Housing case, method for manufacturing housing case, and glass insert molding die used in same
A housing case for a small electric device and communication device includes a flat plate having a dimension substantially the same as that of the front portion of the housing case and comprising at least a glass plate, and a resin frame integrated with the flat plate to support the backside periphery of the flat plate.
Latest Nissha Printing Co., Ltd. Patents:
- Method for manufacturing decorated article by decorating uneven surface, decorated article by decorating uneven surface, and method for manufacturing drawn article
- Microneedle-array manufacturing apparatus, microneedle-array manufacturing method, and product having the microneedle array
- Method of producing molded article having conductive circuit and preform having conductive circuit
- Method of manufacturing electromagnetic wave shield housing
- Production method for a membrane switch member
The present invention relates to a housing case for a small electric device and communication device, the front portion of the housing case; in particular, the portion of the housing case that covers an LCD or any other display screen having been adequately hardened, and also relates to a method for manufacturing the housing case and a glass insert molding die used in the same.
BACKGROUND ARTSmall electric devices and communication devices, such as a digital audio player and a mobile phone, which can be placed in clothing or in a bag and carried, are often subject to impact on their surfaces when they are accidentally dropped or hit with other articles in the bag.
To address the problem, the housing case of such a device needs to have a highly robust hard coat layer coated on the front portion of the housing case; in particular, the portion that covers an LCD or any other display screen, in order to enhance scratch resistance. For example, Patent Document 1 discloses a housing case 100 (see
The hard coat layer 103 is typically manufactured by forming a thin coated film, ranging from approximately 3 to 10 μm in thickness, made of a thermoset resin, a UV curable resin, or any other suitable active energy radiation polymerizable resin on a plastic substrate directly or with an interposed primer layer having a thickness ranging from 0.03 to 0.5 μm.
The hard coat layer 103 comprising a thin coated film, however, is not hard enough as the front portion of the housing case; in particular, the portion that covers an LCD or any other display screen where high hardness is required.
The invention has therefore been contrived in view of the above problem. An object of the invention is to provide a housing case, the front portion of the housing case; in particular, the portion of the housing case that covers an LCD or any other display screen, being adequately hardened. Other objects of the invention are to provide a method for manufacturing the housing case and a glass insert molding die used in the same.
[Patent Document l] Japanese Laid-open Patent Application No. 2001-36258
DISCLOSURE OF THE INVENTIONTo achieve the above objects, a housing case according to the invention is characterized in that the housing case is used for a small electric device or communication device, and comprises a flat plate having a dimension substantially the same as that of a front portion of the housing case and comprising at least a glass plate; and a resin frame integrated with the flat plate to support a backside periphery of the flat plate.
In the housing case, the flat plate preferably has decoration on a rear surface of the glass plate.
In the housing case, the device preferably includes a display device, and the flat plate preferably has decoration on the front surface and/or the rear surface of the glass plate except at least a display window for the display device.
In the housing case, the rear surface of the glass plate is preferably not decorated, and the rear surface of the glass plate is preferably integrated with the resin frame with an adhesive layer for glass, a primer layer, and an adhesive layer for resin interposed between the rear surface of the glass plate and the resin frame.
In the housing case, the rear surface of the glass plate is preferably decorated, and the layer having the decoration also preferably serves as an adhesive layer for glass in the portion where the rear surface of the flat plate is integrated with the resin frame. The rear surface of the flat plate is preferably integrated with the resin frame with a primer layer and an adhesive layer for resin interposed between the rear surface of the flat plate and the resin frame.
In the housing case, the flat plate preferably has an opening.
The housing case preferably further comprises an opening resin frame integrated with the flat plate to support the surrounding portion of the opening.
In the housing case, the resin frame preferably covers a side surface of the flat plate.
In the housing case, the integrated flat plate and resin frame preferably has a box shape.
In the housing case, the resin frame preferably supports an entire backside periphery of the flat plate.
In the housing case, the resin frame preferably supports one, two, or three sides of the backside periphery of the flat plate.
In the housing case, a plurality of divided portions of the resin frame preferably support the backside periphery of the flat plate.
In the housing case, the resin frame is preferably made of a resin material having a molding shrinkage rate of 0.6% or lower.
To achieve the above objects, a glass insert molding die used to form a housing case according to the invention is characterized in that the glass insert molding die comprises a stationary die and a movable die that sandwich a flat plate primarily comprised of a glass plate when the dies are closed and form a cavity that faces periphery of the flat plate facing the stationary die and also an end surface of the flat plate. The glass insert molding die is also characterized in that the stationary die includes a sliding core having a bottom portion that comes into contact with the periphery of the flat plate facing the stationary die and a wall portion that is connected to the bottom portion and positionably comes into contact with the end surface of the flat plate, the bottom portion and the wall portion provided at the front end of the sliding core; and a suction hole provided in the surface where the flat plate is sandwiched. The glass insert molding die is also characterized in that the sliding core can be advanced and retracted in the die-closing direction between a flat plate positioning position and a cavity forming position, the flat plate positioning position being the position where the front-end bottom portion does not protrude from the surface of the stationary die where the flat plate is sandwiched but the front-end wall portion comes into contact with the flat plate, and the cavity forming position being the position where the front-end bottom portion and the front-end wall portion are separated from the flat plate.
In the glass insert molding die, it is preferable that the sliding core is partially provided along the entire perimeter of the flat plate.
In the glass insert molding die, it is preferable that the sliding core is further capable of being advanced to a glass insert mold pushing position where the front-end bottom portion protrudes from the surface of the stationary die where the flat plate is sandwiched.
To achieve the above objects, a method for manufacturing a housing case using the glass insert molding die according to the invention is characterized in that the method comprises the steps of: using the glass insert molding die, moving the sliding core to the flat plate positioning position and then placing the flat plate on the surface of the stationary die where the flat plate is sandwiched; suctioning and securing the positioned flat plate on the surface where the flat plate is sandwiched; closing the stationary die to which the flat plate has adhered and the movable die; and after the dies are closed, moving the sliding core to the cavity forming position and then injecting a molten resin into the cavity to integrate a resin frame with the flat plate.
To achieve the above objects, a method for manufacturing a housing case using the glass insert molding die according to the invention is characterized in that the method comprises the steps of: using the glass insert molding die including the pushing mechanism, moving the sliding core to the flat plate positioning position, and then placing the flat plate on the surface of the stationary die where the flat plate is sandwiched; suctioning and securing the positioned flat plate on the surface where the flat plate is sandwiched; closing the stationary die to which the flat plate has adhered and the movable die; after the dies are closed, moving the sliding core to the cavity forming position and then injecting a molten resin into the cavity to integrate a resin frame with the flat plate; and opening the dies and then moving the sliding core to the glass insert mold pushing position.
In the method for manufacturing a housing case, the flat plate preferably has decoration on the glass plate.
In the method for manufacturing a housing case, the flat plate preferably has an adhesive layer for glass, a primer layer, and an adhesive layer for resin sequentially formed on the glass plate.
In the method for manufacturing a housing case, the portion where the flat plate is sandwiched between the stationary die and the movable die preferably has an opening.
In the method for manufacturing a housing case, the material of the molten resin preferably has a molding shrinkage rate of 0.6% or lower.
The configuration of the invention described above provides the following advantages:
Since the housing case of the invention includes a flat plate comprising a glass plate and a resin frame integrated with the flat plate to support the backside periphery of the flat plate, the front portion of the housing case; in particular, the portion that covers an LCD or any other display screen, can be adequately hardened.
Since the glass insert molding die and the method for manufacturing a housing case of the invention can provide a housing case in which a resin frame is integrated with a flat plate primarily comprising a glass plate to support the backside periphery thereof, the front portion of the housing case; in particular, the portion that covers an LCD or any other display screen, can be adequately hardened. Further, since the sliding core provided in the glass insert molding die not only forms a cavity for molding the resin frame for supporting the backside periphery but also serves as a mechanism for positioning the flat plate as well as a mechanism for pushing the glass insert mold as required, the housing case can be manufactured at a low cost.
1. Housing Case
Embodiments of the invention will be described below in detail with reference to the drawings.
A housing case 1 shown in
The flat plate 2 comprises at least a glass plate, which can provide sufficient hardness (at least 9H) of the front portion of the housing case 1. The glass plate can be any of a standard plate glass, a reinforced plate glass, a polished plate glass, and other suitable plate glass. The thickness of the glass plate, in consideration of the strength, preferably ranges from 0.3 mm to 2.0 mm, more preferably from 0.5 mm to 2.0 mm, still more preferably from 0.8 mm to 1.5 mm.
To solve the problem described above, the inventor first planned, in the housing case of the related art, to integrate the synthetic resin layer with the flat plate 2 instead of the hard coat 103 in the front portion of the case. Specifically, the whole flat plate 2 is in contact with the synthetic resin layer 101 in the front portion of the case. The synthetic resin layer 101 that has been formed in the injection molding die, however, experiences molding shrinkage during cooling solidification, whereas the portion in contact with the whole flat plate 2 does not experience molding shrinkage, as shown in
Accordingly, in the invention, the resin frame 3 is employed so that only the periphery of the backside of the flat plate 2 is integrated. For example, in
The resin frame 3 may be made of a polystyrene resin, a polyolefin resin, an ABS resin, an AS resin, an AN resin, or any other suitable general-purpose resin. Other useable materials may be a polyphenylene oxide/polystyrene resin, a polycarbonate resin, a polyacetal resin, a polyacrylic resin, a polycarbonate/denatured polyphenylene ether resin, a polybutylene terephthalate resin, an ultrahigh-molecular-weight polyethylene resin, and any other general-purpose engineering resin; and a polysulfone resin, a polyphenylene sulfide resin, a polyphenylene oxide resin, a polyallylate resin, a polyether-imide resin, a polyimide resin, a liquid crystal polyester resin, a polyallyl heat-resistant resin, and any other suitable super-engineering resin. In particular, a resin material having a molding shrinkage rate of 0.6% or lower is more preferably used for the resin frame 3 from the viewpoint of warping prevention, and an example of such a resin material is a polyacrylic resin. The resin frame 3 may or may not be colored.
The flat plate 2 is integrated with the resin frame 3 in the following manner. First, the flat plate 2 is introduced into a molding die comprising a movable die and a stationary die, and secured in a predetermined position on the cavity surface, for example, through vacuum suction. After the molding die is closed, a molten resin is injected through a gate into the cavity to fill it. The resin frame 3 is formed and at the same time bonded to the flat plate 2. After the resin frame 3 is cooled, the molding die is opened and the integrated flat plate 2 and resin frame 3 is removed. When a vertical molding die, which opens vertically, is used, the flat plate 2 can be secured without using vacuum suction or other methods.
The integrated flat plate 2 and resin frame 3 may have a box shape (see
Roughening the backside periphery of the flat plate 2 allows the flat plate 2 to more intimately adhere to the resin frame 3.
The configuration of the housing case 1 of the invention is not limited to the aspect described above. For example, the resin frame 3 may support one, two, or three sides of the backside periphery (see
The flat plate 2 may have decoration on the backside of the glass plate (not shown). Since the glass plate has a sufficient hardness (at least 9H), it is unlikely scratched, and the decoration on the backside viewed through the glass plate will not be degraded in terms of aesthetics.
The decoration on the backside of the glass plate is preferably formed by printing a decoration layer. Preferred examples of the material of the decoration layer include a polyvinyl chloride resin, a polyamide resin, a polyester resin, a polyacrylic resin, a polyurethane resin, a polyvinyl acetal resin, a polyester urethane resin, a cellulose ester resin, and an alkyd resin, any of which is used as a binder along with a coloring ink containing a pigment or a dye having an appropriate color as a coloring agent. A preferred example of the printing method is screen printing. For a solid single color, a variety of coating methods, such as spray coating, can be used.
The decoration layer may alternatively comprise a metal thin film layer or a combination of a printed layer and a metal thin film layer. The metal thin film layer serves to exhibit metallic luster as the decoration layer and is formed by using vacuum deposition, sputtering, ion plating, plating, or any other suitable method. In this case, aluminum, nickel, gold, platinum, chromium, iron, copper, tin, indium, silver, titanium, lead, zinc, or any other suitable metal, or any of the alloys or compounds thereof is used in accordance with the metallic luster color to be exhibited. To form a partial metal thin film layer, for example, after a solvent-soluble resin layer is formed on the portion where no metal thin film layer is required, a metal thin film is formed over the surface, and the solvent-soluble resin layer and the unnecessary metal thin film thereon are removed by solvent cleaning. The solvent used in this process is water or an aqueous solution in many cases. Alternatively, a metal thin film is formed over the surface, and a resist layer is formed on the portion where the metal thin film needs to be left. Acid or alkali is used to etch away the resist layer.
When the housing case 1 is used for a device including a display device, the flat plate 2 may have decoration on the front surface and/or the rear surface of the glass plate except at least a display window for the display device (see
The flat plate 2 of the housing case 1 of the invention may include a layer that allows the flat plate 2 to adhere more intimately to the resin frame 3. For example, an undecorated rear surface of a glass plate 2E may be integrated with the resin frame 3 with an adhesive layer for glass 2F, a primer layer 2G, and an adhesive layer for resin 2H interposed between the rear surface of the glass plate 2E and the resin frame 3 (see
The adhesive layer for glass 2F may be made of a known adhesive for glass, which can be, for example, an adhesive for glass made of a polyester resin.
The primer layer 2G may be made of a known primer material, which can be, for example, a primer material made of a polyester resin. When the adhesive layer for glass 2F strongly adheres to the adhesive layer for resin 2H, the primer layer 2G can be omitted.
The adhesive layer for resin 2H may be made of a known adhesive for resin, which can be, for example, an adhesive for resin made of a vinyl chloride/vinyl acetate/acrylic resin.
The flat plate 2 of the housing case 1 of the invention may alternatively include the layer described below that allows the flat plate 2 to adhere more intimately to the resin frame 3. Specifically, the rear surface of the glass plate 2E is decorated, and the layer containing the decoration also serves as an adhesive layer for glass in the portion where the rear surface of the flat plate 2 is integrated with the resin frame 3. The rear surface of the flat plate 2 can be integrated with the resin frame 3 with the primer layer 2G and the adhesive layer for resin 2H interposed between the rear surface of the flat plate 2 and the resin frame 3 (see
The adhesive layer for glass 2F, the primer layer 2G, the adhesive layer for resin 2H, and the decorative layer/adhesive layer for glass may be formed, for example, by screen printing.
The flat plate 2 of the housing case 1 of the invention may have an opening 2C (see
When the flat plate 2 of the housing case 1 of the invention has the opening 2C, it is further preferable to provide an opening resin frame 4 integrated with the flat plate 2 to support the surrounding portion of the opening 2C, as shown in
When the housing case 1 of the invention is configured in such a way that the resin frame 3 covers the side surfaces of the flat plate 2 not to create any step as shown in
2. Glass Insert Molding Die and Method for Manufacturing Housing Case
A glass insert molding die and a method for manufacturing the housing case will now be described. First, the housing case 1 provided in the present embodiment will be described with reference to
In the invention, the resin frame 3, which is integrated with the periphery of the rear surface of the flat plate 2, is insert-molded. For example, in
Further, in the invention, since the resin frame 3 covers the end surfaces of the flat plate 2, there is no risk of the flat plate 2 peeling off the resin frame 3 when any of the end surfaces of the flat plate 2 is caught by something when the product is in use.
The flat plate 2 is integrated with the resin frame 3 by using a glass insert molding die, which will be described below.
The glass insert molding die includes a stationary die 15 and a movable die 10 that sandwich the flat plate 2 primarily comprising a glass plate when the dies are closed and form a cavity that faces not only the periphery of the flat plate 2 facing the stationary die 15 but also the end surfaces of the flat plate 2. The stationary die 15 includes a sliding core 5 having a bottom portion that comes into contact with the periphery of the flat plate 2 facing the stationary die 15 (hereinafter referred to as a front-end bottom portion 5b) and a wall portion that is connected to the front-end bottom portion 5b and positionally comes into contact with the end surfaces of the flat plate 2 (hereinafter referred to as a front-end wall portion 5a). The front-end wall portion 5a and the front-end bottom portion 5b are provided at the front end of the sliding core 5. The stationary die 15 further includes suction holes 8 provided in the surface where the flat plate 2 is sandwiched (hereinafter referred to as a flat plate abutting surface 7) (see
The sliding core 5 is capable of being advanced and retracted using a drive unit (not shown) in the direction in which the dies are closed between a flat plate positioning position I and a cavity forming position II. The flat plate positioning position I is the position where the front-end bottom portion 5b does not protrude from the surface of the stationary die 15 where the flat plate 2 is sandwiched but the front-end wall portion 5b comes into contact with the flat plate 2 (see
In
The front-end wall portion 5a to positionally come into contact with the end surfaces of the flat plate 2 can be formed into two U-shaped portions facing each other when viewed in the direction perpendicular to a die parting plane 6, for example, as shown in
A method for manufacturing the housing case 1 using the thus configured glass insert molding die will now be described.
First, after the sliding core 5 is moved to the flat plate positioning position I, the flat plate 2 is placed on the flat plate abutting surface 7 of the stationary die 15 (see
In this positioned state, the flat plate 2 is suctioned and secured on the flat plate abutting surface 7 as a result of air 12 being suctioned through the suction holes 8 provided in the flat plate abutting surface 7 (see
The movable die 10 is then advanced toward the stationary die 15 to which the flat plate 2 has adhered so as to close the dies, whereby the movable die 10 and the flat plate abutting surface 7 of the stationary die 15 sandwich the flat plate 2, and the stationary die 15, the movable die 10, and the flat plate 2 form a cavity 13, which is a die space (see
After the sliding core 5 is moved to the cavity forming position II and the cavity 13 is filled with the molten resin injected through a gate 11, the resin frame 3 is integrated with the flat plate 2 in such a way that the resin frame 3 supports the backside periphery of the flat plate 2 and covers the portion of the end surfaces of the flat plate 2 that is connected to the supported portion. The housing case 1, which is the glass insert mold, is thus obtained (see
The molten resin may be a polystyrene resin, a polyolefin resin, an ABS resin, an AS resin, an AN resin, or any other suitable general-purpose resin. Other useable materials may be a polyphenylene oxide/polystyrene resin, a polycarbonate resin, a polyacetal resin, a polyacrylic resin, a polycarbonate/denatured polyphenylene ether resin, a polybutylene terephthalate resin, an ultrahigh-molecular-weight polyethylene resin, and any other general-purpose engineering resin; and a polysulfone resin, a polyphenylene sulfide resin, a polyphenylene oxide resin, a polyallylate resin, a polyether-imide resin, a polyimide resin, a liquid crystal polyester resin, a polyallyl heat-resistant resin, and any other suitable super-engineering resin. In particular, a resin material having a molding shrinkage rate of 0.6% or lower is more preferably used for the resin frame 3 in terms of preventing warping, and an example of such a resin material is a polyacrylic resin. The resin frame 3 may or may not be colored.
After the movable die 10 is retracted to be separated from the stationary die 15, specifically, the dies are opened, the drive unit forwards the sliding core 5 to the glass insert mold pushing position III (see
As described above, in the method for manufacturing the housing case using the glass insert molding die according to the present embodiment, since the sliding core 5 not only forms the cavity for molding the resin frame 3 for supporting the backside periphery but also serves as the mechanism for positioning the flat plate 2 as well as the mechanism for pushing the glass insert mold as required, the housing case 1 can be manufactured at a low cost.
The integrated flat plate 2 and resin frame 3 may have a lid shape (see
Among the backside periphery and end surfaces of the flat plate 2, the portions that do not correspond to the sliding core 5 are not necessarily integrated with the resin frame 3 as shown in
The flat plate 2 may be a decorated glass plate as shown in
The decoration on the rear surface of the glass plate is formed by printing a decoration layer. Examples of the material of the decoration layer may include a polyvinyl chloride resin, a polyamide resin, a polyester resin, a polyacrylic resin, a polyurethane resin, a polyvinyl acetal resin, a polyester urethane resin, a cellulose ester resin, and an alkyd resin, any of which is used as a binder along with a coloring ink containing a pigment or a dye having an appropriate color as a coloring agent. An example of the printing method may be screen printing. For a solid single color, a variety of coating methods, such as spray coating, can be used.
The decoration layer may alternatively comprise a metal thin film layer or a combination of a printed layer and a metal thin film layer. The metal thin film layer serves to exhibit metallic luster as the decoration layer and is formed by using vacuum deposition, sputtering, ion plating, plating, or any other suitable method. In this case, aluminum, nickel, gold, platinum, chromium, iron, copper, tin, indium, silver, titanium, lead, zinc, or any other suitable metal, or any of the alloys or compounds thereof is used in accordance with the metallic luster color to be exhibited. To form a partial metal thin film layer, for example, after a solvent-soluble resin layer is formed on the portion where no metal thin film layer is required, a metal thin film is formed over the surface, and the solvent-soluble resin layer and the unnecessary metal thin film thereon are removed by solvent cleaning. The solvent used in this process is water or an aqueous solution in many cases. Alternatively, a metal thin film is formed over the surface, and a resist layer is formed on the portion where the metal thin film needs to be left. Acid or alkali is used to etch away the resist layer.
Roughening the surface of the flat plate 2 that is integrated with the resin frame 3 allows the flat plate 2 to more intimately adhere to the resin frame 3.
The glass insert molding die of the invention may include simultaneous molding/painting means 16 for allowing a transfer film 17 to be sandwiched between the stationary die 15 to which the flat plate 2 has adhered and the movable die 10 (see
The transfer film 17 includes a transfer layer on an elongated base sheet. The transfer layer has a peelable layer, a pattern layer, an adhesive layer, and other layers sequentially stacked. The peelable layer allows the transfer layer to be peeled off the base sheet. The pattern layer provides the surface of an injection-molded piece with decorative appearance and functionality. Examples of the pattern layer include a typical printed pattern and a conductive pattern made of a conductive material. The adhesive layer bonds the transfer layer to the resin frame 3, which is the molded piece.
The transfer film 17 may be adapted in such a way that a film feeding device shown in
Any of the variety of embodiments can be combined as appropriate to provide the respective advantageous effects. While the invention has been adequately described with reference to the accompanying drawings in relation to preferred embodiments, a variety of variations and modifications shall be apparent to those skilled in the art. Such variations and modifications should be taken as encompassed within the scope of the invention to the extent that they do not depart from the scope of the invention set forth by the claims.
Examples, of the values in the above embodiments will be described below, but the scope of the invention is not limited thereto.
EXAMPLE 1A glass plate of 88 mm in length, 38 mm in width, and 1 mm in thickness was prepared, and a circular opening for an operation panel was provided in the glass plate. A decorative layer was then formed on one side of the glass plate except a display window for a liquid crystal screen by using screen printing along with an ink containing a coloring agent and a polyester resin as a binder. An adhesive layer for glass made of a polyester resin, a primer layer made of a polyester resin, and an adhesive layer for resin made of a vinyl chloride/vinyl acetate/acrylic resin were then sequentially formed on the entire periphery of the undecorated side of the glass plate by using screen printing. A flat plate was thus obtained.
The flat plate was introduced into a molding die comprising a movable die and a stationary die, and secured in a predetermined position on the cavity surface through vacuum suction. After the molding die was closed, a molten polyacrylic resin was injected through the gate to fill the cavity. A rectangular resin frame was formed, and at the same time the resin frame was bonded to the undecorated surface of the flat plate with the adhesive layer for resin, the primer layer, and the adhesive layer for glass interposed between the resin frame and the undecorated surface of the flat plate. After the resin frame was cooled, the molding die was opened to remove the resin frame integrated with the entire backside periphery of the flat plate. A digital audio player housing case of 90 mm in length, 40 mm in width, and 4 mm in height with the corners rounded at a radius R of 1 mm was thus obtained.
EXAMPLE 2A glass plate of 88 mm in length, 38 mm in width, and 1 mm in thickness was prepared, and a circular opening for an operation panel was provided in the glass plate. A decorative layer/adhesive layer for glass was then formed on one side of the glass plate except a display window for a liquid crystal screen by using screen printing along with an ink containing a coloring agent and a polyester resin as a binder. A primer layer made of a polyester resin and an adhesive layer for resin made of a vinyl chloride/vinyl acetate/acrylic resin were then sequentially formed on the entire periphery of the decorated side of the glass plate by using screen printing. A flat plate was thus obtained.
The flat plate was introduced into the molding die comprising the movable die and the stationary die, and secured in a predetermined position on the cavity surface through vacuum suction. After the molding die was closed, a molten polyacrylic resin was injected through the gate to fill the cavity. A rectangular resin frame was formed, and at the same time the resin frame was bonded to the decorated surface of the flat plate with the adhesive layer for resin and the primer layer interposed between the resin frame and the decorated surface of the flat plate. After the resin frame was cooled, the molding die was opened to remove the resin frame integrated with the entire backside periphery of the flat plate. A digital audio player housing case of 90 mm in length, 40 mm in width, and 4 mm in height with the corners rounded at a radius of 1 mm was thus obtained.
EXAMPLE 3Example 3 only differs from Example 1 in that the adhesive layer for glass, the primer layer, and the adhesive layer for resin were sequentially formed on not only the periphery of the glass plate but also the entire surrounding portion of the opening in the undecorated surface of the flat plate to form a flat plate; a rectangular resin frame and a circular opening resin frame were formed by using injection molding; and at the same time, the resin frame and the opening resin frame were bonded to the undecorated surface of the flat plate with the adhesive layer for resin, the primer layer, the adhesive layer for glass interposed between the resin frames and the undecorated surface of the flat plate.
EXAMPLE 4Example 4 only differs from Example 2 in that the primer layer and the adhesive layer for resin were sequentially formed on not only the periphery of the glass plate but also the entire surrounding portion of the opening in the decorated surface of the flat plate to form a flat plate; a rectangular resin frame and a circular opening resin frame were formed by using injection molding; and at the same time, the resin frame and the opening resin frame were bonded to the decorated surface of the flat plate with the adhesive layer for resin and the primer layer interposed between the resin frames and the decorated surface of the flat plate.
EXAMPLE 5Example 5 only differs from Example 3 in that the resin frame is divided into two.
EXAMPLE 6Example 6 only differs from Example 4 in that each of the resin frame and the opening resin frame is divided into two.
EXAMPLE 7A glass plate of 88 mm in length, 38 mm in width, and 1 mm in thickness was prepared, and a circular opening for an operation panel was provided in the glass plate. A decoration layer was then formed on one side of the glass plate except a display window for a liquid crystal screen by using screen printing along with an ink containing a coloring agent and a polyester resin as a binder. An adhesive layer for glass made of a polyester resin, a primer layer made of a polyester resin, and an adhesive layer for resin made of a vinyl chloride/vinyl acetate/acrylic resin were then sequentially formed on the entire periphery of the undecorated side of the glass plate by using screen printing. A flat plate was thus obtained.
In this case, the glass insert molding die of the invention described above was used. After the sliding core was moved to the flat plate positioning position, the flat plate was placed on the surface of the stationary die where the flat plate was sandwiched, and the positioned flat plate was suctioned by suctioning air through the suction holes and secured on the surface where the flat plate to be sandwiched. After the stationary die to which the flat plate had adhered and the movable die were closed, and the sliding core was moved to the cavity forming position, a molten resin was injected into the cavity to integrate the flat plate with a resin frame. After the die was opened, the sliding core was moved to the glass insert mold pushing position and the glass insert mold was removed. A digital audio player housing case of 90 mm in length, 40 mm in width, and 4 mm in height with the corners rounded at a radius of 1 mm was thus obtained.
EXAMPLE 8A glass plate of 88 mm in length, 38 mm in width, and 1 mm in thickness was prepared, and a circular opening for an operation panel was provided in the glass plate. A decorative layer/adhesive layer for glass was then formed on one side of the glass plate except a display window for a liquid crystal screen by using screen printing along with an ink containing a coloring agent and a polyester resin as a binder. A primer layer made of a polyester resin and an adhesive layer for resin made of a vinyl chloride/vinyl acetate/acrylic resin were then sequentially formed on the entire periphery of the decorated side of the glass plate by using screen printing. A flat plate was thus obtained.
The glass insert molding was performed in the same manner as Example 7, and a digital audio player housing case of 90 mm in length, 40 mm in width, and 4 mm in height with the corners rounded at a radius of 1 mm was obtained.
For all the housing cases of Examples 1 to 8, the front portion of the case, in particular, the portion that covers the display screen, such as an LCD, was adequately hardened.
INDUSTRIAL APPLICABILITYThe invention is preferably applicable to a housing case, for example, for a small electric device and communication device, a method for manufacturing the housing case, and a glass insert molding die used in the same.
Claims
1. A glass insert molding die comprising a stationary die and a movable die that sandwich a flat plate primarily comprising a glass plate when the dies are closed, and form a cavity that faces a periphery of the flat plate facing the stationary die and also an end surface of the flat plate, wherein
- the stationary die includes a sliding core having a bottom portion that comes into contact with the periphery of the flat plate facing the stationary die and a wall portion that is connected to the bottom portion and positionably comes into contact with the end surface of the flat plate, the bottom portion and the wall portion provided at the front end of the sliding core, and
- a suction hole provided in the surface where the flat plate is sandwiched; and
- the sliding core is capable of being advanced and retracted in a die-closing direction between a flat plate positioning position and a cavity forming position, the flat plate positioning position being the position where the front-end bottom portion does not protrude from the surface of the stationary die where the flat plate is sandwiched but the front-end wall portion comes into contact with the flat plate, and the cavity forming position being the position where the front-end bottom portion and the front-end wall portion are separated from the flat plate.
2. The glass insert molding die according to claim 1,
- wherein the sliding core is partially provided along a perimeter of the flat plate.
3. The glass insert molding die according to claim 1,
- wherein the sliding core is further capable of being advanced to a glass insert mold pushing position where the front-end bottom portion protrudes from the surface of the stationary die where the flat plate is sandwiched.
4. A method for manufacturing a housing case using the glass insert molding die according to claim 1, the method comprising the steps of:
- moving the sliding core to the flat plate positioning position and then placing the flat plate on the surface of the stationary die where the flat plate is sandwiched;
- suctioning and securing the positioned flat plate on the surface where the flat plate is sandwiched;
- closing the stationary die to which the flat plate has adhered, and the movable die; and
- after the dies are closed, moving the sliding core to the cavity forming position and then injecting a molten resin into a cavity to integrate a resin frame with the flat plate.
5. A method for manufacturing a housing case using the glass insert molding die according to claim 3, the method comprising the steps of:
- moving the sliding core to the flat plate positioning position and then placing the flat plate on the surface of the stationary die where the flat plate is sandwiched;
- suctioning and securing the positioned flat plate on the surface where the flat plate is sandwiched;
- closing the stationary die to which the flat plate has adhered, and the movable die;
- after the dies are closed, moving the sliding core to the cavity forming position and then injecting a molten resin into a cavity to integrate a resin frame with the flat plate; and
- opening the dies and then moving the sliding core to the glass insert mold pushing position.
6. The method for manufacturing a housing case according to claim 4,
- wherein the flat plate has decoration on the glass plate.
7. The method for manufacturing a housing case according to claim 4,
- wherein the flat plate has an adhesive layer for glass, a primer layer, and an adhesive layer for resin sequentially formed on the glass plate.
8. The method for manufacturing a housing case according to claim 4,
- wherein the portion where the flat plate is sandwiched between the stationary die and the movable die has an opening.
9. The method for manufacturing a housing case according to claim 4,
- wherein the material of the molten resin has a molding shrinkage rate of 0.6% or lower.
10. The glass insert molding die according to claim 1,
- further comprising simultaneous molding/painting means that allows a transfer film to be sandwiched between the stationary die to which the flat plate has adhered and the movable die.
11. The method for manufacturing a housing case according to claim 4,
- further comprising the step of sandwiching a transfer film between the stationary die to which the flat plate has adhered and the movable die,
- wherein a painting portion of the transfer film is transferred to the resin frame integrated with the flat plate simultaneously with injection of the molten resin.
2137472 | November 1938 | Forbes |
3363040 | January 1968 | Katashi |
5494615 | February 27, 1996 | Wang Lee |
5916600 | June 29, 1999 | Dubay et al. |
6120274 | September 19, 2000 | Gerig et al. |
6537669 | March 25, 2003 | Kaufmann |
6754971 | June 29, 2004 | Hagenmeyer et al. |
2643028 | August 1990 | FR |
01075212 | March 1989 | JP |
2000-194269 | July 2000 | JP |
2001-036258 | February 2001 | JP |
2002-223080 | August 2002 | JP |
2003-133754 | May 2003 | JP |
2004-146284 | May 2004 | JP |
2004-330509 | November 2004 | JP |
2006-093345 | April 2006 | JP |
2006-129117 | May 2006 | JP |
2006-159681 | June 2006 | JP |
Type: Grant
Filed: Sep 20, 2007
Date of Patent: Nov 15, 2011
Patent Publication Number: 20100014232
Assignee: Nissha Printing Co., Ltd. (Kyoto)
Inventor: Takeshi Nishimura (Kyoto)
Primary Examiner: Robert B Davis
Attorney: The Webb Law Firm
Application Number: 12/441,635
International Classification: B29C 70/76 (20060101);