-to-analog converter coupled to the analog chain and to the linearization circuit.
21. The imaging device of claim 20, wherein the pixel comprises:
- a photo-conversion device;
- a floating diffusion region for receiving and storing charge from the photo-conversion device;
- a source follower transistor, the source follower transistor being coupled to the floating diffusion region;
- a reset transistor, the reset transistor operable to reset the floating diffusion region to a predetermined reset voltage state; and
- a row select transistor, the row select transistor acting as a switching device coupled to the source follower transistor,
- wherein the digital-to-analog converter is coupled to the pixel.
22. The imaging device of claim 21, wherein an output of the digital-to-analog converter is coupled to the floating diffusion region.
23. The imaging device of claim 21, wherein an output of the digital-to-analog converter is coupled to an output terminal of the photo-conversion device.
24. The imaging device of claim 13, wherein the storage circuit comprises a look-up table.
25. An imaging device comprising:
- an optical linear stimulus device for providing a calibration signal;
- an analog chain adapted to receive the calibration signal from the linear stimulus device, the analog chain comprising a pixel and associated pixel readout circuitry;
- an analog-to-digital converter coupled to the analog chain, the analog-to-digital converter converting a representation of the calibration signal to a digital value;
- a linearization circuit adapted to receive an output from the analog-to-digital converter and the calibration signal from the optical linear stimulus device, the linearization circuit further adapted to determine correction values for linearizing the analog-to-digital converter output based on the analog-to-digital converter output and the calibration signal; and
- a storage circuit adapted to receive and store the correction values from the linearization circuit.
26. The imaging device of claim 25, wherein the correction values comprise multiplicative factors of the analog-to-digital converter output.
27. The imaging device of claim 25, wherein the correction values comprise substitution values for the analog-to-digital converter output.
28. The imaging device of claim 25, wherein the optical linear stimulus comprises:
- a reference detector comprising a light-receiving device having linear output characteristics; and
- a light source.
29. The imaging device of claim 25, wherein the storage circuit comprises a look-up table.
30. A camera system comprising:
- a light source for providing a linear stimulus; and
- an imaging device comprising: a reference detector for providing a calibration signal; an analog chain adapted to receive the calibration signal from the reference detector, the analog chain comprising a pixel and associated pixel readout circuitry; an analog-to-digital converter coupled to the analog chain, the analog-to-digital converter converting a representation of the calibration signal to a digital value; a linearization circuit adapted to receive an output from the analog-to-digital converter and the calibration signal from the reference detector, the linearization circuit further adapted to determine correction values for linearizing the analog-to-digital converter output based on the analog-to-digital converter output and the calibration signal; and a storage circuit adapted to receive and store the correction values from the linearization circuit.
31. The camera system of claim 30, wherein the correction values comprise multiplicative factors of the analog-to-digital converter output.
32. The camera system of claim 30, wherein the correction values comprise substitution values for the analog-to-digital converter output.
33. The camera system of claim 30, further comprising a lens assembly for receiving an image.
34. The camera system of claim 30, further comprising a reflective surface for reflecting light from the light source to the reference detector.
35. The camera system of claim 30, wherein the correction values comprise multiplicative factors of the analog-to-digital converter output.
36. The camera system of claim 30, wherein the correction values comprise substitution values for the analog-to-digital converter output.
37. The imaging device of claim 30, wherein the storage circuit comprises a look-up table.
6020838 | February 1, 2000 | Knudsen et al. |
6140630 | October 31, 2000 | Rhodes |
6204524 | March 20, 2001 | Rhodes |
6310366 | October 30, 2001 | Rhodes et al. |
6326652 | December 4, 2001 | Rhodes |
6333205 | December 25, 2001 | Rhodes |
6376868 | April 23, 2002 | Rhodes |
6621431 | September 16, 2003 | Engl et al. |
6987472 | January 17, 2006 | Lin |
6993441 | January 31, 2006 | Tsyrganovich |
7085663 | August 1, 2006 | Tsyrganovich |
20050243193 | November 3, 2005 | Gove et al. |
Type: Grant
Filed: Aug 31, 2006
Date of Patent: May 6, 2008
Patent Publication Number: 20080055128
Assignee: Micron Technology, Inc. (Boise, ID)
Inventor: Richard L. Baer (Los Altos, CA)
Primary Examiner: Lam T. Mai
Attorney: Dickstein Shapiro LLP
Application Number: 11/513,393
International Classification: H03M 1/00 (20060101);