Untethered access point mesh system and method

- Trapeze Networks, Inc.

A technique for implementing an untethered access point (UAP) mesh involves enabling AP-local switching at one or more UAPs of the mesh. A system constructed according to the technique may include a wireless switch; an access point (AP) wire-coupled to the wireless switch; and a UAP mesh, wirelessly coupled to the AP, including a UAP with an AP-local switching engine embodied in a computer-readable medium. Another system constructed according to the technique may include an untethered access point (UAP), including: a radio; a backhaul service set identifier (SSID) stored in a computer-readable medium; an anchor access point (AAP) selection engine embodied in a computer-readable medium. In operation, the AAP selection engine may use the radio to attempt to associate with the AAP if a beaconed backhaul SSID matches the stored backhaul SSID. A method according to the technique may include beaconing with a backhaul SSID; acting in concert with an upstream switch as an authenticator for a downstream station that responds to the beacon; providing limited local switching functionality for the downstream station.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application No. 60/812,403, filed Jun. 9, 2006, which is incorporated by reference.

BACKGROUND

An access point (AP) is a device used by wireless clients to connect to a network. An AP functions as a standalone entity in some implementations and functions in cooperation with distribution hardware in other implementations. Distribution hardware may include a wireless switch used to manage APs and provide network-connectivity to wireless clients. A wireless domain may refer to a group of wireless switches that are configured to exchange relevant information, and using this information make informed decisions. A known device is a station (e.g., a wireless AP or client device) that is part of a network wireless installation.

Trapeze Networks, Inc. (Trapeze), uses a MOBILITY POINT™ (MP®) APs in a MOBILITY DOMAIN™ wireless domain. An MP® AP is coupled to a MOBILITY EXCHANGE® (MX®) wireless switch. Trapeze uses MOBILITY DOMAIN™ to refer to a collection of MX® switches. This collection of MX® switches shares RF environment and station association information. This information is used by the MX® switches to support features including by way of example but not limitation roaming, auto channel selection, rogue AP detection, intrusion detection and/or the launching of countermeasures. Some additional details regarding the Trapeze-specific implementation is provided by way of example but not limitation, including novel features that are discussed later in this application, in the provisional application to which this application claims priority.

In a typical implementation, APs are coupled to a switch via a wire. Implementations that include untethered APs (UAPs), introduce additional configuration difficulties that are only recently being explored. This is an area that is ripe for experimentation and innovation because it has proven challenging to find a way to scale wireless domains using UAPs.

These are but a subset of the problems and issues associated with wireless access point authentication, and are intended to characterize weaknesses in the prior art by way of example. The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.

SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.

A technique for implementing an untethered access point (UAP) mesh involves enabling AP-local switching at one or more UAPs of the mesh. A system constructed according to the technique may include a wireless switch; an access point (AP) wire-coupled to the wireless switch; and a UAP mesh, wirelessly coupled to the AP, including a UAP with an AP-local switching engine embodied in a computer-readable medium. The system may or may not further include a wired backbone coupled to a wired network including the wireless switch. The UAP mesh may or may not be self-healing. A spanning-tree algorithm may or may not be embodied in a computer readable medium of the UAP mesh. The wireless switch may or may not include an authorization engine, embodied in a computer-readable medium, for acting in concert with an anchoring AP to authorize a downstream station. The AP-local switching engine may or may not make use of a station switching record (SSR) stored a the UAP.

Another system constructed according to the technique may include an untethered access point (UAP), including: a radio; a backhaul service set identifier (SSID) stored in a computer-readable medium; an anchor access point (AAP) selection engine embodied in a computer-readable medium. In operation, the AAP selection engine may use the radio to attempt to associate with the AAP if a beaconed backhaul SSID matches the stored backhaul SSID. The UAP may or may not further include a bootable image stored in a computer readable medium, wherein, in operation, the UAP boots up using the bootable image. The UAP may or may not use regulatory domain information to ensure the UAP is operating within regulatory limits before receiving a complete configuration. The AAP selection engine may or may not listen for a beacon from an AAP that includes the backhaul SSID. The AAP may or may not include a backhaul SSID stored in a computer-readable medium. The AAP may or may not include an authentication engine embodied in a computer-readable medium, wherein, in operation, the authentication engine works in concert with upstream components to authenticate the UAP. The AAP may or may not include a backhaul radio; a backhaul radio and service profile stored in a computer-readable medium; wherein, in operation, when the UAP is associated to the AAP, the backhaul radio sends messages from the UAP upstream using the backhaul radio and service profile. The AAP may or may not be configured to anchor the UAP and a limited number of additional UAPs.

A method according to the technique may include beaconing with a backhaul SSID; acting in concert with an upstream switch as an authenticator for a downstream station that responds to the beacon; providing limited local switching functionality for the downstream station. The method may or may not further include sending a station switching record (SSR) from the upstream switch to the downstream station; receiving the SSR from the downstream station; storing the SSR locally and sending the SSR upstream to a next upstream hop. The method may or may not further include receiving in an initial configuration the backhaul SSID; listening for a beacon with the backhaul SSID; attempting to associate with an anchoring AP that is beaconing with the backhaul SSID; if association is successful, receiving a station switching record (SSR) from the upstream switch, storing the SSR locally, and passing the SSR upstream.

The proposed system can offer, among other advantages, improved wireless domain scaling capabilities. This and other advantages of the techniques described herein will become apparent to those skilled in the art upon a reading of the following descriptions and a study of the several figures of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated in the figures. However, the embodiments and figures are illustrative rather than limiting; they provide examples of the invention.

FIG. 1 depicts an example of a system including an untethered access point (UAP) mesh.

FIG. 2 depicts an example of a subtree of a UAP mesh.

FIG. 3 depicts a flowchart of an example of a method for linking a UAP to an an anchoring access point (AAP).

FIG. 4 depicts a diagram illustrating a UAP linking to an existing wireless network.

FIG. 5 depicts an example of a system including a self-healing UAP mesh.

DETAILED DESCRIPTION

In the following description, several specific details are presented to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or in combination with other components, etc. In other instances, well-known implementations or operations are not shown or described in detail to avoid obscuring aspects of various embodiments, of the invention.

FIG. 1 depicts an example of a system 100 including an untethered access point (UAP) mesh. In the example of FIG. 1, the system 100 includes a network 102, a wireless switch 104, one or more APs 106-1 to 106-N (referred to collectively as APs 106), and a UAP mesh 108.

The network 102 may include an Internet protocol (IP) network. In an embodiment, the network 102 is a wired backbone to which the wireless switch 104 is coupled. However, the network 102 may alternatively represent the network, or any other network, to which a backbone network is coupled or which acts as an alternative to a backbone network. Thus, the network 102 could include, for example, the Internet.

The wireless switch 104 is typically wire connected to the APs 106. Thus, the “wireless” switch could be thought of, depending upon the implementation, as a switch for wireless traffic to and/or from a wired network. The wireless switch 104 is not necessarily wirelessly connected to anything. Each of the APs 106 could be wire coupled to respective switches such that each switch is wire coupled to only a single AP. So, although the one or more APs 106 is depicted as a plurality in the example of FIG. 1, it should be understood that the number of APs per switch is implementation- and/or embodiment-specific. An AP and the wireless switch 104 could be combined into a single device. However, in this description, the functionality of an AP is differentiated from the functionality of a switch by acting as if the APs and the wireless switches are distinct devices.

The wireless switch 104 may or may not have all of the tools to manage wireless stations and the UAP mesh locally. For example, there may be additional management (e.g., AAA servers) further upstream from the wireless switch 104. Since it is not critical where these services take place beyond the wireless switch 104, for illustrative simplicity, it is assumed that the wireless switch 104 handles all of these functions, either locally or by utilizing upstream components. For this reasons, the figures (other than FIG. 1) do not depict components further upstream from the wireless switch 104.

Wireless data may include, by way of example but not limitation, station association data and RF environment data. The station and RF data is used by the wireless switches 104 to support features including, by way of example but not limitation, roaming, auto channel selection, rogue AP detection, intrusion detection and the launching of countermeasures. The wireless switch 104 may share wireless data with other wireless switches (not shown).

The wireless switch 104 controls the APs 106 (and the APs in the UAP mesh 108). In an embodiment, the APs 106 include radio transmitters and receivers (e.g., transceivers) that are used to provide wireless network connectivity for users and station access to the functions of the wireless switch 104. Within an IEEE 802.11 context, a station is any IEEE 802.11 entity or the equivalent in other related standards, and it may be roaming or stationary. It should be noted that this definition may include APs.

Each of the APs 106 anchors at least a portion of the UAP mesh 108 to the wired network. The APs 106 may be treated as border devices between the wireless switch 104 (or other upstream components of the system 100) and the UAP mesh 108. This enables more efficient use of wireless resources because proxy address resolution protocol (proxy ARP) may be used to enable the APs 106 to answer ARP requests on behalf of a remote device (e.g., a UAP for which an AP serves as an anchor to the wireless switch 104).

In the example of FIG. 1, the UAP mesh 108 is intended to depict a plurality of potentially discrete APs that do not have a wired connection to the wireless switch 104 or to the APs 106. That is why the APs in the wireless mesh are referred to as “untethered.” Any station in the UAP mesh 108, whether a UAP or some other wireless station, is anchored to the wireless switch 104 by the AP 106 and zero or more UAPs that make up a chain of nodes from the station to the AP 106. An AP that is closer to the wireless switch 104 in the chain may be referred to as anchoring downstream stations. For any given station, the path from the station to the wireless switch 104 may be referred to as a spanning tree because the UAP mesh 108 should not allow loops for traffic passing between a station and the wireless switch 104.

When a UAP in the UAP mesh 108 is brought online, it will attempt to reach the wireless switch 104 through a path that is optimal. (Note: Although an optimal path is desired, it may or may not be accomplished in practice, depending upon the implemented algorithm and/or environmental factors). There are multiple metrics for measuring the distance of a UAP from one of the APs 106. For example, the metric may be time. That is, the amount of time it takes for a packet to travel between the UAP and the AP anchoring the UAP. Although such a metric may work fine, it will typically vary depending upon environmental factors, such as traffic congestion or degraded received signal strength. For simplicity, the metric used herein is the number of hops between the UAP and the anchoring AP (AAP), with the understanding that this is but one of many potential metrics. Thus, if a UAP is one hop away from the AAP, the UAP may be referred to as a one-hop UAP. In general, a UAP may be referred to as an N-hop UAP where the UAP is N hops from the AAP.

Advantageously, UAPs of the UAP mesh 108 may include an AP-local switching engine embodied in a computer-readable medium. An AP-local switching engine may make use of a station switching record (SSR) to determine how to switch a given message unit (e.g., a packet, frame, datagram, etc.). This enables at least some traffic to be efficiently switched within the UAP mesh 108. Moreover, advantageously, some traffic may be tunneled back to a switch, while other traffic is locally switched. Which traffic is tunneled back, and which traffic is locally switched, is an implementation-specific decision that becomes available by using the teachings described herein.

It will be appreciated in light of the description provided herein that although aspects of the invention are described relative to IEEE 802.11 standards, and that certain embodiments have particular features that are implemented within the 802.11 context, the invention itself is not limited to 802.11 networks and may generally be applied to any applicable wireless network; and to the extent that future technological enhancements might obscure the distinctions between wireless switches, APs, and/or stations, the invention is understood to include components providing the features of such switches, APs, and stations independently of how they are packaged, combined, or labeled.

In an illustrative embodiment, the UAP mesh 108 is created from a spanning tree. Each station in the UAP mesh 108 attempts to reach the wireless switch 104 along an optimal path. Assuming the optimal path is measured in the number of hops to the wire, if a first station's traffic passes through a UAP and along a path from there to the wire, a second station's traffic that passes through the UAP will take the same path from there to the wire. Since all stations take the optimal path, the stations may be represented as edge nodes of a tree where the AP at the wire is the root node. Thus, the AP mesh acts as a spanning tree for each station. It may be noted that the spanning tree is greedy at each node, which naturally results in an efficient (perhaps even optimized) tree flow.

FIG. 2 depicts an example of a subtree 200 of a UAP mesh. The subtree 200 includes an anchor AP (AAP) 202, and one or more UAPs 204-1 to 204-N (referred to collectively as UAPs 204). The path upstream from the AAP 202 to the switch may include no hops, if the AAP 202 is a (tethered) AP; one hop, if the AAP 202 is wirelessly coupled directly to a (tethered) AP, or a chain of UAP nodes; or multiple hops, if the path from the AAP 202 to the switch includes a chain of UAPs. The path downstream from the UAP 204-2 may include multiple jumps, as well. However, it should be noted that if the stations are not wirelessly coupled directly to the UAP 204-2, the UAP 204-2 is actually an AAP (i.e., the UAP 204-2 would be anchoring downstream UAPs).

In the example of FIG. 2, the AAP 202 includes a backhaul radio 210 and memory 212. The number of UAPs 204 that are anchored by the AAP 202 may be implementation- or embodiment-specific. For example, a particular installation may limit the number of UAPs 204 to, e.g., five.

The backhaul radio 210 may be a radio that is dedicated to transmitting data associated with the UAPs 204. Whether the radio is dedicated to backhauling is an implementation-specific decision. Since there may be multiple radio and SSID configurations per radio-profile, the radio may be used to perform both the backhaul function and other, e.g., 802.11 services. However, it is expected that many customers who implement backhaul services will dedicate a radio to backhaul services because the backhaul link is an important one. In an illustrative embodiment, the backhaul radio 210 is capable of passive scan and active scan. However, it should be noted that in some implementations, best practice may advice against active scan. The channel and power settings are often hard configured so auto-tuning may not be available and may even be undesirable. The ability to change the backhaul channel and force all UAPs to do likewise without dropping any sessions would potentially make auto-tuning more viable. The AAP 202 may or may not include one or more radios (not shown) in addition to the backhaul radio 210.

The memory 212 includes a plurality of modules, some of which are depicted in FIG. 2 for illustrative purposes. A processor (not shown) is coupled to the memory 212 in a manner that is well-known in the relevant arts. The memory 212 is intended to represent any of a plurality of known or convenient computer-readable mediums, including non-volatile storage, RAM, flash memory, cache, etc. Any applicable computer-readable medium may be used.

In the example of FIG. 2, the memory 212 includes a backhaul radio and service profile module 214, a backhaul service set identifier (SSID) 216, and an authentication engine 218. The backhaul radio and service profile module 214 includes data to be used in association with the backhaul. The backhaul SSID 216 identifies the support network. The authentication engine 218 facilitates authentication of wireless stations (including UAPs). In an illustrative embodiment, the authentication engine 218 authenticates a station in concert with a switch or other upstream component. The station or upstream component may assist in the authentication “on the fly” when a wireless station attempts to associate with the AAP 202, or in advance for a pre-authorized wireless station. In an embodiment that does not have (or has more limited) centralized management, the authentication engine 218 could even be configured to authenticate without the assistance of a switch or other upstream component.

The AAP 202 may be configured to beacon the backhaul SSID 216. The service profile is then associated to a radio profile and AP following known or convenient conventions. Since backhaul services will be applied to specific APs in at least one embodiment, general AP-configuration policies (such as auto-dap templates) that can apply to unspecific APs are not enabled in this embodiment. They may be enabled in other embodiments, however.

In the example of FIG. 2, the UAP 204-2 includes a radio 220 and memory 222. Details of other ones of the UAPs 204 are omitted to avoid cluttering the figure. Each of the UAPs 204 may be identical to, similar to, or different from the UAP 204-2. The radio 220 may or may not be a dedicated backhaul radio. The value of making the radio 220 into a dedicated backhaul radio diminishes if the UAP 204-2 is at the edge of a UAP mesh (e.g., when there are no downstream UAPs), though the value may or may not be diminished to zero.

The memory 222 includes regulatory domain information 224, a backhaul SSID 226, a bootable image 228, and an AAP selection engine 230. The regulatory domain information 224 provides information to the UAP about allowed broadcast parameters for a given region. The CLI to preconfigure a DAP for untethered operation may include the SSID of the anchor AP and a preshared key (not shown). When the UAP is configured with the backhaul SSID 226, the regulatory domain information 224 should probably be stored in, e.g., flash, as well (as shown). This prevents the UAP from operating outside of the regulatory limits before it receives its complete configuration from the switch. It must be clearly documented that when prestaging UAPs, the regulatory and antenna information is correct and reflects the actual deployment to avoid regulatory violations. The regulatory domain information may be updated with a running configuration.

The bootable image 228 enables the UAP 204-2 to be deployed with the same services as the AAP 202 (though performance could be adversely impacted by the radio link). When the UAP 204-2 is up and running, the boot configuration associated with the bootable image 228 may be changed. When the boot configuration is changed, the UAP 204-2 must be reset for the changes to take effect. It is not always desirable to allow the boot configuration to change. For example, it is possible for a UAP to find a switch running a software version that does not support untethered APs. When the UAP sees than an older version of software is trying to manage it, the UAP may choose to reboot so as to protect its untethered-capable running image. (This may further require that the anchor AP generate a log message when a radio link is created or destroyed so that link flapping can be identified and, hopefully, remedied.)

The AAP selection engine 230 enables the UAP 204-2 to select an AAP from a plurality of potential AAPs. Any known or convenient algorithm may be implemented to choose an AAP. For example, the AAP may be selected by comparing relative signal strengths and choosing the strongest. Alternatively or in addition, each AAP could broadcast an estimated time to wire, or number of hops to wire, which the AAP selection engine 230 can use to choose an optimal AAP. In a non-limiting embodiment, the implemented algorithm is greedy at the UAP 204-2.

In a non-limiting embodiment, if the UAP 204-2 is unable to associate with the AAP 202, the UAP 204-2 may beacon an SOS signal, including its serial number. The beacon signal is (hopefully) received at an AP, and sent to the wired network for processing (e.g, at a wireless switch). If appropriate, the upstream component may provide the AAP 202 (or some other AP within range of the UAP 204-2) with data and/or instructions to facilitate an association.

FIG. 3 depicts a flowchart 300 of an example of a method for linking a UAP to an AAP. In the example of FIG. 3, the flowchart 300 starts at module 302 where a UAP listens for a beacon with a correct SSID. To know whether an SSID is correct, the UAP must either have the SSID stored in memory, or be informed in some other manner. The UAP will associate to the AAP, at which point (or perhaps after authentication) the UAP will have layer 2 connectivity to the AAP. In order for the associated radio link to be established, the AAP acts as an anchor point and the UAP acts as a client device.

In the example of FIG. 3, the flowchart 300 continues to module 304 where the AAP acts as an authenticator in concert with a switch to authenticate the UAP. Implementation of this technique may be based on wpa_supplicant under a BSD license including minimum eap methods. Although wpa_supplicant and WPA-PSK may be used to authenticate, this is an implementation-specific choice; any known or convenient technique that works for the intended purpose may be used.

In the example of FIG. 3, the flowchart 300 continues to module 306 where DAP operations are carried out. This may include DAP+TAPA protocols, including optional switch-AP security. At this point, the flowchart 300 ends, though if the DAP operations end, the flowchart 300 could resume at any point (i.e., module 302, 304, or 306).

FIG. 4 depicts a diagram 400 illustrating a UAP linking to an existing wireless network. The diagram 400 includes a switch 402, an AAP 404, and a UAP 406. The switch 402 may be similar to the wireless switch 104 (FIG. 1). The break 408 is intended to represent the case where the AAP 404 is untethered so that there are additional nodes (e.g., a tethered AP) between the AAP 404 and the switch 402. However, in an alternative, the AAP 404 may itself be a tethered AP wire connected to the switch 402. The UAP 406 is initially not linked to the AAP 404, but becomes linked as described below.

The UAP 406 is 1) configured with a backhaul SSID. While this is not a strict requirement, it is a convenience for those who are responsible for installing or placing the UAP within a UAP mesh. Conceivably, the UAP could be configured to receive an SSID over the air or acquire an SSID in some other manner.

The UAP 406 is powered up and 2) listens for a beacon with a backhaul SSID. Again, this is not a strict requirement. It is believed to be more convenient to have the UAP 406 listen for a beacon than to have the UAP initiate a link prior to or instead of receiving a beacon. This is at least in part due to standard practice in 802.11 systems, though such a practice may not be prevalent or even desired in other wireless systems.

The AAP 404 3) broadcasts a beacon with the backhaul SSID. The backhaul SSID may be preconfigured at the AAP 404 or could be received at the AAP 404 from the switch at boot time or after.

The UAP 406 4) attempts to associate with the AAP 404 upon matching the broadcast backhaul SSID with the backhaul SSID stored locally. It may be noted that the backhaul SSID of the UAP 406 is assumed to be the same as that of the broadcast backhaul SSID. However, there may be other UAPs that are within range of the AAP 404 that have different backhaul SSIDs (perhaps associated with a different AAP). Also, a single AAP could conceivably have multiple backhaul radios, each associated with a different backhaul SSID, or even a single backhaul radio associated with multiple backhaul SSIDs.

The AAP 404 5) authenticates the UAP 406 in concert with the switch 402. The UAP 406 may be able to form a layer 2 connection with the AAP 404 when it associates, but the AAP 404 will likely not allow traffic to flow upstream until authentication is complete. While this is not a strict requirement, wireless resources are often relatively scarce, so, in an effort to conserve resources in the case where the UAP 406 is unable to be authenticated, it may be desirable to restrict traffic flow until authentication is complete.

The switch 402 6) generates an SSR for the UAP 406. Since the AAP 404 authenticates the UAP 406 in concert with the switch 402, the switch 402 knows about the UAP 406. So the switch 402 is capable of producing an SSR for the UAP 406. In an embodiment, the SSR includes data associated with authorized stations and access control list (ACL) filters. An ACL refers to rules that typically detail service ports or the like that are available on a host or other layer 3 device, each with a list of hosts and/or networks permitted to use the service. ACLs can be configured to control upstream and downstream traffic. (In this context, they are similar to firewalls.) Typically, servers and routers have network ACLs, but in an illustrative embodiment, ACL rules are provided to APs. The SSR enables the UAP 406 to switch at least some traffic, thereby reducing the amount of traffic that has to be switched higher upstream. Advantageously, this pushes message filtering to the edges (or root) of the UAP mesh.

The switch 402 7) forms a control channel 410 to the UAP 406. It should be noted that the control channel 410 may simply be a virtual “tunnel” in that tables at each hop along the path to the UAP 406 identify the next hop. This is advantageous because it avoids flooding the UAP mesh, which is wasteful of wireless resources. It should be noted that the control channel 410 is not a “tunnel” in the traditional sense because a tunnel is used to carry user data, which is not necessarily the case here.

The switch 402 8) sends the SSR to the UAP 406 via the control channel 410.

The AAP 404 9) unicasts the SSR to the UAP 406. In a non-limiting embodiment, this type of action actually occurs at each hop along the path. The SSR is “unicast” because the AAP 404 knows that the destination of the message is the UAP 406, and any other UAPs (now shown) that are listening to the AAP 404 know the destination is not them or downstream from them.

The UAP 406 10) receives the SSR and propagates the SSR upstream. That is, the SSR is stored at the UAP 406, then sent to the next hop closer to the switch 402. Traffic associated with the UAP 406 can travel upstream as the SSR is propagated.

The AAP 404 11) receives the SSR and propagates the SSR upstream. This occurs at other nodes along the UAP chain up to and including the anchoring (tethered) AP.

FIG. 5 depicts an example of a system 500, including a self-healing UAP mesh. In the example of FIG. 5, the system 500 includes a switch 502, an AP 504, UAPs 506-1 and 506-2 (referred to collectively as “one-hop UAPs 506”), UAPs 508-1 and 508-2 (referred to collectively as “two-hop UAPs 508 ”), UAPs 510-1 and 510-2 (referred to collectively as “three-hop UAPs 510”), a UAP 512, a station 520, and a station 522.

Initially, it is assumed that each UAP is authenticated and has a valid SSR. The SSRs facilitate at least some switching capability within the UAP mesh. For example, if the station 520 sends a packet to the station 522, the packet travels upstream to the UAP 508-1, then to the UAP 506-1. The UAP 506-1 knows that the destination (station 522) is downstream. Accordingly, rather than sending the packet upstream to the switch 502, the UAP 506-1 makes use of the limited data included in the SSR to send the packet downstream to the UAP 508-2, which sends the packet to the UAP 510-2, which sends the packet to the UAP 512, which sends the packet to the station 522.

The UAP mesh is self-healing in that if a node goes down, only the affected UAPs need to update. Specifically, say the UAP 510-2 goes down. (This is represented in the example of FIG. 5 by the shading of the UAP 510-2.) When the UAP 510-2 goes down, it causes several problems, including 1) the station 522 is no longer associated with a UAP that can forward messages to and from the station 522; 2) the UAP 508-2 and other upstream nodes (e.g., the UAP 506-1) have incorrect data.

Problem 1) can be remedied in the following manner.

1.1) The UAP 512 detects a link failure between itself and the UAP 510-2 because, for the purpose of example, the UAP 510-2 is assumed to have gone down.

1.2) The UAP 512 establishes a link with the UAP 510-1. The new link is represented in the example of FIG. 5 as a dotted line 530. It may be noted that the UAP 512 may have multiple choices of UAPs, though in the example of FIG. 5, only the available UAP 510-1 is depicted. (Presumably, if one of the two-hop UAPs 508 were within range of the UAP 512, the UAP 512 would not have been linked with the UAP 510-2, which is a three-hop UAP. Accordingly, it is assumed that only the UAP 510-1 is in range of the UAP 512.)

1.3) The UAP 510-1 sends a message to the switch 502, alerting the switch 502 that a new SSR is needed because the station 522—and any other stations downstream from UAP 512 (not shown)—is now reachable via a new path.

1.4) The switch 502 sends an SSR downstream to the UAP 510-1. Relevant data from the SSR is propagated at each node, either as the SSR is passed down or by propagation upstream from the UAP 510-1, as has been described previously. Depending upon the implementation and/or embodiment, since the UAP 512 already knows about each station associated with it, and can update upstream routing data locally, the UAP 512 need not necessarily receive the newly sent SSR because the downstream paths remain unbroken, and the upstream path is established through the link to the UAP 510-1.

It may be noted that part of problem 2 is already solved in addressing problem 1. Specifically, the UAP 506-1 has been updated correctly as the SSR is propagated at each node (if applicable). However, the UAP 508-2 still includes incorrect data. Problem 2 can be fully remedied in the following manner:

2.1) The UAP 508-2 detects a link failure between itself and the UAP 510-2.

2.2) The UAP 508-2 waits for a timeout period. Waiting for a timeout period may be important for ensuring that the station 522 maintains connectivity with the switch 502. Specifically, if the UAP 508-2 deletes the data associated with the UAP 510-2 (and therefore data associated with downstream nodes, including the UAP 512 and the station 522), and sends the update upstream, upstream nodes will also delete the data. Eventually the update will reach the switch 502, which will update records to show that stations downstream from the UAP 510-2, including the station 522, are now disassociated. By waiting for a timeout period, the UAP 510-1 can update appropriately, before any disassociation, to ensure continuous connectivity (and, e.g., a smooth handoff).

2.3) The UAP 508-2 deletes the data associated with the UAP 510-2 (necessarily including data associated with the station 522). Since the UAP 508-2 waited for a timeout period, the UAP 510-1 has presumably updated the switch 502, and an SSR and/or other data has been propagated along the path between the switch 502 and the UAP 512. Accordingly, the UAP 506-1-and, more generally, all APs on the path between the UAP 512 and the switch 502-will have current data. Therefore, it is not desirable for the update from the UAP 508-2 (deleting the UAP 510-2 and nodes downstream from UAP 510-2) to be implemented at any of the newly updated nodes because the update will or could (depending upon the implementation) delete good data. In an illustrative embodiment, sequence numbers for updates may be used. Specifically, the sequence number associated with the deletion of the data at the UAP 508-2 should be before the sequence number associated with the update at the UAP 510-1. In this way, when the UAP 506-1 receives an update from the UAP 508-2 to delete data, the UAP 506-1 can check the sequence number of the update and, noticing that the sequence number is before the sequence number associated with the latest update, ignore the update. Advantageously, when a UAP notices that the sequence number comes before a most recent update, the UAP can drop the old update; all upstream nodes will have the correct data so the update need not be passed upstream.

After the UAP 512 is linked back into the UAP mesh via the link 530, the switching functionality of the mesh is also updated. So, if the station 520 sends a packet to the station 522, the packet may be sent up to the UAP 508-1, which recognizes that the station 522 is downstream. Then the UAP 508-1 sends the packet downstream to UAP 510-1, which sends the packet to the UAP 512, which sends the packet to the station 522.

As used herein, an AP may refer to a standard (tethered) AP or to a UAP. Where a distinction should be drawn, an AP may be referred to as a “(tethered) AP” or a “UAP,” as appropriate.

As used herein, the term “embodiment” means an embodiment that serves to illustrate by way of example but not limitation.

It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Claims

1. An apparatus, comprising:

a first untethered access point (UAP) configured to be included within a UAP mesh, the first UAP configured to be operatively coupled to an access point (AP) operatively coupled to a wireless switch;
the first UAP including a switching engine embodied in a computer-readable medium, the switching engine configured to send a first station switching record received at a first time from the wireless switch to a second UAP from the UAP mesh, the second UAP enabled to switch traffic locally based on the station switching record,
the switching engine configured to receive a second station switching record when a new path is available.

2. The system of claim 1, further comprising wherein the UAP is configured to be coupled to the AP operatively coupled to the wireless switch included in a wireless network coupled to a wired backbone.

3. The system of claim 1, wherein the UAP mesh is self-healing.

4. The system of claim 1, wherein a spanning tree algorithm is embodied in a computer readable medium of the UAP mesh.

5. The system of claim 1, wherein the wireless switch includes an authorization engine, embodied in a computer-readable medium, the authorization engine configured to authorize a downstream station.

6. The system of claim 1, wherein the switching engine is configured to send a data unit based on the first station switching record.

7. The system of claim 1, wherein, the first station switching record is received from the wireless switch at the first UAP.

8. An apparatus, comprising:

an untethered access point (UAP) configured to be included in a UAP mesh, the UAP configured to be operatively coupled to an access point that is operatively coupled to a switch;
the UAP configured to receive at a first time from a switch a first station switching record defined by the switch via a control channel, the UAP enabled to switch traffic locally based on the station switching record;
the UAP configured to forward the first station switching record and a data unit to the access point; and
the UAP configured to receive a second station switching record when a new path is available.

9. The apparatus of claim 8, wherein the first station switching record includes an access control list.

10. The apparatus of claim 8, wherein the UAP is configured to receive the first station switching record from a unicast signal defined by the access point.

11. The apparatus of claim 8, wherein the UAP is configured to be authenticated by both the switch and the access point prior to receiving the first station switching record.

12. The apparatus of claim 8, wherein the UAP further includes a selection engine configured to select the access point from a plurality of access points.

13. An apparatus, comprising:

an access point operatively coupled to an untethered access point and a switch;
the access point configured to receive from the switch a first station switching record defined by the switch via a control channel, the untethered access point enabled to switch traffic locally based on the first station switching record, the control channel being a virtual tunnel between the switch and the untethered access point, the virtual tunnel include a first hop, a second, hop, and a table associated with the first hop to identify the second hop;
the access point configured to send a signal, including the first station switching record, to the untethered access point;
the access point configured to receive the first station switching record and a data unit from the untethered access point; and
the access point configured to receive a second station switching record when a new path is available.

14. The apparatus of claim 13, wherein the first station switching record includes at least one of an access control list or data associated with authorized stations.

15. The apparatus of claim 13, wherein the signal is a unicast signal configured to be received only by the untethered access point.

16. The apparatus of claim 13, wherein the access point further includes an authentication engine configured to authenticate the untethered access point prior to sending the signal.

17. The apparatus of claim 13, wherein the access point is further configured to forward the station switching record with the data unit received from the untethered access point.

Referenced Cited
U.S. Patent Documents
3641433 February 1972 Mifflin et al.
3906166 September 1975 Cooper et al.
4168400 September 18, 1979 De Couasnon et al.
4176316 November 27, 1979 DeRoas et al.
4247908 January 27, 1981 Lockhart et al.
4291401 September 22, 1981 Bachmann
4291409 September 22, 1981 Weinberg et al.
4409470 October 11, 1983 Shepard et al.
4460120 July 17, 1984 Shepard et al.
4475208 October 2, 1984 Ricketts
4494238 January 15, 1985 Groth, Jr.
4500987 February 19, 1985 Hasegawa
4503533 March 5, 1985 Tobagi et al.
4550414 October 29, 1985 Guinon et al.
4562415 December 31, 1985 McBiles
4630264 December 16, 1986 Wah
4635221 January 6, 1987 Kerr
4639914 January 27, 1987 Winters
4644523 February 17, 1987 Horwitz
4672658 June 9, 1987 Kavehrad
4673805 June 16, 1987 Shepard et al.
4707839 November 17, 1987 Andren et al.
4730340 March 8, 1988 Frazier
4736095 April 5, 1988 Shepard et al.
4740792 April 26, 1988 Sagey et al.
4758717 July 19, 1988 Shepard et al.
4760586 July 26, 1988 Takeda
4789983 December 6, 1988 Acampora et al.
4829540 May 9, 1989 Waggener et al.
4850009 July 18, 1989 Zook et al.
4872182 October 3, 1989 Mcrae et al.
4894842 January 16, 1990 Brockhaven et al.
4901307 February 13, 1990 Gilhousen et al.
4933952 June 12, 1990 Albrieux et al.
4933953 June 12, 1990 Yagi
4955053 September 4, 1990 Siegmund
4995053 February 19, 1991 Simpson et al.
5008899 April 16, 1991 Yamamoto
5027343 June 25, 1991 Chan et al.
5029183 July 2, 1991 Tymes
5103459 April 7, 1992 Gilhousen et al.
5103461 April 7, 1992 Tymes
5109390 April 28, 1992 Gilhousen et al.
5119502 June 2, 1992 Kallin et al.
5142550 August 25, 1992 Tymes
5151919 September 29, 1992 Dent
5157687 October 20, 1992 Tymes
5187675 February 16, 1993 Dent et al.
5231633 July 27, 1993 Hluchyj et al.
5280498 January 18, 1994 Tymes et al.
5285494 February 8, 1994 Sprecher et al.
5327144 July 5, 1994 Stilp et al.
5329531 July 12, 1994 Diepstraten
5339316 August 16, 1994 Diepstraten
5371783 December 6, 1994 Rose et al.
5418812 May 23, 1995 Reyes et al.
5432842 July 11, 1995 Kinoshita
5444851 August 22, 1995 Woest
5448569 September 5, 1995 Huang et al.
5450615 September 12, 1995 Fortune et al.
5465401 November 7, 1995 Thompson
5479441 December 26, 1995 Tymes et al.
5483676 January 9, 1996 Mahany et al.
5488569 January 30, 1996 Kaplan et al.
5491644 February 13, 1996 Pickering et al.
5517495 May 14, 1996 Lund
5519762 May 21, 1996 Bartlett
5528621 June 18, 1996 Heiman et al.
5542100 July 30, 1996 Hatakeyama
5546389 August 13, 1996 Wippenbeck et al.
5561841 October 1, 1996 Markus
5568513 October 22, 1996 Croft et al.
5570366 October 29, 1996 Baker et al.
5584048 December 10, 1996 Wieczorek
5598532 January 28, 1997 Liron
5630207 May 13, 1997 Gitlin et al.
5640414 June 17, 1997 Blakeney et al.
5649289 July 15, 1997 Wang et al.
5668803 September 16, 1997 Tymes et al.
5670964 September 23, 1997 Dent
5677954 October 14, 1997 Hirata et al.
5706428 January 6, 1998 Boer et al.
5715304 February 3, 1998 Nishida et al.
5729542 March 17, 1998 Dupont
5734699 March 31, 1998 Lu et al.
5742592 April 21, 1998 Scholefield et al.
5774460 June 30, 1998 Schiffel et al.
5793303 August 11, 1998 Koga
5794128 August 11, 1998 Brockel et al.
5812589 September 22, 1998 Sealander et al.
5815811 September 29, 1998 Pinard et al.
5818385 October 6, 1998 Bartholomew
5828653 October 27, 1998 Goss
5828960 October 27, 1998 Tang et al.
5835061 November 10, 1998 Stewart
5838907 November 17, 1998 Hansen
5844900 December 1, 1998 Hong et al.
5852722 December 22, 1998 Hamilton
5862475 January 19, 1999 Zicker et al.
5872968 February 16, 1999 Knox et al.
5875179 February 23, 1999 Tikalsky
5887259 March 23, 1999 Zicker et al.
5896561 April 20, 1999 Schrader et al.
5909686 June 1, 1999 Muller et al.
5915214 June 22, 1999 Reece et al.
5920821 July 6, 1999 Seazholtz et al.
5933607 August 3, 1999 Tate et al.
5938721 August 17, 1999 Dussell et al.
5949988 September 7, 1999 Feisullin et al.
5953669 September 14, 1999 Stratis et al.
5960335 September 28, 1999 Umemoto et al.
5969678 October 19, 1999 Stewart
5970066 October 19, 1999 Lowry et al.
5977913 November 2, 1999 Christ
5980078 November 9, 1999 Krivoshein et al.
5982779 November 9, 1999 Krishnakumar et al.
5987062 November 16, 1999 Engwer et al.
5987328 November 16, 1999 Ephremides et al.
5991817 November 23, 1999 Rowett et al.
5999813 December 7, 1999 Lu et al.
6005853 December 21, 1999 Wang et al.
6011784 January 4, 2000 Brown
6012088 January 4, 2000 Li et al.
6029196 February 22, 2000 Lenz
6041240 March 21, 2000 McCarthy et al.
6041358 March 21, 2000 Huang et al.
6070243 May 30, 2000 See et al.
6073075 June 6, 2000 Kondou et al.
6073152 June 6, 2000 De Vries
6078568 June 20, 2000 Wright
6088591 July 11, 2000 Trompower
6101539 August 8, 2000 Kennelly et al.
6115390 September 5, 2000 Chuah
6118771 September 12, 2000 Tajika et al.
6119009 September 12, 2000 Baranger et al.
6122520 September 19, 2000 Want et al.
6144638 November 7, 2000 Obenhuber et al.
6148199 November 14, 2000 Hoffman et al.
6154776 November 28, 2000 Martin
6160804 December 12, 2000 Ahmed et al.
6177905 January 23, 2001 Welch
6188694 February 13, 2001 Fine et al.
6199032 March 6, 2001 Anderson
6208629 March 27, 2001 Jaszewki et al.
6208841 March 27, 2001 Wallace et al.
6212395 April 3, 2001 Lu et al.
6218930 April 17, 2001 Katzenberg et al.
6240078 May 29, 2001 Kuhnel et al.
6240083 May 29, 2001 Wright
6240291 May 29, 2001 Narasimhan et al.
6246751 June 12, 2001 Bergl et al.
6249252 June 19, 2001 Dupray
6256300 July 3, 2001 Ahmed et al.
6256334 July 3, 2001 Adachi
6259405 July 10, 2001 Stewart et al.
6262988 July 17, 2001 Vig
6269246 July 31, 2001 Rao et al.
6285662 September 4, 2001 Watannabe
6304596 October 16, 2001 Yamano et al.
6304906 October 16, 2001 Bhatti et al.
6317599 November 13, 2001 Rappaport et al.
6326918 December 4, 2001 Stewart
6336035 January 1, 2002 Somoza et al.
6336152 January 1, 2002 Richman et al.
6347091 February 12, 2002 Wallentin et al.
6356758 March 12, 2002 Almeida et al.
6393290 May 21, 2002 Ulfongene
6397040 May 28, 2002 Titmuss et al.
6400722 June 4, 2002 Chuah et al.
6404772 June 11, 2002 Beach et al.
6421714 July 16, 2002 Rai et al.
6429879 August 6, 2002 Sturgeon et al.
6446206 September 3, 2002 Feldbaum
6456239 September 24, 2002 Werb et al.
6470025 October 22, 2002 Wilson et al.
6473449 October 29, 2002 Cafarella et al.
6493679 December 10, 2002 Rappaport et al.
6496290 December 17, 2002 Lee
6512916 January 28, 2003 Forbes, Jr.
6526275 February 25, 2003 Calvert
6535732 March 18, 2003 McIntosh et al.
6564380 May 13, 2003 Murphy
6567146 May 20, 2003 Hirakata et al.
6567416 May 20, 2003 Chuah
6574240 June 3, 2003 Tzeng
6580700 June 17, 2003 Pinard et al.
6584494 June 24, 2003 Manabe et al.
6587680 July 1, 2003 Ata-Laurila et al.
6587835 July 1, 2003 Treyz et al.
6603970 August 5, 2003 Huelamo Platas et al.
6614787 September 2, 2003 Jain et al.
6615276 September 2, 2003 Mastrianni et al.
6624762 September 23, 2003 End, III
6625454 September 23, 2003 Rappaport et al.
6631267 October 7, 2003 Clarkson et al.
6650912 November 18, 2003 Chen et al.
6658389 December 2, 2003 Alpdemir
6659947 December 9, 2003 Carter et al.
6661787 December 9, 2003 O'Connell et al.
6674403 January 6, 2004 Gray et al.
6677894 January 13, 2004 Sheynblat et al.
6678516 January 13, 2004 Nordman et al.
6678802 January 13, 2004 Hickson
6687498 February 3, 2004 McKenna et al.
6697415 February 24, 2004 Mahany
6721334 April 13, 2004 Ketcham
6721548 April 13, 2004 Mohindra et al.
6725260 April 20, 2004 Philyaw
6738629 May 18, 2004 McCormick et al.
6747961 June 8, 2004 Ahmed et al.
6756940 June 29, 2004 Oh et al.
6760324 July 6, 2004 Scott et al.
6785275 August 31, 2004 Boivie et al.
6788938 September 7, 2004 Sugaya et al.
6798788 September 28, 2004 Viswanath et al.
6801782 October 5, 2004 McCrady et al.
6826399 November 30, 2004 Hoffman et al.
6839338 January 4, 2005 Amara et al.
6839348 January 4, 2005 Tang et al.
6839388 January 4, 2005 Vaidyanathan
6847620 January 25, 2005 Meier
6847892 January 25, 2005 Zhou et al.
6856800 February 15, 2005 Henry et al.
6865609 March 8, 2005 Gubbi et al.
6879812 April 12, 2005 Agrawal et al.
6901439 May 31, 2005 Bonasia et al.
6917688 July 12, 2005 Yu et al.
6934260 August 23, 2005 Kanuri
6937566 August 30, 2005 Forslow
6938079 August 30, 2005 Anderson et al.
6957067 October 18, 2005 Iyer et al.
6973622 December 6, 2005 Rappaport et al.
6978301 December 20, 2005 Tindal
6980533 December 27, 2005 Abraham et al.
6985469 January 10, 2006 Leung
6985697 January 10, 2006 Smith et al.
6990348 January 24, 2006 Benveniste
6993683 January 31, 2006 Bhat et al.
6996630 February 7, 2006 Masaki et al.
7013157 March 14, 2006 Norman et al.
7020438 March 28, 2006 Sinivaara et al.
7020773 March 28, 2006 Otway et al.
7024199 April 4, 2006 Massie et al.
7024394 April 4, 2006 Ashour et al.
7027773 April 11, 2006 McMillin
7031705 April 18, 2006 Grootwassink
7035220 April 25, 2006 Simcoe
7039037 May 2, 2006 Wang et al.
7058414 June 6, 2006 Rofheart et al.
7062566 June 13, 2006 Amara et al.
7068999 June 27, 2006 Ballai
7079537 July 18, 2006 Kanuri et al.
7089322 August 8, 2006 Stallmann
7092529 August 15, 2006 Yu et al.
7110756 September 19, 2006 Diener
7116979 October 3, 2006 Backes et al.
7126913 October 24, 2006 Patel et al.
7134012 November 7, 2006 Doyle et al.
7139829 November 21, 2006 Wenzel et al.
7142867 November 28, 2006 Gandhi et al.
7146166 December 5, 2006 Backes et al.
7155236 December 26, 2006 Chen et al.
7155518 December 26, 2006 Forslow
7158777 January 2, 2007 Lee et al.
7159016 January 2, 2007 Baker
7221927 May 22, 2007 Kolar et al.
7224970 May 29, 2007 Smith et al.
7239862 July 3, 2007 Clare et al.
7246243 July 17, 2007 Uchida
7263366 August 28, 2007 Miyashita
7274730 September 25, 2007 Nakabayashi
7280495 October 9, 2007 Zweig et al.
7290051 October 30, 2007 Dobric et al.
7293136 November 6, 2007 More et al.
7310664 December 18, 2007 Merchant et al.
7317914 January 8, 2008 Adya et al.
7320070 January 15, 2008 Baum
7324468 January 29, 2008 Fischer
7324487 January 29, 2008 Saito
7324489 January 29, 2008 Iyer et al.
7336961 February 26, 2008 Ngan
7349412 March 25, 2008 Jones et al.
7350077 March 25, 2008 Meier et al.
7359676 April 15, 2008 Hrastar
7370362 May 6, 2008 Olson et al.
7376080 May 20, 2008 Riddle et al.
7379423 May 27, 2008 Caves et al.
7382756 June 3, 2008 Barber et al.
7417953 August 26, 2008 Hicks et al.
7421248 September 2, 2008 Laux et al.
7421487 September 2, 2008 Peterson et al.
7440416 October 21, 2008 Mahany et al.
7443823 October 28, 2008 Hunkeler et al.
7447502 November 4, 2008 Buckley
7451316 November 11, 2008 Halasz et al.
7460855 December 2, 2008 Barkley et al.
7466678 December 16, 2008 Cromer et al.
7475130 January 6, 2009 Silverman
7477894 January 13, 2009 Sinha
7480264 January 20, 2009 Duo et al.
7483390 January 27, 2009 Rover et al.
7489648 February 10, 2009 Griswold
7493407 February 17, 2009 Leedom et al.
7505434 March 17, 2009 Backes
7509096 March 24, 2009 Palm et al.
7519372 April 14, 2009 MacDonald et al.
7529925 May 5, 2009 Harkins
7551574 June 23, 2009 Peden, II et al.
7551619 June 23, 2009 Tiwari
7558266 July 7, 2009 Hu
7570656 August 4, 2009 Raphaeli et al.
7573859 August 11, 2009 Taylor
7577453 August 18, 2009 Matta
7592906 September 22, 2009 Hanna et al.
7603119 October 13, 2009 Durig et al.
7603710 October 13, 2009 Harvey et al.
7636363 December 22, 2009 Chang et al.
7665132 February 16, 2010 Hisada et al.
7680501 March 16, 2010 Sillasto et al.
7693526 April 6, 2010 Qian et al.
7706749 April 27, 2010 Ritala
7715432 May 11, 2010 Bennett
7716379 May 11, 2010 Ruan et al.
7724703 May 25, 2010 Matta et al.
7724704 May 25, 2010 Simons et al.
7729278 June 1, 2010 Chari et al.
7733868 June 8, 2010 Van Zijst
7738433 June 15, 2010 Tao
7746897 June 29, 2010 Stephenson et al.
7788475 August 31, 2010 Zimmer et al.
7805529 September 28, 2010 Galluzzo et al.
7817554 October 19, 2010 Skog et al.
7844298 November 30, 2010 Riley
7856659 December 21, 2010 Keeler et al.
7865713 January 4, 2011 Chesnutt et al.
7873061 January 18, 2011 Gast et al.
7894852 February 22, 2011 Hansen
7912982 March 22, 2011 Murphy
7920548 April 5, 2011 Lor et al.
7929922 April 19, 2011 Kubo
7945399 May 17, 2011 Nosovitsky et al.
7986940 July 26, 2011 Lee et al.
8000724 August 16, 2011 Rayburn et al.
8014404 September 6, 2011 Eki et al.
8019082 September 13, 2011 Wiedmann et al.
8019352 September 13, 2011 Rappaport et al.
8116275 February 14, 2012 Matta et al.
8140845 March 20, 2012 Buddhikot et al.
8150357 April 3, 2012 Aragon
8161278 April 17, 2012 Harkins
8190750 May 29, 2012 Balachandran et al.
8238942 August 7, 2012 Gast
8270384 September 18, 2012 Cheng et al.
20010007567 July 12, 2001 Ando et al.
20010024953 September 27, 2001 Balogh
20020021701 February 21, 2002 Lavian et al.
20020052205 May 2, 2002 Belostofsky et al.
20020060995 May 23, 2002 Cervello et al.
20020062384 May 23, 2002 Tso
20020069278 June 6, 2002 Forslow
20020078361 June 20, 2002 Giroux et al.
20020080790 June 27, 2002 Beshai
20020082913 June 27, 2002 Li
20020087699 July 4, 2002 Karagiannis et al.
20020094824 July 18, 2002 Kennedy et al.
20020095486 July 18, 2002 Bahl
20020101868 August 1, 2002 Clear et al.
20020116655 August 22, 2002 Lew et al.
20020157020 October 24, 2002 Royer
20020174137 November 21, 2002 Wolff et al.
20020176437 November 28, 2002 Busch et al.
20020188756 December 12, 2002 Weil et al.
20020191572 December 19, 2002 Weinstein et al.
20020194251 December 19, 2002 Richter et al.
20030014646 January 16, 2003 Buddhikot et al.
20030018889 January 23, 2003 Burnett et al.
20030043073 March 6, 2003 Gray et al.
20030055959 March 20, 2003 Sato
20030107590 June 12, 2003 Levillain et al.
20030120764 June 26, 2003 Laye et al.
20030133450 July 17, 2003 Baum
20030134642 July 17, 2003 Kostic et al.
20030135762 July 17, 2003 Macaulay
20030156586 August 21, 2003 Lee et al.
20030174706 September 18, 2003 Shankar et al.
20030193910 October 16, 2003 Shoaib et al.
20030204596 October 30, 2003 Yadav
20030227934 December 11, 2003 White et al.
20040002343 January 1, 2004 Brauel et al.
20040003285 January 1, 2004 Whelan et al.
20040008652 January 15, 2004 Tanzella et al.
20040019857 January 29, 2004 Teig et al.
20040025044 February 5, 2004 Day
20040029580 February 12, 2004 Haverinen et al.
20040030777 February 12, 2004 Reedy et al.
20040030931 February 12, 2004 Chamandy et al.
20040038687 February 26, 2004 Nelson
20040044749 March 4, 2004 Harkin
20040047320 March 11, 2004 Eglin
20040049699 March 11, 2004 Griffith et al.
20040053632 March 18, 2004 Nikkelen et al.
20040054569 March 18, 2004 Pombo et al.
20040054774 March 18, 2004 Barber et al.
20040054926 March 18, 2004 Ocepek et al.
20040062267 April 1, 2004 Minami et al.
20040064560 April 1, 2004 Zhang et al.
20040064591 April 1, 2004 Noble
20040068668 April 8, 2004 Lor et al.
20040078598 April 22, 2004 Barber et al.
20040093506 May 13, 2004 Grawrock et al.
20040095914 May 20, 2004 Katsube et al.
20040095932 May 20, 2004 Astarabadi et al.
20040106403 June 3, 2004 Mori et al.
20040111640 June 10, 2004 Baum
20040114546 June 17, 2004 Seshadri et al.
20040119641 June 24, 2004 Rapeli
20040120370 June 24, 2004 Lupo
20040132438 July 8, 2004 White
20040143428 July 22, 2004 Rappaport et al.
20040143755 July 22, 2004 Whitaker et al.
20040165545 August 26, 2004 Cook
20040174900 September 9, 2004 Volpi et al.
20040184475 September 23, 2004 Meier
20040208570 October 21, 2004 Reader
20040214572 October 28, 2004 Thompson et al.
20040221042 November 4, 2004 Meier
20040230370 November 18, 2004 Tzamaloukas
20040233234 November 25, 2004 Chaudhry et al.
20040236702 November 25, 2004 Fink et al.
20040246937 December 9, 2004 Duong et al.
20040246962 December 9, 2004 Kopeikin et al.
20040252656 December 16, 2004 Shiu et al.
20040255167 December 16, 2004 Knight
20040259542 December 23, 2004 Viitamaki et al.
20040259552 December 23, 2004 Ihori et al.
20040259554 December 23, 2004 Rappaport et al.
20040259555 December 23, 2004 Rappaport et al.
20040259575 December 23, 2004 Perez-Breva et al.
20050015592 January 20, 2005 Lin
20050021979 January 27, 2005 Wiedmann et al.
20050025103 February 3, 2005 Ko et al.
20050025105 February 3, 2005 Rue
20050026611 February 3, 2005 Backes
20050030894 February 10, 2005 Stephens
20050030929 February 10, 2005 Swier et al.
20050037733 February 17, 2005 Coleman et al.
20050037818 February 17, 2005 Seshadri et al.
20050040968 February 24, 2005 Damarla et al.
20050054326 March 10, 2005 Rogers
20050054350 March 10, 2005 Zegelin
20050058132 March 17, 2005 Okano et al.
20050059405 March 17, 2005 Thomson et al.
20050059406 March 17, 2005 Thomson et al.
20050064873 March 24, 2005 Karaoguz et al.
20050068925 March 31, 2005 Palm et al.
20050073980 April 7, 2005 Thomson et al.
20050078644 April 14, 2005 Tsai et al.
20050097618 May 5, 2005 Arling et al.
20050114649 May 26, 2005 Challener et al.
20050120125 June 2, 2005 Morten et al.
20050122927 June 9, 2005 Wentink
20050122977 June 9, 2005 Lieberman
20050128142 June 16, 2005 Shin et al.
20050128989 June 16, 2005 Bhagwat et al.
20050144237 June 30, 2005 Heredia et al.
20050147032 July 7, 2005 Lyon et al.
20050154933 July 14, 2005 Hsu et al.
20050157730 July 21, 2005 Grant et al.
20050159154 July 21, 2005 Goren
20050163078 July 28, 2005 Oba et al.
20050163146 July 28, 2005 Ota et al.
20050166072 July 28, 2005 Converse et al.
20050175027 August 11, 2005 Miller et al.
20050180345 August 18, 2005 Meier
20050180358 August 18, 2005 Kolar et al.
20050181805 August 18, 2005 Gallagher
20050190714 September 1, 2005 Gorbatov et al.
20050193103 September 1, 2005 Drabik
20050207336 September 22, 2005 Choi et al.
20050213519 September 29, 2005 Relan et al.
20050220033 October 6, 2005 DelRegno et al.
20050223111 October 6, 2005 Bhandaru et al.
20050239461 October 27, 2005 Verma et al.
20050240665 October 27, 2005 Gu et al.
20050243737 November 3, 2005 Dooley et al.
20050245258 November 3, 2005 Classon et al.
20050245269 November 3, 2005 Demirhan et al.
20050259597 November 24, 2005 Benedetotto et al.
20050259611 November 24, 2005 Bhagwat et al.
20050265321 December 1, 2005 Rappaport et al.
20050268335 December 1, 2005 Le et al.
20050270992 December 8, 2005 Sanzgiri et al.
20050273442 December 8, 2005 Bennett
20050276218 December 15, 2005 Ooghe et al.
20050286466 December 29, 2005 Tagg et al.
20060030290 February 9, 2006 Rudolf et al.
20060035662 February 16, 2006 Jeong et al.
20060039395 February 23, 2006 Perez-Costa et al.
20060041683 February 23, 2006 Subramanian et al.
20060045050 March 2, 2006 Floros et al.
20060046744 March 2, 2006 Dublish et al.
20060050742 March 9, 2006 Grandhi et al.
20060073847 April 6, 2006 Pirzada et al.
20060094440 May 4, 2006 Meier et al.
20060098607 May 11, 2006 Zeng et al.
20060104224 May 18, 2006 Singh et al.
20060114872 June 1, 2006 Hamada
20060114938 June 1, 2006 Kalkunte et al.
20060117174 June 1, 2006 Lee
20060128415 June 15, 2006 Horikoshi et al.
20060143496 June 29, 2006 Silverman
20060143702 June 29, 2006 Hisada et al.
20060152344 July 13, 2006 Mowery, Jr.
20060153122 July 13, 2006 Hinman et al.
20060160540 July 20, 2006 Strutt et al.
20060161983 July 20, 2006 Cothrell et al.
20060165103 July 27, 2006 Trudeau et al.
20060168383 July 27, 2006 Lin
20060173844 August 3, 2006 Zhang et al.
20060174336 August 3, 2006 Chen
20060178168 August 10, 2006 Roach
20060182118 August 17, 2006 Lam et al.
20060187878 August 24, 2006 Calhoun et al.
20060189311 August 24, 2006 Cromer et al.
20060190721 August 24, 2006 Kawakami et al.
20060193258 August 31, 2006 Ballai
20060200862 September 7, 2006 Olson et al.
20060206582 September 14, 2006 Finn
20060215601 September 28, 2006 Vieugels et al.
20060217131 September 28, 2006 Alizadeh-Shabdiz et al.
20060245393 November 2, 2006 Bajic
20060248229 November 2, 2006 Saunderson et al.
20060248331 November 2, 2006 Harkins
20060268696 November 30, 2006 Konstantinov et al.
20060274774 December 7, 2006 Srinivasan et al.
20060276192 December 7, 2006 Dutta et al.
20060285489 December 21, 2006 Francisco et al.
20060292992 December 28, 2006 Tajima et al.
20070002833 January 4, 2007 Bajic
20070010248 January 11, 2007 Dravida et al.
20070011318 January 11, 2007 Roth
20070025265 February 1, 2007 Porras et al.
20070025306 February 1, 2007 Cox et al.
20070027964 February 1, 2007 Herrod et al.
20070054616 March 8, 2007 Culbert
20070058598 March 15, 2007 Ling
20070064673 March 22, 2007 Bhandaru et al.
20070064718 March 22, 2007 Ekl et al.
20070067823 March 22, 2007 Shim et al.
20070070937 March 29, 2007 Demirhan et al.
20070076694 April 5, 2007 Iyer et al.
20070081477 April 12, 2007 Jakkahalli et al.
20070082677 April 12, 2007 Hart et al.
20070083924 April 12, 2007 Lu
20070086378 April 19, 2007 Matta et al.
20070086397 April 19, 2007 Taylor
20070086398 April 19, 2007 Tiwari
20070091845 April 26, 2007 Brideglall
20070091889 April 26, 2007 Xiao et al.
20070098086 May 3, 2007 Bhaskaran
20070104197 May 10, 2007 King
20070106776 May 10, 2007 Konno et al.
20070109991 May 17, 2007 Bennett
20070110035 May 17, 2007 Bennett
20070115842 May 24, 2007 Matsuda et al.
20070133494 June 14, 2007 Lai et al.
20070135159 June 14, 2007 Sinivaara
20070135866 June 14, 2007 Baker et al.
20070136372 June 14, 2007 Proctor et al.
20070140163 June 21, 2007 Meier et al.
20070143851 June 21, 2007 Nicodemus et al.
20070147318 June 28, 2007 Ross et al.
20070150945 June 28, 2007 Whitaker et al.
20070160046 July 12, 2007 Matta
20070171909 July 26, 2007 Pignatelli
20070183375 August 9, 2007 Tiwari
20070183402 August 9, 2007 Bennett
20070189222 August 16, 2007 Kolar et al.
20070195793 August 23, 2007 Grosser et al.
20070206527 September 6, 2007 Lo et al.
20070230457 October 4, 2007 Kodera et al.
20070248009 October 25, 2007 Petersen
20070253380 November 1, 2007 Jollota et al.
20070255116 November 1, 2007 Mehta et al.
20070258448 November 8, 2007 Hu
20070260720 November 8, 2007 Morain
20070268506 November 22, 2007 Zeldin
20070268514 November 22, 2007 Zeldin et al.
20070268515 November 22, 2007 Freund et al.
20070268516 November 22, 2007 Bugwadia et al.
20070286208 December 13, 2007 Kanada et al.
20070291689 December 20, 2007 Kapur et al.
20070297329 December 27, 2007 Park et al.
20080002588 January 3, 2008 McCaughan et al.
20080008117 January 10, 2008 Alizadeh-Shabdiz
20080013481 January 17, 2008 Simons et al.
20080014916 January 17, 2008 Chen
20080031257 February 7, 2008 He
20080039114 February 14, 2008 Phatak et al.
20080056200 March 6, 2008 Johnson
20080056211 March 6, 2008 Kim et al.
20080064356 March 13, 2008 Khayrallah
20080069018 March 20, 2008 Gast
20080080441 April 3, 2008 Park et al.
20080102815 May 1, 2008 Sengupta et al.
20080107077 May 8, 2008 Murphy
20080114784 May 15, 2008 Murphy
20080117822 May 22, 2008 Murphy et al.
20080130523 June 5, 2008 Fridman et al.
20080151844 June 26, 2008 Tiwari
20080159319 July 3, 2008 Gast et al.
20080162921 July 3, 2008 Chesnutt et al.
20080220772 September 11, 2008 Islam et al.
20080226075 September 18, 2008 Gast
20080228942 September 18, 2008 Lor et al.
20080250496 October 9, 2008 Namihira
20080261615 October 23, 2008 Kalhan
20080276303 November 6, 2008 Gast
20090010206 January 8, 2009 Giaretta et al.
20090028118 January 29, 2009 Gray et al.
20090031044 January 29, 2009 Barrack et al.
20090046688 February 19, 2009 Volpi et al.
20090059930 March 5, 2009 Ryan et al.
20090067436 March 12, 2009 Gast
20090073905 March 19, 2009 Gast
20090131082 May 21, 2009 Gast
20090198999 August 6, 2009 Harkins
20090247103 October 1, 2009 Aragon
20090252120 October 8, 2009 Kim et al.
20090257437 October 15, 2009 Tiwari
20090260083 October 15, 2009 Szeto et al.
20090274060 November 5, 2009 Taylor
20090287816 November 19, 2009 Matta et al.
20090293106 November 26, 2009 Peden, II et al.
20100002610 January 7, 2010 Bowser et al.
20100024007 January 28, 2010 Gast
20100040059 February 18, 2010 Hu
20100067379 March 18, 2010 Zhao et al.
20100113098 May 6, 2010 Riley
20100142478 June 10, 2010 Forssell et al.
20100159827 June 24, 2010 Rhodes et al.
20100172276 July 8, 2010 Aragon
20100180016 July 15, 2010 Bugwadia et al.
20100195549 August 5, 2010 Aragon et al.
20100261475 October 14, 2010 Kim et al.
20100271188 October 28, 2010 Nysen
20100329177 December 30, 2010 Murphy et al.
20110128858 June 2, 2011 Matta et al.
20110158122 June 30, 2011 Murphy et al.
20120190320 July 26, 2012 Aragon
20120190323 July 26, 2012 Aragon
20120204031 August 9, 2012 Harkins
Foreign Patent Documents
0 992 921 April 2000 EP
1542 409 June 2005 EP
2 329 801 March 1999 GB
2429080 February 2007 GB
2000-215169 August 2000 JP
2003-234751 August 2003 JP
2003274454 September 2003 JP
2004-032525 January 2004 JP
WO94/03986 February 1994 WO
WO99/11003 March 1999 WO
WO 00/06271 February 2000 WO
WO 00/18148 March 2000 WO
WO 02/089442 November 2002 WO
WO 03/085544 October 2003 WO
WO 2004/013986 February 2004 WO
WO 2004/095192 November 2004 WO
WO 2004/095800 November 2004 WO
WO 2006/014512 February 2006 WO
WO 2010/130133 November 2010 WO
Other references
  • U.S. Appl. No. 11/326,966, filed Jan. 2006, Taylor.
  • U.S. Appl. No. 11/330,877, filed Jan. 2006, Matta.
  • U.S. Appl. No. 11/331,789, filed Jan. 2006, Matta. et al.
  • U.S. Appl. No. 11/351,104, filed Feb. 2006, Tiwari.
  • U.S. Appl. No. 11/377,859, filed Mar. 2006, Harkins.
  • U.S. Appl. No. 11/400,165, filed Apr. 2006, Tiwari.
  • U.S. Appl. No. 11/445,750, filed May 2006, Matta.
  • U.S. Appl. No. 11/417,830, filed May 2006, Morain.
  • U.S. Appl. No. 11/417,993, filed May 2006, Jar et al.
  • U.S. Appl. No. 11/437,537, filed May 2006, Freund et al.
  • U.S. Appl. No. 11/437,538, filed May 2006, Zeldin.
  • U.S. Appl. No. 11/437,387, filed May 2006, Zeldin et al.
  • U.S. Appl. No. 11/437,582, filed May 2006, Buawadia et al.
  • U.S. Appl. No. 11/451,704, filed Jun. 2006, Riley.
  • Acampora and Winters, IEEE Communications Magazine, 25(8):11-20 (1987).
  • Acampora and Winters, IEEE Journal on selected Areas in Communications. SAC-5:796-804 (1987).
  • Bing and Subramanian, IEEE, 1318-1322 (1997).
  • Durgin, et al., “Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz”, IEEE Transactions on Communications, vol. 46, No. 11, Nov. 1998.
  • Freret et al., Applications of Spread-Spectrum Radio to Wireless Terminal Communications, Conf. Record, Nat'l Telecom. Conf., Nov. 30-Dec. 4, 1980.
  • Fortune et al., IEEE Computational Science and Engineering, “Wise Design of Indoor Wireless Systems: Practical Computation and Optimization”, p. 58-68 (1995).
  • Geier, Jim, Wireless Lans Implementing Interoperable Networks, Chapter 3 (pp. 89-125) Chapter 4 (pp. 129-157) Chapter 5 (pp. 159-189) and Chapter 6 (pp. 193-234), 1999, United States.
  • Ho et al., “Antenna Effects on Indoor Obstructed Wireless Channels and a Deterministic Image-Based Wide-Based Propagation Model for In-Building Personal Communications Systems”, International Journal of Wireless Information Networks, vol. 1, No. 1, 1994.
  • Kim et al., “Radio Propagation Measurements and Prediction Using Three-Dimensional Ray Tracing in Urban Environments at 908 MHz and 1.9 GHz”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
  • Kleinrock and Scholl, Conference record 1977 ICC vol. 2 of 3, Jun. 12-15 Chicago Illinois “Packet Switching in radio Channels: New Conflict-Free Multiple Access Schemes for a Small Number of data Useres”, (1977).
  • LAN/MAN Standars Committee of the IEEE Computer Society, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher Speed Physical Layer Extension in the 2.4 GHz Band, IEEE Std. 802.11b (1999).
  • Okamoto and Xu, IEEE, Proceeding so of the 13th Annual Hawaii International Conference on System Sciences, pp. 54-63 (1997).
  • Panjwani et al., “Interactive Computation of Coverage Regions for Wireless Communication in Multifloored Indoor Environments”, IEEE Journal on Selected Areas in Communications, vol. 14, No. 3, Apr. 1996.
  • Perram and Martinez, “Technology Developments for Low-Cost Residential Alarm Systems”, Proceedings 1977 Carnahan Conference on Crime Countermeasures, Apr. 6-8, pp. 45-50 (1977).
  • Piazzi et al., “Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
  • Seidel et al., “Site-Specific Propagation Prediction for Wireless In-Building Personal Communications System Design”, IEEE Transactions on Vehicular Technology, vol. 43, No. 4, Nov. 1994.
  • Skidmore et al., “Interactive Coverage Region and System Design Simulation for Wireless Communication Systems in Multi-floored Indoor Environments, SMT Plus” IEEE ICUPC '96 Proceedings (1996).
  • Ullmo et al., “Wireless Propagation in Buildings: A Statistic Scattering Approach”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999.
  • U.S. Appl. No. 11/487,722, filed Jul. 2006, Simons et al.
  • U.S. Appl. No. 11/592,891, filed Nov. 2006, Murphy, James.
  • U.S. Appl. No. 11/595,119, filed Nov. 2006, Murphy, James.
  • U.S. Appl. No. 11/604,075, filed Nov. 2006, Murphy et al.
  • U.S. Appl. No. 11/643,329, filed Dec. 2006, Towari, Manish.
  • U.S. Appl. No. 11/648,359, filed Dec. 2006, Gast et al.
  • U.S. Appl. No. 11/690,654, filed Mar. 2007, Keenly et al.
  • U.S. Appl. No. 11/845,029, filed Aug. 2007, Gast, Mathew.
  • U.S. Appl. No. 11/852,234, filed Sep. 2007, Gast et al.
  • U.S. Appl. No. 11/944,346, filed Nov. 2007, Gast, Mathew S.
  • U.S. Appl. No. 11/966,912, filed Dec. 2007, Chesnutt et al.
  • U.S. Appl. No. 11/970,484, filed Jan. 2008, Gast, Mathew S.
  • U.S. Appl. No. 11/975,134, filed Oct. 2007, Aragon et al.
  • U.S. Appl. No. 12/077,051, filed Mar. 2008, Gast, Mathew S.
  • Puttini, R., Percher, J., Me, L., and de Sousa, R. 2004. A fully distributed IDS for MANET. In Proceedings of the Ninth international Symposium on Computers and Communications 2004 vol. 2 (Iscc″04)—vol. 02 (Jun. 28-Jul. 1, 2004). ISCC. IEEE Computer Society, Washington, DC, 331-338.
  • P. Martinez, M. Brunner, J. Quittek, F. Straus, J. Schonwlder, S. Mertens, T. Klie “Using the Script MIB for Policy-based Configuration Management”, Technical University Braunschweig, Braunschweig, Germany, 2002.
  • Law, A., “New Service Discovery Protocol,” Internet Citation [Online] XP002292473 Retrieved from the Internet: <URL: http://sem.uccalgary.ca˜lawa/SENG60921/arch/SDP.htm> [retrieved Aug. 12, 2004] (15 pages).
  • P. Bahl et al., RADAR: An In-Building RF-based User Location and Tracking System, Microsoft Research, Mar. 2000, 10 pages.
  • Latvala J. et al., Evaluation of RSSI-Based Human Tracking, Proceedings for the 2000 European Signal Processing Conference, Sep. 2000, 9 pages.
  • Bahl P. et al. “User Location and Tracking in an In-Building Radio Network,” Microsoft Research, Feb. 1999, 13 pages.
  • P. Bahl et al., A Software System for Locating Mobile Users: Design, Evaluation, and Lessons, Microsoft Research, Feb. 1999, 13 pages.
  • Chen, Yen-Chen et al., “Enabling Location-Based Services on Wireless LANs”, Networks, 2003. ICON2003. The 11th IEEE International Conference, Sep. 28-Oct. 1, 2003, pp. 567-572.
  • Erten, Y. Murat, “A Layered Security Architecture for Corporate 802.11 Wireless Networks”, Wireless Telecommunications Symposium, May 14-15, 2004, pp. 123-128.
  • Kleine-Ostmann, T., et al., “A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks,” IEEE Communications Letters , vol. 5(8), Aug. 2001, p. 343-345.
  • Pulson, Time Domain Corporation, Ultra wideband (UWB) Radios for Precision Location, Third IEEE Workshop on Wireless Local Area Networks, Sep. 27-28, 2001, 8 pages.
  • Barber, S., Monitoring 802.1 Networks, IEEE 802.11, Sydney, NSW, May 13-17, 2002.
  • Latvala, J. et al. “Patient Tracking in a Hospital Environment Using Extended Kalman-filtering,” Proceedings of the 1999 Middle East Conference on Networking, Nov. 1999, 5 pages.
  • Myllymaki, P. et al., “A Probabilistic Approach to WLAN User Location Estimation,” Third IEEE Workshop on Wireless Local Area Networks, Sep. 27-28, 2001, 12 pages.
  • Potter, B., and Fleck, B., 802.11 Security, O'Reilly Media Inc., Dec. 2002, 14 pages.
  • McCann, S., et al., “Emergency Services for 802,” IEEE 802.11-07/0505r1, Mar. 2007, 27 pages.
  • Di Sorte, D., et al., “On the Performance of Service Publishing in IEEE 802.11 Multi-Access Environment,” IEEE Communications Letters, vol. 11, No. 4, Apr. 2007, 3 pages.
  • Microsoft Computer Dictionary, Fifth Edition, Microsoft Corporation, 2002, 2 pages.
  • Thomson, Allan, Cisco Systems, AP Power Down Notification, Power Point slide show; IEEE standards committee meeting Jul. 15, 2008; doc.: IEEE 802.11-08/0759r0, 14 pages.
  • 3COM, Wireless LAN Mobility System: Wireless LAN Switch and Controller Configuration Guide, 3COM, Revision A, Oct. 2004, 476 pages.
  • 3COM, Wireless LAN Switch Manager (3WXM), 3COM, Revision C, Oct. 2004, 8 pages.
  • 3COM, Wireless LAN Switch and Controller; Quick Start Guide, 3COM, Revision B, Nov. 2004, 10 pages.
  • 3COM, Wireless LAN Mobility System; Wireless LAN Switch and Controller Installation and Basic Configuration Guide, Revision B, Apr. 2005, 496 pages.
  • Johnson, David B, et al., “DSR The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks,” Computer Science Department, Carnegie Mellon University, Nov. 3, 2005 (http://monarch.cs.rice.edu/monarch-papers/dsr-chapter00.pdf).
  • Information Sciences Institute, RFC-791—Internet Protocol, DARPA, Sep. 1981.
  • Aerohive Blog, posted by Devin Akin, Cooperative Control: Part 3, [Online] Retrieved from the Internet: <URL: http://blog.aerohive.com/blog/?p=71> Mar. 1, 2010 (3 pages).
  • Wikipedia, Wireless LAN, 2 definitions for wireless LAN roaming, [Online] [retrieved Oct. 4, 2010] Retrieved from the Internet: <URL: http://en.wikipedia.org/wiki/WirelessLAN> (1 page).
  • U.S. Appl. No. 12/957,997, filed Dec. 1, 2010.
  • U.S. Appl. No. 12/603,391, filed Oct. 21, 2009.
  • U.S. Appl. No. 12/763,057, filed Apr. 19, 2010.
  • U.S. Appl. No. 13/006,950, filed Jan. 14, 2011.
  • U.S. Appl. No. 09/866,474, filed May 29, 2001.
  • U.S. Appl. No. 13/017,801, filed Jan. 31, 2011.
  • Office Action for U.S. Appl. No. 11/784,307, mailed Sep. 22, 2009.
  • Final Office Action for U.S. Appl. No. 11/784,307, mailed Jun. 14, 2010.
  • Non-Final Office Action for U.S. Appl. No. 11/377,859, mailed Jan. 8, 2008.
  • Final Office Action for U.S. Appl. No. 11/377,859, mailed Aug. 27, 2008.
  • Office Action for U.S. Appl. No. 12/401,073, mailed Aug. 23, 2010.
  • Final Office Action for U.S. Appl. No. 12/401,073, mailed Apr. 1, 2011.
  • Office Action for U.S. Appl. No. 12/401,073, mailed Sep. 20, 2011.
  • Office Action for U.S. Appl. No. 11/326,966, mailed Nov. 14, 2008.
  • Office Action for U.S. Appl. No. 12/500,392, mailed Jun. 20, 2011.
  • Office Action for U.S. Appl. No. 11/400,165, mailed Aug. 19, 2008.
  • Office Action for U.S. Appl. No. 12/489,295, mailed Apr. 27, 2011.
  • Office Action for U.S. Appl. No. 11/330,877, mailed Sep. 11, 2008.
  • Final Office Action for U.S. Appl. No. 11/330,877, mailed Mar. 13, 2009.
  • Office Action for U.S. Appl. No. 11/330,877, mailed Aug. 6, 2009.
  • Final Office Action for U.S. Appl. No. 11/330,877, mailed Apr. 22, 2010.
  • Office Action for U.S. Appl. No. 11/330,877, mailed Jan. 13, 2011.
  • Final Office Action for U.S. Appl. No. 11/330,877, mailed May 27, 2011.
  • Office Action for U.S. Appl. No. 11/351,104, mailed Oct. 28, 2008.
  • Office Action for U.S. Appl. No. 11/351,104, mailed Dec. 2, 2009.
  • Final Office Action for U.S. Appl. No. 11/351,104, mailed Jun. 10, 2009.
  • Office Action for U.S. Appl. No. 11/351,104, mailed May 26, 2010.
  • Office Action for U.S. Appl. No. 11/351,104, mailed Nov. 29, 2010.
  • Office Action for U.S. Appl. No. 11/351,104, mailed Jul. 26, 2011.
  • Office Action for U.S. Appl. No. 11/437,537, mailed Dec. 23, 2008.
  • Final Office Action for U.S. Appl. No. 11/437,537, mailed Jul. 16, 2009.
  • Office Action for U.S. Appl. No. 11/331,789, mailed Jun. 13, 2008.
  • Final Office Action for U.S. Appl. No. 11/331,789, mailed Oct. 23, 2008.
  • Office Action for U.S. Appl. No. 11/331,789, mailed Aug. 5, 2009.
  • Office Action for U.S. Appl. No. 12/785,362, mailed Apr. 22, 2011.
  • Office Action for U.S. Appl. No. 11/417,830, mailed Nov. 14, 2008.
  • Final Office Action for U.S. Appl. No. 11/417,830, mailed May 28, 2009.
  • Office Action for U.S. Appl. No. 11/417,993, mailed Oct. 29, 2008.
  • Office Action for U.S. Appl. No. 12/370,562, mailed Sep. 30, 2010.
  • Office Action for U.S. Appl. No. 12/370,562, mailed Apr. 6, 2011.
  • Office Action for U.S. Appl. No. 11/592,891, mailed Jan. 15, 2009.
  • Final Office Action for U.S. Appl. No. 11/592,891, mailed Jul. 20, 2009.
  • Office Action for U.S. Appl. No. 11/595,119, mailed Jul. 21, 2009.
  • Final Office Action for U.S. Appl. No. 11/595,119, mailed Jan. 5, 2010.
  • Office Action for U.S. Appl. No. 11/595,119, mailed Aug. 19, 2010.
  • Final Office Action for U.S. Appl. No. 11/595,119, mailed Aug. 2, 2011.
  • Office Action for U.S. Appl. No. 11/604,075, mailed May 3, 2010.
  • Office Action for U.S. Appl. No. 11/845,029, mailed Jul. 9, 2009.
  • Final Office Action for U.S. Appl. No. 11/845,029, mailed Jan. 25, 2010.
  • Office Action for U.S. Appl. No. 11/845,029, mailed May 14, 2010.
  • Final Office Action for U.S. Appl. No. 11/845,029, mailed Dec. 9, 2010.
  • Office Action for U.S. Appl. No. 11/845,029, mailed Sep. 27, 2011.
  • Office Action for U.S. Appl. No. 11/437,538, mailed Dec. 22, 2008.
  • Final Office Action for U.S. Appl. No. 11/437,538, mailed Jun. 10, 2009.
  • Office Action for U.S. Appl. No. 11/437,387, mailed Dec. 23, 2008.
  • Final Office Action for U.S. Appl. No. 11/437,387, mailed Jul. 15, 2009.
  • Office Action for U.S. Appl. No. 11/437,582, mailed Jan. 8, 2009.
  • Final Office Action for U.S. Appl. No. 11/437,582, mailed Jul. 22, 2009.
  • Office Action for U.S. Appl. No. 12/304,100, mailed Jun. 17, 2011.
  • Office Action for U.S. Appl. No. 11/487,722, mailed Aug. 7, 2009.
  • Office Action for U.S. Appl. No. 11/643,329, mailed Jul. 9, 2010.
  • Office Action for U.S. Appl. No. 11/648,359, mailed Nov. 19, 2009.
  • Office Action for U.S. Appl. No. 11/944,346, mailed Nov. 23, 2010.
  • Office Action for U.S. Appl. No. 12/077,051, mailed Dec. 28, 2010.
  • Office Action for U.S. Appl. No. 12/113,535, mailed Apr. 21, 2011.
  • Office Action for U.S. Appl. No. 11/852,234, mailed Jun. 29, 2009.
  • Office Action for U.S. Appl. No. 11/852,234, mailed Jan. 21, 2010.
  • Office Action for U.S. Appl. No. 11/852,234, mailed Aug. 9, 2010.
  • Office Action for U.S. Appl. No. 11/852,234, mailed Apr. 27, 2011.
  • Office Action for U.S. Appl. No. 11/970,484, mailed Nov. 24, 2010.
  • Final Office Action for U.S. Appl. No. 11/970,484, mailed Jul. 22, 2011.
  • Office Action for U.S. Appl. No. 12/172,195, mailed Jun. 1, 2010.
  • Office Action for U.S. Appl. No. 12/172,195, mailed Nov. 12, 2010.
  • Office Action for U.S. Appl. No. 12/336,492, mailed Sep. 15, 2011.
  • Office Action for U.S. Appl. No. 12/210,917, mailed Nov. 15, 2010.
  • Final Office Action for U.S. Appl. No. 12/210,917, mailed May 13, 2011.
  • Office Action for U.S. Appl. No. 12/350,927, mailed Augiat 17, 2011.
  • Office Action for U.S. Appl. No. 12/365,891, mailed Aug. 29, 2011.
  • Office Action for U.S. Appl. No. 10/235,338, mailed Jan. 8, 2003.
  • Office Action for U.S. Appl. No. 11/094,987, mailed Dec. 27, 2007.
  • Final Office Action for U.S. Appl. No. 11/094,987, mailed May 23, 2008.
  • Office Action for U.S. Appl. No. 11/094,987, mailed Oct. 21, 2008.
  • Office Action for U.S. Appl. No. 12/474,020, mailed Jun. 3, 2010.
  • Final Office Action for U.S. Appl. No. 12/474,020, mailed Oct. 4, 2010.
  • Office Action for U.S. Appl. No. 09/866,474, mailed Nov. 30, 2004.
  • Final Office Action for U.S. Appl. No. 09/866,474, mailed Jun. 10, 2005.
  • Office Action for U.S. Appl. No. 10/667,027, mailed Jul. 29, 2005.
  • Final Office Action for U.S. Appl. No. 10/667,027, mailed Mar. 10, 2006.
  • Office Action for U.S. Appl. No. 10/667,027, mailed May 5, 2006.
  • Final Office Action for U.S. Appl. No. 10/667,027, mailed Feb. 26, 2007.
  • Office Action for U.S. Appl. No. 10/666,848, mailed Mar. 22, 2007.
  • Office Action for U.S. Appl. No. 10/667,136, mailed Jan. 25, 2006.
  • Office Action for U.S. Appl. No. 10/667,136, mailed Aug. 28, 2006.
  • Final Office Action for U.S. Appl. No. 10/667,136, mailed Mar. 9, 2007.
  • International Search Report and Written Opinion for PCT/US05/004702, mailed Aug. 10, 2006.
  • International Search Report and Written Opinion for PCT/US2006/009525, mailed Sep. 13, 2007.
  • International Search Report and Written Opinion for PCT/US06/40500, mailed Aug. 17, 2007.
  • International Search Report and Written Opinion for PCT/US06/40498, mailed Dec. 28, 2007.
  • International Search Report and Written Opinion for PCT/US2007/012194 dated Feb. 4, 2008.
  • International Search Report and Written Opinion for PCT/US06/40499, mailed Dec. 13, 2007.
  • International Search Report and Written Opinion for PCT/US2007/19696, mailed Feb. 29, 2008.
  • International Search Report and Written Opinion for PCT/US2007/12016, mailed Jan. 4, 2008.
  • International Search Report and Written Opinion for PCT/US2007/012195, mailed Mar. 19, 2008.
  • International Search Report and Written Opinion for PCT/US07/013758 mailed Apr. 3, 2008.
  • First Office Action for Chinese Application No. 2007800229623.X , mailed Dec. 31, 2010.
  • International Search Report and Written Opinion for PCT/US07/013757, mailed Jan. 22, 2008.
  • International Search Report and Written Opinion for PCT/US07/14847, mailed Apr. 1, 2008.
  • International Search Report and Written Opinion for PCT/US07/089134, mailed Apr. 10, 2008.
  • International Search Report and Written Opinion for PCT/US2008/010708, mailed May 18, 2009.
  • Office Action for Canadian Application No. 2,638,754, mailed Oct. 3, 2011.
  • Supplementary Partial European Search Report for European Application No. 02770460, mailed Aug. 20, 2004.
  • Supplementary Partial European Search Report for European Application No. 02770460, mailed Dec. 15, 2004.
  • Examination Report for European Application No. 02770460, Mar. 18, 2005.
  • Summons for Oral Hearing Proceedings for European Application No. 02770460, Jan. 31, 2006.
  • International Search Report for PCT/US02/28090, mailed Aug. 13, 2003.
  • International Preliminary Examination Report for PCT/US02/28090, mailed Oct. 29, 2003.
  • Examination Report for European Application No. 06006504, mailed Oct. 10, 2006.
  • English Translation of Office Action for Japanese Application No. 2006-088348, mailed Jan. 4, 2011.
  • International Search Report and Written Opinion for PCT/US04/30769, mailed Oct. 4, 2005.
  • International Search Report and Written Opinion for PCT/US04/30683, mailed Feb. 10, 2006.
  • International Search Report and Written Opinion for PCT/US04/30684, mailed Feb. 10, 2006.
  • U.S. Appl. No. 13/447,656, filed Apr. 16, 2012.
  • U.S. Appl. No. 13/396,124, filed Feb. 14, 2012.
  • U.S. Appl. No. 13/437,669, filed Apr. 2, 2012.
  • U.S. Appl. No. 13/437,673, filed Apr. 2, 2012.
  • Final Office Action for U.S. Appl. No. 12/489,295, mailed Jan. 18, 2012.
  • Office Action for U.S. Appl. No. 11/351,104, mailed Feb. 15, 2012.
  • Office Action for U.S. Appl. No. 12/370,562, mailed Jan. 17, 2012.
  • Office Action for U.S. Appl. No. 12/683,281, mailed Jan. 20, 2012.
  • Final Office Action for U.S. Appl. No. 12/304,100, mailed Feb. 2, 2012.
  • Final Office Action for U.S. Appl. No. 12/077,051, mailed Oct. 25, 2011.
  • Final Office Action for U.S. Appl. No. 12/113,535, mailed Jan. 3, 2012.
  • Office Action for U.S. Appl. No. 12/113,535, mailed Apr. 20, 2012.
  • Final Office Action for U.S. Appl. No. 11/852,234, mailed Jan. 20, 2012.
  • Office Action for U.S. Appl. No. 12/210,917, mailed Dec. 5, 2011.
  • Final Office Action for U.S. Appl. No. 12/350,927, mailed Jan. 18, 2012.
  • Second Office Action for Chinese Application No. 2007800229623.X , mailed Mar. 7, 2012.
  • Extended Supplementary European Search Report for Application No. 07796005.2, mailed Feb. 14, 2012.
  • Office Action for U.S. Appl. No. 13/396,124, mailed May 7, 2012.
  • Office Action for U.S. Appl. No. 13/437,669, mailed May 30, 2012.
  • Office Action for U.S. Appl. No. 13/437,673, mailed May 30, 2012.
  • Office Action for U.S. Appl. No. 12/304,100, mailed May 29, 2012.
  • Office Action for U.S. Appl. No. 11/970,484, mailed Jun. 20, 2012.
  • Final Office Action for U.S. Appl. No. 12/336,492, mailed Jun. 15, 2012.
  • Sangheon Pack et al. “Fast-handoff support in IEEE 802.11 wireless networks,” IEEE Communications Surveys, IEEE, NY, NY, vol. 9, No. 1, Jan. 1, 2007 (pp. 2-12) ISSN: 1553-877X.
  • Extended Search Report for European Application No. 11188566.1, mailed Jan. 30, 2012.
  • Office Action for U.S. Appl. No. 12/957,997, mailed Aug. 28, 2012.
  • Final Office Action for U.S. Appl. No. 11/351,104, mailed Aug. 14, 2012.
  • Non-Final Office Action for U.S. Appl. No. 11/351,104, mailed Dec. 17, 2012.
  • Final Office Action for U.S. Appl. No. 12/370,562, mailed Jul. 26, 2012.
  • Final Office Action for U.S. Appl. No. 12/683,281, mailed Sep. 21, 2012.
  • Final Office Action for U.S. Appl. No. 12/304,100, mailed Dec. 11, 2012.
  • Office Action for U.S. Appl. No. 13/568,861, mailed Oct. 24, 2012.
  • Third Office Action for Chinese Application No. 200780029623.X, mailed Sep. 29, 2012.
  • European Examination Report for Application No. 07796005.2, mailed Sep. 4, 2012.
Patent History
Patent number: 8818322
Type: Grant
Filed: May 11, 2007
Date of Patent: Aug 26, 2014
Patent Publication Number: 20070287390
Assignee: Trapeze Networks, Inc. (Pleasanton, CA)
Inventors: James Murphy (Pleasanton, CA), Gary Eugene Morain (San Jose, CA), Stan Chesnutt (Berkeley, CA)
Primary Examiner: Joseph Arevalo
Application Number: 11/801,964
Classifications