Algal elongases

- Aurora Algae, Inc.

Provided herein are exemplary isolated nucleotide sequences encoding polypeptides having elongase activity, which utilize fatty acids as substrates.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit and priority of U.S. Provisional Patent Application Ser. No. 61/480,364 filed on Apr. 28, 2011, titled “Elongases,” which is hereby incorporated by reference.

The present application is related to U.S. Non-Provisional patent application Ser. No. 12/581,812 filed on Oct. 19, 2009, titled “Homologous Recombination in an Algal Nuclear Genome,” which is hereby incorporated by reference.

The present application is related to U.S. Non-Provisional patent application Ser. No. 12/480,635 filed on Jun. 8, 2009, titled “VCP-Based Vectors for Algal Cell Transformation,” which is hereby incorporated by reference.

The present application is related to U.S. Non-Provisional patent application Ser. No. 12/480,611 filed on Jun. 8, 2009, titled “Transformation of Algal Cells,” which is hereby incorporated by reference.

REFERENCE TO SEQUENCE LISTINGS

The present application is filed with sequence listing(s) attached hereto and incorporated by reference.

BACKGROUND OF THE INVENTION Field of the Invention

This invention relates to molecular biology, and more specifically, to algal elongases.

SUMMARY OF THE INVENTION

Isolated nucleotide sequences encoding polypeptides having elongase activity, which utilize fatty acids as substrates.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the nucleotide sequence encoding elongase 1 (SEQ ID NO:1).

FIG. 2 illustrates the nucleotide sequence encoding elongase 2 (SEQ ID NO:2).

FIG. 3 illustrates the nucleotide sequence encoding elongase 3 (SEQ ID NO:3).

FIG. 4 illustrates the nucleotide sequence encoding elongase 4 (SEQ ID NO:4).

FIG. 5 illustrates the nucleotide sequence encoding elongase 5 (SEQ ID NO:5).

FIG. 6 illustrates the nucleotide sequence encoding elongase 6 (SEQ ID NO:6).

FIG. 7 illustrates the nucleotide sequence encoding elongase 7 (SEQ ID NO:7).

FIG. 8 illustrates the nucleotide sequence encoding elongase 8 (SEQ ID NO:8).

FIG. 9 illustrates the amino acid sequence encoding elongase 1 (SEQ ID NO:9).

FIG. 10 illustrates the amino acid sequence encoding elongase 2 (SEQ ID NO:10).

FIG. 11 illustrates the amino acid sequence encoding elongase 3 (SEQ ID NO:11).

FIG. 12 illustrates the amino acid sequence encoded by elongase 4 (SEQ ID NO:12).

FIG. 13 illustrates the amino acid sequence encoded by elongase 5 (SEQ ID NO:13).

FIG. 14 illustrates the amino acid sequence encoded by elongase 6 (SEQ ID NO:14).

FIG. 15 illustrates the amino acid sequence encoded by elongase 7 (SEQ ID NO:15).

FIG. 16 illustrates the amino acid sequence encoded by elongase 8 (SEQ ID NO:16).

DETAILED DESCRIPTION OF THE INVENTION

A fatty acid is a carboxylic acid with a long aliphatic tail (chain), which is either saturated or unsaturated. Saturated fatty acids are long-chain carboxylic acids that usually have between 12 and 24 carbon atoms and have no double bonds. Unsaturated fatty acids have one or more double bonds between carbon atoms. Most naturally occurring fatty acids have a chain of an even number of carbon atoms, from 4 to 28. Elongases are enzymes which lengthen fatty acids by adding two carbon atoms to a fatty acid's carboxylic acid end.

Provided herein are isolated nucleotide sequences encoding polypeptides having elongase activity, which utilize fatty acids as substrates.

The inventors sequenced the entire genome of algal genus Nannochloropsis and identified genes involved in fatty acid metabolism. They identified various elongases, including exemplary elongases which they designated as elongases 1-9.

The inventors manipulated the activities of the above-specified exemplary elongase genes by:

1. Overexpression of the subject elongase gene with a strong promoter.

2. Promoter replacement or promoter insertion in front of the subject elongase gene within the genome via homologous recombination.

3. Knock out of the subject elongase gene via insertion of a transformation construct into the gene or replacement of a part of or the entire subject elongase gene via homologous recombination.

Exemplary support for the above-mentioned methods may be found in U.S. Non-Provisional Patent Application Ser. No. 12/581,812 filed on Oct. 19, 2009, titled “Homologous Recombination in an Algal Nuclear Genome,” U.S. Non-Provisional Patent Application Ser. No. 12/480,635 filed on Jun. 8, 2009, titled “VCP-Based Vectors for Algal Cell Transformation,” and U.S. Non-Provisional Patent Application Ser. No. 12/480,611 filed on Jun. 8, 2009, titled “Transformation of Algal Cells,” all of which are hereby incorporated by reference.

A transformation construct or vector may comprise any number of promoters, genes, and/or other nucleic acid polymers (naturally occurring or synthetic) and/or their analogs, or other compounds that do not interfere with the ability of the transformation construct to enter the algal cell or the algal genome, or to function. In some embodiments, additional nucleotides may appear in the transformation construct to facilitate or direct the insertion of the construct (or any part thereof) into a desired location in the genome.

Accordingly, the inventors were able to manipulate the activities of the various exemplary elongases for the purpose of modifying the contents of certain fatty acids within algal genus Nannochloropsis.

Some of these elongases, i.e. Elongases 6-8, are down-regulated under conditions when poly unsaturated fatty acid (“PUFA”) biosynthesis is down-regulated as well (i.e. during Nitrogen starvation). These genes are excellent targets for over-expression, in order to achieve elevated PUFA biosynthesis. Down-regulation of these (or other) genes, as an example, by replacement of the endogenous promoter or insertion of a weaker promoter in front of the respective elongase gene could lead to a higher content of short chain fatty acids. Down-regulation of transcription could also be achieved, in some cases, by insertion of a commonly strong promoter in front of the respective elongase gene, presumably by modifying the respective chromatin arrangement around the said elongase gene, thus leading to a lower transcription level. Also, the introduction of point mutations into the gene when inserting another promoter in front of such a gene via the homologous recombination flanks utilized, could lead to an altered activity of the respective gene products.

Over expression and knock out mutants of said elongase genes suggest that at least 4 elongases with overlapping functions are operating in the biosynthesis pathway leading to Eicosapentaenoic acid (“EPA”): these are, but not limited to: Elongases 5, 6, 7, and 9. Transcriptome analysis also suggests that Elongase 8 is operating as well in the fatty acid biosynthesis pathway to EPA.

FIG. 1 illustrates the nucleotide sequence encoding elongase 1 (SEQ ID NO:1).

FIG. 2 illustrates the nucleotide sequence encoding elongase 2 (SEQ ID NO:2).

FIG. 3 illustrates the nucleotide sequence encoding elongase 3 (SEQ ID NO:3).

FIG. 4 illustrates the nucleotide sequence encoding elongase 4 (SEQ ID NO:4).

FIG. 5 illustrates the nucleotide sequence encoding elongase 5 (SEQ ID NO:5).

FIG. 6 illustrates the nucleotide sequence encoding elongase 6 (SEQ ID NO:6).

FIG. 7 illustrates the nucleotide sequence encoding elongase 7 (SEQ ID NO:7).

FIG. 8 illustrates the nucleotide sequence encoding elongase 8 (SEQ ID NO:8).

FIG. 9 illustrates the amino acid sequence encoding elongase 1 (SEQ ID NO:9).

FIG. 10 illustrates the amino acid sequence encoding elongase 2 (SEQ ID NO:10).

FIG. 11 illustrates the amino acid sequence encoding elongase 3 (SEQ ID NO:11).

FIG. 12 illustrates the amino acid sequence encoded by elongase 4 (SEQ ID NO:12).

FIG. 13 illustrates the amino acid sequence encoded by elongase 5 (SEQ ID NO:13).

FIG. 14 illustrates the amino acid sequence encoded by elongase 6 (SEQ ID NO:14).

FIG. 15 illustrates the amino acid sequence encoded by elongase 7 (SEQ ID NO:15).

FIG. 16 illustrates the amino acid sequence encoded by elongase 8 (SEQ ID NO:16).

While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.

Claims

1. A transformation vector comprising an isolated nucleic acid encoding a polypeptide having elongase activity, wherein the isolated nucleic acid comprises the nucleotide sequence set forth in SEQ ID NO:1.

2. The transformation vector of claim 1, wherein the polypeptide comprises the amino acid sequence set forth in of SEQ ID NO:9.

Referenced Cited
U.S. Patent Documents
1926780 September 1933 Lippincott
3468057 September 1969 Buisson et al.
3962466 June 8, 1976 Nakabayashi
4003337 January 18, 1977 Moore
4267038 May 12, 1981 Thompson
4365938 December 28, 1982 Warinner
4535060 August 13, 1985 Comai
4658757 April 21, 1987 Cook
5105085 April 14, 1992 McGuire et al.
5478208 December 26, 1995 Kasai et al.
5527456 June 18, 1996 Jensen
5661017 August 26, 1997 Dunahay et al.
5668298 September 16, 1997 Waldron
5723595 March 3, 1998 Thompson et al.
5823781 October 20, 1998 Hitchcock et al.
6027900 February 22, 2000 Allnutt et al.
6117313 September 12, 2000 Goldman et al.
6143562 November 7, 2000 Trulson et al.
6166231 December 26, 2000 Hoeksema
6297054 October 2, 2001 Maliga et al.
6372460 April 16, 2002 Gladue et al.
6448055 September 10, 2002 Shimizu et al.
6736572 May 18, 2004 Geraghty
6750048 June 15, 2004 Ruecker et al.
6831040 December 14, 2004 Unkefer et al.
6871195 March 22, 2005 Ryan et al.
7244609 July 17, 2007 Drocourt et al.
7381326 June 3, 2008 Haddas
7410637 August 12, 2008 Sayre et al.
7449568 November 11, 2008 Fukuda et al.
7547551 June 16, 2009 Schuler et al.
8039230 October 18, 2011 Otte et al.
8119859 February 21, 2012 Vick et al.
8314228 November 20, 2012 Kilian et al.
8318482 November 27, 2012 Vick et al.
8440805 May 14, 2013 Kilian et al.
20030049720 March 13, 2003 Hoshino et al.
20030140021 July 24, 2003 Ryan et al.
20030143743 July 31, 2003 Schuler et al.
20030199490 October 23, 2003 Antoni-Zimmermann et al.
20030211089 November 13, 2003 Sayre et al.
20040161364 August 19, 2004 Carlson
20040262219 December 30, 2004 Jensen
20050064577 March 24, 2005 Berzin
20050095569 May 5, 2005 Franklin
20050124010 June 9, 2005 Short et al.
20050170479 August 4, 2005 Weaver et al.
20050181345 August 18, 2005 Bradbury et al.
20050260553 November 24, 2005 Berzin
20060031087 February 9, 2006 Fox et al.
20060044259 March 2, 2006 Hotelling et al.
20060045750 March 2, 2006 Stiles
20060101535 May 11, 2006 Forster et al.
20060122410 June 8, 2006 Fichtali et al.
20060155558 July 13, 2006 Corpening
20060166243 July 27, 2006 Su et al.
20060166343 July 27, 2006 Hankamer et al.
20060192690 August 31, 2006 Philipp
20070178451 August 2, 2007 Deng et al.
20080118964 May 22, 2008 Huntley et al.
20080120749 May 22, 2008 Melis et al.
20080160488 July 3, 2008 Younkes et al.
20080160591 July 3, 2008 Willson et al.
20080194029 August 14, 2008 Hegemann et al.
20080268539 October 30, 2008 Singh et al.
20080293132 November 27, 2008 Goldman et al.
20090029445 January 29, 2009 Eckelberry et al.
20090061493 March 5, 2009 Trimbur et al.
20090061928 March 5, 2009 Lee et al.
20090148931 June 11, 2009 Wilkerson et al.
20090234146 September 17, 2009 Cooney et al.
20090317857 December 24, 2009 Vick et al.
20090317878 December 24, 2009 Champagne et al.
20090317904 December 24, 2009 Vick et al.
20090319338 December 24, 2009 Parks et al.
20090325270 December 31, 2009 Vick et al.
20100022393 January 28, 2010 Vick
20100068772 March 18, 2010 Downey
20100100520 April 22, 2010 Dargue et al.
20100198659 August 5, 2010 Meltzer et al.
20100210003 August 19, 2010 King et al.
20100210832 August 19, 2010 Kilian et al.
20100314324 December 16, 2010 Rice et al.
20100323387 December 23, 2010 Bailey et al.
20100330643 December 30, 2010 Kilian et al.
20110015415 January 20, 2011 Singh et al.
20110059495 March 10, 2011 Bailey et al.
20110091977 April 21, 2011 Kilian et al.
20120107801 May 3, 2012 Kilian et al.
20120190115 July 26, 2012 Kilian et al.
20120208279 August 16, 2012 Vick et al.
20120277418 November 1, 2012 Kilian et al.
20130078716 March 28, 2013 Vick et al.
20130102040 April 25, 2013 Radakovits et al.
20130131330 May 23, 2013 Kilian et al.
20130281683 October 24, 2013 Kilian et al.
20130289262 October 31, 2013 Kilian et al.
20130295665 November 7, 2013 Kilian et al.
Foreign Patent Documents
1627764 June 2005 CN
1867140 November 2006 CN
1956335 May 2007 CN
101289659 October 2008 CN
102164492 August 2011 CN
102858980 January 2013 CN
2297326 March 2011 EP
2491124 August 2012 EP
1175201 June 2013 HK
20110000934 July 2011 MX
W02004106238 December 2004 WO
W02007084078 July 2007 WO
W02008060571 May 2008 WO
W02008060571 May 2008 WO
W02008106803 September 2008 WO
W02008060571 November 2008 WO
W02009124070 October 2009 WO
W02009149465 December 2009 WO
W02009149470 December 2009 WO
W02010011335 January 2010 WO
W02010147662 December 2010 WO
W02011011463 January 2011 WO
W02011049995 April 2011 WO
W02012149457 November 2012 WO
W02013166065 November 2013 WO
Other references
  • IN Journal37/2013 A1, Sep. 13, 2013, Vick et al.
  • IN Journal31/2013 A1, Aug. 2, 2013, Kilian et al.
  • Santin-Montanya, I. “Optimal Growth of Dunaliella primolecta in Axenic Conditions to Assay Herbicides,” Chemosphere, 66, Elsevier 2006, p. 1315-1322.
  • Felix, R. “Use of the cell wall-less alga Dunaliella bioculata in herbicide screening tests,” Annals of Applied Biology, 113, 1988, pp. 55-60.
  • Janssen, M. “Phytosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles,” Enzyme and Microbial Technology, 29, 2001, p. 298-305.
  • Saenz, M.E., “Effects of Technical Grade and a Commercial Formulation of Glyphosate on Algal Population Growth,” Bulletin of Environmental Contamination Toxicology, 1997, 59: pp. 638-644.
  • Christy et al., “Effects of Glyphosate on Growth of Chlorella,” Weed Science, vol. 29, Issue 1, Jan. 1981, pp. 5-7.
  • Roessler et al., “Genetic Engineering Approaches for Enhanced Production of Biodiesel Fuel from Microalgae,” ACS Symposium Series; American Chemical Society, 1994, pp. 255-270.
  • Endo et al. “Inactivation of Blasticidin S by Bacillus cereus II. Isolation and Characterization of a Plasmid, pBSR 8, from Bacillus cereus,” The Journal of Antibiotics 41 (2): 271-2589-2601.
  • Hallmann et al., “Genetic Engineering of the Multicellular Green Alga Volvox: A Modified and Multiplied Bacterial Antibiotic Resistance Gene as a Dominant Selectable Marker” The Plant Journal 17(1): 99-109 (Jan. 1999).
  • Kindle et al. “Stable Nuclear Transformation of Chlamydomonas Using the Chlamydomonas Gene for Nitrate Reductase” The Journal of Cell Biology 109 (6, part 1): 2589-2601.
  • Prein et al. “A Novel Strategy for Constructing N-Terminal Chromosomal Fusions to Green Fluorescent Protein in the Yeast Saccharomyces cerevisiae” FEBS Letters 485 (2000) 29-34.
  • Schiedlmeier et al., “Nuclear Transformation of Volvox carteri” Proceedings of the National Academy of Sciences USA 91(11): 5080-5084 (May 1994).
  • Wendland et al. “PCR-Based Methods Facilitate Targeted Gene Manipulations and Cloning Procedures” Curr.Gen. (2003) 44:115-123.
  • Molnar et al., “Highly Specific Gene Silencing by Artificial MicroRNAs in the Unicellular Agla Chlamydomonas reinhardtii,” Plant Jour. ePub Jan. 17, 2009, vol. 58, No. 1, pp. 157-164 (Abstract Only).
  • Chen et al., “Conditional Production of a Functional Fish Growth Hormone in the Transgenic Line of Nannochloropsis oculata (Eustigmatophyceae),” J. Phycol. Jun. 2008, vol. 44, No. 3, pp. 768-776.
  • Nelson et al., “Targeted Disruption of NIT8 Gene in Chlamydomonas reinhardtii.” Mol. Cell. Bio. Oct. 1995, vol. 15, No. 10, pp. 5762-5769.
  • Kureshy et al., “Effect of Ozone Treatment on Cultures of Nannochloropsis oculata, Isochrysis galbana, and Chaetoceros gracilis,” Journal of the World Aquaculture Society, 1999, 30(4), pp. 473-480.
  • Genbank Accession No. U71602 (Nannochloropsis sp. Violaxanthing/chlorophyll a binding protein precursor (NANVCP) mRNA, 1998.
  • Sukenik et al. “Characterization of a Gene Encoding the Light-Harvesting Violaxanthin-Chlorophyll Protein of Nannochloropsis sp. (Eustigmatophyceae),” Journal of Phycology, Jun. 2000; 36(3), pp. 563-570.
  • Abe et al., AG610981, Musmusculus molossinus DNA, 2004.
  • Kopczynski et al., CO268749, Drosophila melanogaster cDNA clone EK092604, 2004.
  • Csogor et al., “Light Distribution in a Novel Photobioreactor—Modelling for Optimization,” Journal of Applied Phycology, vol. 13, pp. 325-333.
  • Janssen et al., “Enclosed Outdoor Photobioreactors: Light Regime, Photosynthetic Efficiency, Scale-Up, and Future Prospects,” Biotechnology and Bioengineering, vol. 81, No. 2, pp. 193-210, Jan. 2003.
  • Zittelli et al., “Mass Cultivation of Nannochloropsis sp. in Annular Reactors,” Journal of Applied Phycology, vol. 15, pp. 107-113, Mar. 2003.
  • Strzepek et al., “Photosynthetic Architecture Differs in Coastal and Oceanic Diatoms,” Nature, vol. 431, pp. 689-692, Oct. 2004.
  • Shi et al., “Analysis of Expressed Sequence Tags from the Marine Microalga Nannochloropsis oculata (Eustigmatophyceae),”Journal of Phycol, vol. 44, pp. 99-102, 2008.
  • Thiel et al., “Transformation of Filamentous cyanobacterium by Electroporation,” Journal of Bacteriology, Oct. 1989, vol. 171, No. 10, pp. 5743-5746.
  • Krienitz et al., “Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater,” Phycologica, 2000, vol. 39, No. 3, Abstract.
  • Lee et al., “Isolation and Characterization of a Xanthophyll Aberrant Mutant of the Green Alga Nannochloropsis oculata,” Marine Biotechnology, 2006, vol. 8, pp. 238-245.
  • Sukenik et al., “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte nannochloropsis,” Journal of Phycol., 1989, vol. 25, pp. 686-692.
  • Rocha et al., “Growth Aspects of the Marine Microalga Nannochlorpsis gaditana,” Biomolecular Engineering, 2003, vol. 20, pp. 237-242.
  • Macintyre et al., “Primary Production by Suspended and Benthic Microalgae in a Turbid Estuary: Time-Scales of Variability in San Antonio Bay, Texas,” Marine Ecology Progress Series, 1996, vol. 145, pp. 245-268.
  • Dunahay et al, “Manipulation of Microalgal Lipid Production Using Genetic Engineering,” Applied Biochemistry and Biotechnology, 1996, vol. 57/58.
  • Witkowski et al., “Conversion of a B-Ketoacyl Synthase to a Malonyl Decarboxylase by Replacement of the Active-Site Cysteine with Glutamine,” Biochemistry, 1999, vol. 38, 11643-11650.
  • Kisselev, “Polypeptide Release Factors in Prokaryotes and Eukaryotes: Same Function, Different Structure,” Structure, vol. 10, Jan. 2002.
  • Whisstock et al., “Predication of protein function from protein sequence and structure,” Q. Rev. Biophysics, 2003, vol. 36, pp. 307-340.
  • Broun et al., “Catalytic Plasticity of Fatty Acid Modification Enzymes Underlying Chemical Diversity of Plant Lipids,” Science, vol. 282, 1998.
  • Wishart et al., “A Single Mutation Converts a Novel Phosphotyrosine Binding Domain into a Dual-specificity Phosphatase,” J. Biol. Chem. 1995, vol. 270(45), pp. 26782-26785.
  • Geng et al, “Construction of a System for the Stable Expression of Foreign Genes in Dunaliella salina,” Acta Botanica Sinica 46(3): 342-346, 2004.
  • Chen et al., “Highly Efficient Expression of Rabbit Neutrophil Peptide-1 gene in Chlorella ellipsoidea Cells,” Current Genetics 39(5-6): 365-370, 2001.
  • Suga et al., “Control by Osmolarity and Electric Field Strength of Electro-Induced Gene Transfer and Protein Release in Fission Yeast Cells,” Journal of Electrostatics 64(12): 796-801, 2006.
  • International Search Report mailed Sep. 16, 2009 for Application No. PCT/US2009/004296, filed Jul. 24, 2009.
  • Written Opinion of the International Searching Authority mailed Sep. 16, 2009 for Application No. PCT/US2009/004296, filed Jul. 24, 2009.
  • Office Action mailed Nov. 14, 2012 in China Patent Application No. 200980138072.X, filed Jul. 24, 2009.
  • Official Action mailed Jul. 10, 2012 in Mexico Patent Application No. MX/a/2011/000934, filed Jul. 24, 2009.
  • Official Action mailed Mar. 5, 2013 in Mexico Patent Application No. MX/a/2011/000934, filed Jul. 24, 2009.
  • Duarte et al., “Glyphosate (GP) Effects with Emphasis on Aquatic Organisms,” Colunbia Orinoquia, ISSN: 0121-3709, pp. 70-100, 2004.
  • Technical Card: Glyphosate, Document filed for the Pesticide Action Network and the Alternatives Thereof, for Latin America (RAP-AL)—Communications and Administration Office, Apr. 2008.
  • Department of Environment, Housing and Territorial Development Ministry, Resolution (1009), published Jun. 17, 2008.
  • International Search Report and Written Opinion of the International Searching Authority mailed Oct. 30, 2009 for Application No. PCT/US2009/046656, filed Jun. 8, 2009.
  • International Search Report and Written Opinion of the International Searching Authority mailed Aug. 12, 2009 for Application No. PCT/US2009/003819, filed Jun. 25 2009.
  • GenBank Accession No. ER498938 GI: 133929743 May 22, 2007.
  • Second Office Action mailed Feb. 7, 2014 in Chinese Application No. 201080058106.7 filed Oct. 19, 2010.
  • International Search Report and Written Opinion of the International Searching Authority mailed Dec. 20, 2010 for Application No. PCT/US2010/053265, filed Oct. 19, 2010.
  • Extended European Search Report mailed Mar. 19, 2013 in European Patent Application 10825551.4, filed on Oct. 19, 2010.
  • Minoda et al., “Improvement of Culture Conditions and Evidence for Nuclear Transformation by Homologous Recombination in a Red Alga, Cyanidioschyzon merolae 10D,” Plant and Cell Physiology, vol. 45, No. 6, Jun. 2004, pp. 667-671.
  • Hallmann et al., “Gene Replacement by Homologous Recombination in the Multicellular Green Alga, Volvox carteri,” Proceedings of the National Academy of Sciences in the United States of America, vol. 94, No. 14, 1997, pp. 7469-7474.
  • Kilian et al., “High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, No. 52, Dec. 2001, pp. 21265-21269.
  • Extended European Search Report mailed Oct. 19, 2011 in European Patent Application 09759628.2, filed on Jun. 8, 2009.
  • Hallmann, “Algal Transgenics and Biotechnology,” Transgenic Plant Journal, Global Science Books Ltd., GB, vol. 1, No. 1, Jan. 2007, pp. 81-98.
  • International Search Report and Written Opinion of the International Searching Authority mailed Oct. 20, 2010 for Application No. PCT/US2010/001754, filed Jun. 16, 2009.
  • International Search Report and Written Opinion of the International Searching Authority mailed Sep. 9, 2009 for Application No. PCT/US2009/046650, filed Jun. 8, 2009.
  • International Search Report and Written Opinion of the International Searching Authority mailed Jun. 15, 2011 for Application No. PCT/US2010/042666, filed Jun. 20, 2010.
  • Pollock, “High Carbon Dioxide Requiring Mutants of Chlamydomonas reinhardtll,” Created Dec. 2003, [online, retrieved Oct. 14, 2010] <http://etd.lsu.edu/docs/available/etd-0828103-114026/unrestricted/Pollockdis.pdf>.
  • Drocourt: GenBank Accession No. X52869.1, created Jan. 3, 1995.
  • Pan: GenBank Accession No. EE109892.1, created Jun. 23, 2008.
  • Pan: GenBank Accession No. EE109907, created Jun. 23, 2008.
  • Henriquez et al.: GenBank Accession No. Q07CY9, created Oct. 31, 2006.
  • International Search Report and Written Opinion of the International Searching Authority mailed Oct. 16, 2012 for Application No. PCT/US2012/035633, filed Apr. 27, 2012.
  • Yu et al., “Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae),” Chinese Journal of Oceanology and Limnology, vol. 28, No. 4, pp. 802-807, 2010.
  • Lumbreras et al., “Efficient Foreign Gene Expression in Chlamydomonas reinhardtii Mediated by an Endogenous Intron,” The Plant Journal, vol. 14, No. 4 Jan. 1, 1998, pp. 441-447, XP001150496, ISN: 0960-7412, DOI:10.1046/j.1365-313X.1998.00145.X.
  • Rose A.B., “Intron-Mediated Regulation of Gene Expression,” Current Topics in Microbiology and Immunology vol. 326, Jan. 1, 2008, pp. 277-290, XP009145370, ISSN: 0070-217X.
  • Rose A.B., “The Effect of Intron Location on Intron-Mediated Enhancement of Gene Expression in Arabidopsis,” The Plant Journal, vol. 40, No. 5, Dec. 1, 2004, pp. 744-751, XP55029911, ISSN: 0960-7412, DOI:10.1111/j.1365-313X.2004.02247.
  • International Search Report and Written Opinion of the International Searching Authority mailed Sep. 13, 2013 in Application No. PCT/US2013/038939 filed Apr. 30, 2013.
  • Notice on the First Office Action mailed May 20, 2013 in Chinese Application No. 201080058106.7 filed Oct. 19, 2010.
  • Examination Report mailed Feb. 20, 2013 in Australian Application No. 2009274500 filed Jul. 24, 2009.
  • Examination Report mailed Apr. 29, 2013 in European Application No. 09759628.2 filed Jun. 8, 2009.
  • Examination Report mailed Aug. 29, 2013 in Australian Application No. 2009255947 filed Jun. 8, 2009.
  • Examination Report mailed Sep. 19, 2013 in Australian Application No. 2010310765 filed Oct. 19, 2010.
  • Notice on the Second Office Action mailed Sep. 24, 2013 in Chinese Application No. 200980138072.X filed Jul. 24, 2009.
  • Zuo-Xi Ruan et al., Effects of Acute Glyphosate Exposure on the Growth and Physiology of Nostoc sphaeroides, an Edible Cyanobacterium of Paddy Rice Fields, Acta Hydrobiologica Sinica, Jul. 2008 vol. 32, No. 4.
  • Office Action mailed Nov. 11, 2013 in Mexican Application No. MX/a/2011/000934 filed Jul. 24, 2009.
Patent History
Patent number: 8809046
Type: Grant
Filed: Apr 29, 2012
Date of Patent: Aug 19, 2014
Patent Publication Number: 20120277418
Assignee: Aurora Algae, Inc. (Hayward, CA)
Inventors: Oliver Kilian (Alameda, CA), Bertrand Vick (Berkeley, CA)
Primary Examiner: David J Steadman
Assistant Examiner: Paul Holland
Application Number: 13/459,215
Classifications