Dual-range wireless interactive entertainment device
A method of interactive game play is provided wherein a seemingly magical wand toy is provided for enabling a trained user to electronically send and receive information to and from other wand toys, a master system and/or to actuate various play effects within a play environment. The toy wand or other seemingly magical object is configured to use a send/received radio frequency communications protocol which provides a basic foundation for a complex, interactive entertainment system to create a seemingly magical interactive play experience.
Latest MQ Gaming, LLC Patents:
This present application is a continuation of and claims priority benefit under 35 U.S.C. §120 from U.S. patent application Ser. No. 12/966,875, filed Dec. 13, 2010, which is a continuation of and claims priority benefit under 35 U.S.C. §120 from U.S. patent application Ser. No. 10/889,974, filed Jul. 13, 2004, now U.S. Pat. No. 7,850,527, which is a continuation of and claims priority benefit under 35 U.S.C. §120 from U.S. patent application Ser. No. 09/792,282, filed on Feb. 22, 2001, now U.S. Pat. No. 6,761,637, which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 60/184,128, filed Feb. 22, 2000, the entire content of each of which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to children's play toys and games and, in particular, to interactive toys, games and play systems utilizing radio frequency transponders and transceivers to provide a unique interactive game play experience.
2. Description of the Related Art
Family entertainment centers, play structures and other similar facilities are well known for providing play and interaction among play participants playing in, or around an entertainment facility and/or play structure. See, for example, U.S. Pat. No. 5,853,332 to Briggs, incorporated herein by reference. A wide variety of commercially available play toys and games are also known for providing valuable learning and entertainment opportunities for children, such as role playing, reading, memory stimulation, tactile coordination and the like.
However, there is always a demand for more exciting and entertaining games and toys that increase the learning and entertainment opportunities for children and stimulate creativity and imagination.
SUMMARY OF THE INVENTIONThe present invention provides a unique method of game play carried out within either an existing or specially configured entertainment facility or play structure. The game utilizes an interactive “wand” and/or other tracking/actuation device to allow play participants to electronically and “magically” interact with their surrounding play environment(s). The play environment may either be real or imaginary (i.e. computer/TV generated), and either local or remote, as desired. Optionally, multiple play participants, each provided with a suitable “wand” and/or tracking device, may play and interact together, either within or outside the play environment, to achieve desired goals or produce desired effects within the play environment.
In accordance with one embodiment the present invention provides an interactive play system and seemingly magical wand toy for enabling a trained user to electronically send and receive information to and from other wand toys and/or to and from various transceivers distributed throughout a play facility and/or connected to a master control system. The toy wand or other seemingly magical object is configured to use a send/receive radio frequency communication protocol which provides a basic foundation for a complex, interactive entertainment system to create a seemingly magic interactive play experience for play participants who possess and learn to use the magical wand toy.
In accordance with another embodiment the present invention provides an interactive play structure in the theme of a “magic” training center for would-be wizards in accordance with the popular characters and storylines of the children's book series “Harry Potter” by J. K. Rowling. Within the play structure, play participants learn to use a “magic wand” and/or other tracking/actuation device. The wand allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. Various receivers or transceivers are distributed throughout the play structure to facilitate such interaction via wireless communications.
In accordance with another embodiment the present invention provides a wand actuator device for actuating various interactive play effects within an RFID-compatible play environment. The wand comprises an elongated hollow pipe or tube having a proximal end or handle portion and a distal end or transmitting portion. An internal cavity may be provided to receive one or more batteries to power optional lighting, laser or sound effects and/or to power long-range transmissions such as via an infrared LED transmitter device or RF transmitter device. The distal end of the wand is fitted with an RFID (radio frequency identification device) transponder that is operable to provide relatively short-range RF communications (<60 cm) with one or more receivers or transceivers distributed throughout a play environment. The handle portion of the wand is fitted with optional combination wheels having various symbols and/or images thereon which may be rotated to produce a desired pattern of symbols required to operate the wand or achieve one or more special effects.
In accordance with another embodiment the present invention provides an RFID card or badge intended to be affixed or adhered to the front of a shirt or blouse worn by a play participant while visiting an RF equipped play facility. The badge comprises a paper, cardboard or plastic substrate having a front side and a back side. The front side may be imprinted with graphics, photos, or any other information desired. The front side may include any number of other designs or information pertinent to its application. The obverse side of the badge contains certain electronics comprising a radio frequency tag pre-programmed with a unique person identifier number (“UPIN”). The UPIN may be used to identify and track individual play participants within the play facility. Optionally, each tag may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship.
In accordance with another embodiment the present invention provides an electronic role-play game utilizing specially configured electronically readable character cards. Each card is configured with an RFID or a magnetic “swipe” strip or the like, that may be used to store certain information describing the powers or abilities of an imaginary role-play character that the card represents. As each play participant uses his or her favorite character card in various play facilities the character represented by the card gains (or loses) certain attributes, such as magic skill level, magic strength, flight ability, various spell-casting abilities, etc. All of this information is preferably stored on the card so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
In accordance with another embodiment the present invention provides a trading card game wherein a plurality of cards depicting various real or imaginary persons, characters and/or objects are provided and wherein each card has recorded or stored thereon in an electronically readable format certain selected information pertaining to the particular person, character or object, such as performance statistics, traits/powers, or special abilities. The information is preferably stored on an RFID tracking tag associated with each card and which can be read electronically and wirelessly over a predetermined range preferably greater than about 1 cm when placed in the proximity of a suitably configured RF reader. Optionally, the RFID tag may be read/write capable such that it the information stored thereon may be changed or updated in any manner desired. Alternatively, a magnetic strip, bar code or similar information storage means may be used to store relevant information on the card.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
Having thus summarized the general nature of the invention and its essential features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
Basic System and Framework
Preferably, a suitable play media 114, such as foam or rubber balls or similar objects, is provided for use throughout the structure to provide a tactile interactive play experience. See, for example, U.S. Pat. No. 7,850,527, incorporated herein by reference.
Various electronic interactive play elements are disposed in, on and/or around the play structure 100 to allow play participants 105 to create desired “magical” effects, as illustrated in
While a particular preferred play environment and play structure 100 has been described, it will be readily apparent to those skilled in the art that a wide variety of other possible play environments, play structures, entertainment centers and the like may be used to create an interactive play environment within which the invention may be carried out. See, for example, U.S. Pat. No. 7,850,527, incorporated herein by reference. Alternatively, a suitable play structure may be constructed entirely or partially from conduits or pipes which also transport play media to and from various locations throughout the play structure. Alternatively, the play environment need not comprise a play structure at all, but may be simply a themed play area, or even a multi-purpose area such as a restaurant dining facility, family room, bedroom or the like.
Magic Wand
As indicated above, play participants 105 within the play structure 100 learn to use a “magic wand” 200 and/or other tracking/actuation device. The wand 200 allows play participants to electronically and “magically” interact with their surrounding play environment simply by pointing or using their wands in a particular manner to achieve desired goals or produce desired effects within the play environment. Use of the wand 200 may be as simple as touching it to a particular surface or “magical” item within the play structure 100 or it may be as complex as shaking or twisting the wand a predetermined number of times in a particular manner and/or pointing it accurately at a certain target desired to be “magically” transformed or otherwise affected. As play participants play and interact within the play structure 100 they learn more about the “magical” powers possessed by the wand 200 and become more adept at using the wand to achieve desired goals or desired play effects. Optionally, play participants may collect points or earn additional magic levels or ranks for each play effect or task they successfully achieve. In this manner, play participants 105 may compete with one another to see who can score more points and/or achieve the highest magic level.
This information is initially received by RF Module 380, which can then transfer the information through standard interfaces to an optional Host Computer 375, Control Module 385, printer, or programmable logic controller for storage or action. If appropriate, Control Module 385 provides certain outputs to activate or control one or more associated play effects, such as lighting, sound, various mechanical or pneumatic actuators or the like. Optional Host Computer 375 processes the information and/or communicates it to other transceivers 300, as may be required by the game. If suitably configured, RF Module 380 may also broadcast or “write” certain information back to the transponder 335 to change or update one of more of the 80 read/write bits in its memory. This exchange of communications occurs very rapidly (about 70 ms) and so from the user's perspective it appears to be instantaneous. Thus, the wand 200 may be used in this “short range” or “passive” mode to actuate various “magical” effects throughout the play structure 100 by simply touching or bringing the tip of the wand 200 into relatively close proximity with a particular transceiver 300. To provide added mystery and fun, certain transceivers 300 may be hidden within the play structure 100 so that they must be discovered by continually probing around the structure using the wand 200. The locations of the hidden transceivers may be changed from time to time to keep the game fresh and exciting.
If desired, the wand 200 may also be configured for long range communications with one or more of the transceivers 300 (or other receivers) disposed within the play structure 100. For example, one or more transceivers 300 may be located on a roof or ceiling surface, on an inaccessible theming element, or other area out of reach of play participants. Such long-rage wand operation may be readily achieved using an auxiliary battery powered RF transponder, such as available from Axcess, Inc., Dallas, Tex. If line of sight or directional actuation is desired, a battery-operated infrared LED transmitter and receiver of the type employed in television remote control may be used, as those skilled in the art will readily appreciate. Of course, a wide variety of other wireless communications devices, as well as various sound and lighting effects may also be provided, as desired. Any one or more of these may be actuated via button 325, as desirable or convenient.
Additional optional circuitry and/or position sensors may be added, if desired, to allow the “magic wand” 200 to be operated by waving, shaking, stroking and/or tapping it in a particular manner. If provided, these operational aspects would need to be learned by play participants as they train in the various play environments. The ultimate goal, of course, is to become a “grand wizard” or master of the wand. This means that the play participant has learned and mastered every aspect of operating the wand to produce desired effects within each play environment. Of course, additional effects and operational nuances can (and preferably are) always added in order to keep the interactive experience fresh continually changing. Optionally, the wand 200 may be configured such that it is able to display 50 or more characters on a LTD or LCD screen. The wand may also be configured to respond to other signals, such as light, sound, or voice commands as will be readily apparent to those skilled in the art.
RFID Tracking Card/Badge
The obverse side 410 of the badge 400 contains the badge electronics comprising a radio frequency tag 420 pre-programmed with a unique person identifier number (“UPIN”). The tag 420 generally comprises a spiral wound antenna 450, a radio frequency transmitter chip 460 and various electrical leads and terminals 470 connecting the chip 460 to the antenna. Advantageously, the UPIN may be used to identify and track individual play participants within the play facility. Optionally, each tag 420 may also include a unique group identifier number (“UGIN”) which may be used to match a defined group of individuals having a predetermined relationship—either preexisting or contrived for purposes of game play. If desired, the tag 420 may be covered with an adhesive paper label (not shown) or, alternatively, may be molded directly into a plastic sheet substrate comprising the card 400.
Various readers distributed throughout a park or entertainment facility are able to read the RFID tags 420. Thus, the UPIN and UGIN information can be conveniently read and provided to an associated master control system, display system or other tracking, recording or display device for purposes of creating a record of each play participant's experience within the play facility. This information may be used for purposes of calculating individual or team scores, tracking and/or locating lost children, verifying whether or not a child is inside a facility, photo capture & retrieval, and many other useful purposes as will be readily obvious and apparent to those skilled in the art.
Preferably, the tag 420 is passive (requires no batteries) so that it is inexpensive to purchase and maintain. Such tags and various associated readers and other accessories are commercially available in a wide variety of configurations, sizes and read ranges. RFID tags having a read range of between about 10 cm to about 100 cm are particularly preferred, although shorter or longer read ranges may also be acceptable. The particular tag illustrated is the 13.56 MHz tag sold under the brand name Taggit™. available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A). The tag 420 has a useful read/write range of about 25 cm and contains 256-bits of on-board memory arranged in 8.times.32-bit blocks which may be programmed (written) and read by a suitably configured read/write device. Such tag device is useful for storing and retrieving desired user-specific information such as UPIN, UGIN, first and/or last name, age, rank or level, total points accumulated, tasks completed, facilities visited, etc. If a longer read/write range and/or more memory is desired, optional battery-powered tags may be used instead, such as available from ACXESS, Inc. and/or various other vendors known to those skilled in the art.
As indicated above, communication of data between a tag and a reader is by wireless communication. As a result, transmitting such data is always subject to the vagaries and influences of the media or channels through which the data has to pass, including the air interface. Noise, interference and distortion are the primary sources of data corruption that may arise. Thus, those skilled in the art will recognize that a certain degree of care should be taken in the placement and orientation of readers 500 so as to minimize the probability of such data transmission errors. Preferably, the readers are placed at least 30-60 cm away from any metal objects, power lines or other potential interference sources. Those skilled in the art will also recognize that the write range of the tag/reader combination is typically somewhat less (about 10-15% less) than the read range “d” and, thus, this should also be taken into account in determining optimal placement and positioning of each reader device 500.
Typical RFID data communication is asynchronous or unsynchronized in nature and, thus, particular attention should be given in considering the form in which the data is to be communicated. Structuring the bit stream to accommodate these needs, such as via a channel encoding scheme, is preferred in order to provide reliable system performance. Various suitable channel encoding schemes, such as amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) and spread spectrum modulation (SSM), are well know to those skilled in the art and will not be further discussed herein. The choice of carrier wave frequency is also important in determining data transfer rates. Generally speaking the higher the frequency the higher the data transfer or throughput rates that can be achieved. This is intimately linked to bandwidth or range available within the frequency spectrum for the communication process. Preferably, the channel bandwidth is selected to be at least twice the bit rate required for the particular game application.
Various data buffers or further memory components (not shown), may be provided to temporarily hold incoming data following demodulation and outgoing data for modulation and interface with the transponder antenna 450. Analog Circuitry 535 provides the facility to direct and accommodate the interrogation field energy for powering purposes in passive transponders and triggering of the transponder response. Analog Circuitry also provides the facility to accept the programming or “write” data modulated signal and to perform the necessary demodulation and data transfer processes. Digital Circuitry 540 provides certain control logic, security logic and internal microprocessor logic required to operate central processor 530.
Role Play Character Cards
The RFID card 400 illustrated and described above is used, in accordance with the afore-mentioned preferred embodiment, to identify and track individual play participants and/or groups of play participants within a play facility. However, in another preferred embodiment, the same card 400 and/or a similarly configured RFID or a magnetic “swipe” card or the like may be used to store certain powers or abilities of an imaginary role-play character that the card 400 represents. For example, card 400 may represent the HARRY POTTER character. As each play participant uses his or her favorite character card in various HARRY POTTER play facilities the HARRY POTTER character represented by the card 400 gains (or loses) certain attributes, such as magic skill level, magic strength, flight ability, various spell-casting abilities, etc. All of this information is preferably stored on the card 400 so that the character attributes may be easily and conveniently transported to other similarly-equipped play facilities, computer games, video games, home game consoles, hand-held game units, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
For example, character attributes developed during a play participant's visit to a local HARRY POTTER/Hogwart magic facility are stored on the card 400. When the play participant then revisits the same or another HARRY POTTER play facility, all of the attributes of his character are “remembered” on the card so that the play participant is able to continue playing with and developing the same role-play character. Similarly, various video games, home game consoles, and/or hand-held game units can be and preferably are configured to communicate with the card 400 in a similar manner as described above and/or using other well-known information storage and communication techniques. In this manner, a play participant can use the character card 400 and the role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game or the like.
The particular size, shape and theme of the cards 600 are relatively unimportant. In the particular embodiment illustrated, the cards 600 are shaped and themed so as to be used as bookmarks for HARRY POTTER series books. These may be packaged and sold together with each HARRY POTTER book, or they may be sold separately as novelty items or the like. If desired, a hole or eyelet 610 may be provided at the top of each card 600 so as to facilitate wearing the card 600 as a pendant on a necklace 620 or as key-chain trinket. Smaller, pocket-sized cards and/or other similar RFID or magnetic transponder devices may also be used where convenience and market demand dictates. Such transponder devices are commercially available, such as from Texas Instruments, Inc. (http://www.tiris.com, e.g., Prod. Nos. RI-TRP-W9WK, RI-TRP-R9QL, RI-TRP-WFOB).
Master Control System
Depending upon the degree of game complexity desired and the amount of information sharing required, the transceivers 300 may or may not be connected to a master control system or central server 375 (
SRRF may generally be described as an RF-based communications technology and protocol that allows pertinent information and messages to be sent and received to and from two or more SRRF compatible devices or systems. While the specific embodiments described herein are specific to RF-based communication systems, those skilled in the art will readily appreciate that the broader interactive play concepts taught herein may be realized using any number of commercially available 2-way and/or 1-way medium range wireless communication devices and communication protocols such as, without limitation, infrared-, digital-, analog, AM/FM-, laser-, visual-, audio-, and/or ultrasonic-based systems, as desired or expedient.
The SRRF system can preferably send and receive signals (up to 40 feet) between tokens and fixed transceivers. The system is preferably able to associate a token with a particular zone as defined by a token activation area approximately 10-15 feet in diameter. Different transceiver and antenna configurations can be utilized depending on the SRRF requirements for each play station. The SRRF facility tokens and transceivers are networked throughout the facility. These devices can be hidden in or integrated into the facility's infrastructure, such as walls, floors, ceilings and play station equipment. Therefore, the size and packaging of these transceivers is not particularly critical.
In a preferred embodiment, an entire entertainment facility may be configured with SRRF technology to provide a master control system for an interactive entertainment play environment using SRRF-compatible magic wands and/or tracking devices. A typical entertainment facility provided with SRRF technology may allow 300-400 or more users to more-or-less simultaneously send and receive electronic transmissions to and from the master control system using a magic wand or other SRRF-compatible tracking device.
In particular, the SRRF system uses a software program and data-base that can track the locations and activities of up to a hundred more users. This information is then used to adjust the play experience for the user based on “knowing” where the user/player has been, what objectives that player has accomplished and how many points or levels have been reached. The system can then send messages to the user throughout the play experience. For example, the system can allow or deny access to a user into a new play area based on how many points or levels reached by that user and/or based on what objectives that user has accomplished or helped accomplish. It can also indicate, via sending a message to the user the amount of points or specific play objectives necessary to complete a “mission” or enter the next level of play. The master control system can also send messages to the user from other users.
The system is preferably sophisticated enough that it can allow multiple users to interact with each other adjusting the game instantly. The master system can also preferably interface with digital imaging and/or video capture so that the users activities can be visually tracked. Any user can locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are informed of their activities and the system interfaces with printout capabilities. The SRRF system is preferably capable of sending and receiving signals up to 100 feet. Transmitter devices can also be hidden in walls or other structures in order to provide additional interactivity and excitement for play participants.
Suitable embodiments of the SRRF technology described above may be obtained from a number of suitable sources, such as AXCESS, Inc. and, in particular, the AXCESS active RFID network system for asset and people tacking applications. In another preferred embodiment the system comprises a network of transceivers 300 installed at specific points throughout a facility. Players are outfitted or provided with a reusable “token”—a standard AXCESS personnel tag clipped to their clothing in the upper chest area. As each player enters a specific interactive play area or “game zone” within the facility, the player's token receives a low frequency activation signal containing a zone identification number (ZID). The token then responds to this signal by transmitting both its unique token identification number (TID) along with the ZID, thus identifying and associating the player with a particular zone.
The token's transmitted signal is received by a transceiver 300 attached to a data network built into the facility. Using the data network, the transceiver forwards the TID/ZID data to a host computer system. The host system uses the SRRF information to log/track the guest's progress through the facility while interfacing with other interactive systems within the venue. For example, upon receipt of a TID/ZID message received from Zone 1, the host system may trigger a digital camera focused on that area, thus capturing a digital image of the player which can now be associated with both their TID and the ZID at a specific time. In this manner the SRRF technology allows the master control system to uniquely identify and track people as they interact with various games and activities in a semi-controlled play environment. Optionally, the system may be configured for two-way messaging to enable more complex interactive gaming concepts.
In another embodiment, the SRRF technology can be used in the home. For enabling Magic at the home, a small SRRF module is preferably incorporated into one or more portable toys or objects that may be as small as a beeper. The SRRF module supports two-way communications with a small home transceiver, as well as with other SRRF objects. For example, a Magic wand 200 can communicate with another Magic wand 200.
The toy or object may also include the ability to produce light, vibration or other sound effects based on signals received through the SRRF module. In a more advanced implementation, the magical object may be configured such that it is able to display preprogrammed messages of up to 50 characters on a LCD screen when triggered by user action (e.g. button) or via signals received through the SRRF module. This device is also preferably capable of displaying short text messages transmitted over the SRRF wireless link from another SRRF-compatible device.
Preferably, the SRRF transceiver 300 is capable of supporting medium-to-long range (10-40 feet) two-way communications between SRRF objects and a host system, such as a PC running SRRF-compatible software. This transceiver 300 has an integral antenna and interfaces to the host computer through a dedicated communication port using industry standard RS232 serial communications. It is also desirable that the SRRF transmission method be flexible such that it can be embedded in television or radio signals, videotapes, DVDs, video games and other programs media, stripped out and re-transmitted using low cost components. The exact method for transposing these signals, as well as the explicit interface between the home transceiver and common consumer electronics (i.e. TVs, radios, VCRs, DVD players, NV receivers, etc.) is not particularly important, so long as the basic functionality as described above is achieved. The various components needed to assemble such an SRRF system suitable for use with the present invention are commercially available and their assembly to achieve the desired functionality described above can be readily determined by persons of ordinary skill in the art. If desired, each SRRF transceiver may also incorporate a global positioning (“GPS”) device to track the exact location of each play participant within one or more play environments.
Most desirably, a SRRF module can be provided in “chip” form to be incorporated with other electronics, or designed as a packaged module suitable for the consumer market. If desired, the antenna can be embedded in the module, or integrated into the toy and attached to the module. Different modules and antennas may be required depending on the function, intelligence and interfaces required for different devices. A consumer grade rechargeable or user replaceable battery may also be used to power both the SRRF module and associated toy electronics.
Interactive Game Play
The present invention may be carried out using a wide variety of suitable game play environments, storylines and characters, as will be readily apparent to those skilled in the art. The following specific game play examples are provided for purposes of illustration and for better understanding of the invention and should not be taken as limiting the invention in any way:
EXAMPLE 1An overall interactive gaming experience and entertainment system is provided (called the “Magic” experience), which tells a fantastic story that engages children and families in a never-ending adventure based on a mysterious treasure box filled with magical objects. Through a number of entertainment venues such as entertainment facilities, computer games, television, publications, web sites, and the like, children learn about and/or are trained to use these magical objects to become powerful “wizards” within one or more defined “Magic” play environments. The play environments may be physically represented, such as via an actual existing play structure or family entertainment center, and/or it may be visually/aurally represented via computer animation, television radio and/or other entertainment venue or source.
The magical objects use the SRRF communications system allowing for messages and information to be received and sent to and from any other object or system. Optionally, these may be programmed and linked to the master SRRF system. Most preferably, the “magic wand” 200 is configured to receive messages from any computer software, game console, web site, and entertainment facility, television program that carries the SRRF system. In addition, the magic wand can also preferably send messages to any SRRF compatible system thus allowing for the “wand” to be tracked and used within each play environment where the wand is presented. The toy or wand 200 also preferably enables the user to interact with either a Master system located within a Magic entertainment facility and/or a home-based system using common consumer electronic devices such as a personal computer, VCR or video game system.
The master control system for a Magic entertainment facility generally comprises: (1) a “token” (gag, toy, wand 200 or other device) carried by the user 105, (2) a plurality of receivers or transceivers 300 installed throughout the facility, (3) a standard LAN communications system (optional), and (4) a master computer system interfaced to the transceiver network (optional). If a Master computer system is used, preferably the software program running on the Master computer is capable of tracking the total experience for hundreds of users substantially in real time. The information is used to adjust the play for each user based on knowing the age of the user, where the user has played or is playing, points accumulated, levels reached and specific objectives accomplished. Based on real-time information obtained from the network, the system can also send messages to the user as they interact throughout the Magic experience.
The Master system can quickly authorize user access to a new play station area or “zone” based on points or levels reached. It can also preferably indicate, via sending a message to the user, the points needed or play activities necessary to complete a “mission.” The Master system can also send messages to the user from other users. The system is preferably sophisticated enough to allow multiple users to interact with each other while enjoying the game in real-time.
Optionally, the Master system can interface with digital imaging and video capture so that the users' activities can be visually tracked. Any user can then locate another user either through the video capturing system or by sending a message to another device. At the end of a visit, users are informed of their activities and other attributes related to the Magic experience via display or printout.
For relatively simple interactive games, the Master system may be omitted in order to save costs. In that case, any game-related information required to be shared with other receivers or transceivers may be communicated via an RS-232 hub network, Ethernet, or wireless network, or such information may be stored on the wand itself and/or an associated RFID card or badge carried by the play participant (discussed later). For retrofit applications, it is strongly preferred to provide substantially all stand-alone receivers or transceivers that do not communicate to a master system or network. This is to avoid the expense of re-wiring existing infrastructure. For these applications, any information required to be shared by the game system is preferably stored on the wand or other RFID device(s) carried by the play participants. Alternatively, if a more complex game experience is demanded, any number of commercially available wireless networks may be provided without requiring rewiring or existing infrastructure.
EXAMPLE 2A computer adventure game is provided in which one or more play participants assume the role of an imaginary character “Pajama Sam” from the popular series of computer games published by Humongous Entertainment, Inc. of Woodinville, Wash. A Pajama Sam adventure character card 700, such as illustrated in
The card 700 may be constructed substantially the same as the cards 400, 600 illustrated and described above in connection with
The particular size, shape and theme of the card 700 is relatively unimportant. In the particular embodiment illustrated, the card 700 is shaped and themed similar to a baseball trading card so that they may be collected and stored conveniently in any baseball card album or the like. If desired, a hole or eyelet (not shown) may be provided at the top of the card 700 so as to facilitate wearing the card 700 as a pendant on a necklace or as key-chain trinket. Of course, smaller, pocket-sized cards and/or other similar RFID or magnetic transponder devices may also be used where convenience and market demand dictates. Such alternative suitable transponder devices are commercially available, such as from Texas Instruments, Inc. (http://www.tiris.com, e.g., Prod. Nos. RI-TRP-W9WK, RI-TRP-R9QL, RI-TRP-WFOB).
A specially configured computer, video game, home game console, hand-held gaming device or similar gaming device is provided with a reader, and more preferably a reader/writer such as described above, that is able to communicate with the tag 720 or other information storage means associated with the card 700. As each play participant plays his or her favorite Pajama Sam game the Pajama Sam character represented by the card 700 gains (or loses) certain attributes, such as speed, dexterity, and/or the possession of certain tools or objects associated with the game play. All of this information is preferably stored on the card 700 so that the character attributes may be easily and conveniently transported to other similarly-equipped computer games, video games, home game consoles, hand-held game units, play facilities, and the like. In this manner, an imaginary role-play character is created and stored on a card that is able to seamlessly transcend from one play medium to the next.
For example, in the course of playing a typical Pajama Sam game, players must “find” certain objects or tools that they will use to solve certain puzzles or tasks presented by the game. Players “pick up” these objects or tools by clicking their mouse on the desired object. The computer game software then keeps a record of which objects have been collected and displays those objects on the computer screen when requested by the player. This is illustrated by
If the player were to quit the game at this point, he or she could save the game on the host computer and return to the same computer later to complete the adventure. But the Pajama Sam character itself, its attributes, experiences and accomplishments are not portable and cannot presently be transferred from one game or gaming environment to another. However, the Pajama Sam adventure card 700 in accordance with the present invention enables a play participant to continue the adventure somewhere else (e.g. at a friends house, or a video arcade facility) without having to restart the game and repeat the steps that the player has already accomplished. With the Pajama Sam adventure card 700, relevant details of the game experience and the Pajama Sam character are stored on the card 700 so that the player can take the card to another computer, game console, hand-held game device or a designated Pajama Sam play facility, to continue the adventure in a new and exciting play environment.
For example, the Pajama Sam play facility could be configured as a physical play space similar to that described above in connection with
Similarly, various other video games, home game consoles, and/or hand-held game units can be and preferably are configured to communicate with the Pajama Sam adventure card 700 in a similar manner as described above and/or using other well-known information storage and communication techniques. In this manner, a play participant can use the Pajama Sam adventure card 700 and the role play character he or she has developed with specific associated attributes in a favorite video action game, role-play computer game, internet adventure game or the like.
EXAMPLE 3A trading card game is provided wherein a plurality of cards depicting various real or imaginary persons, characters and/or objects are provided and wherein each card has recorded or stored thereon in an electronically readable format certain selected information pertaining to the particular person, character or object, such as performance statistics, traits/powers, or special abilities. The information is preferably stored on an RFID tracking tag associated with each card and which can be read electronically and wirelessly over a predetermined range preferably greater than about 1 cm when placed in the proximity of a suitably configured RF reader. Optionally, the RFID tag may be read/write capable such that the information stored thereon may be changed or updated in any manner desired. Alternatively, a magnetic strip, bar code or similar information storage means may be used to store relevant information on the card.
The obverse side 910 of the card 900 preferably contains the card electronics comprising a radio frequency tag 920 pre-programmed with the pertinent information for the particular person, character or object portrayed on the front of the card. The tag 920 generally comprises a spiral wound antenna 950, a radio frequency transmitter chip 960 and various electrical leads and terminals 970 connecting the chip 960 to the antenna. If desired, the tag 920 may be covered with an adhesive paper label (not shown) or, alternatively, the tag may be molded directly into a plastic sheet substrate from which the card 900 is formed.
Preferably, the tag 920 is passive (requires no batteries) so that it is inexpensive to purchase and maintain. Such tags and various associated readers and other accessories are commercially available in a wide variety of configurations, sizes and read ranges. RFID tags having a read range of between about 10 cm to about 100 cm are particularly preferred, although shorter or longer read ranges may also be acceptable. The particular tag illustrated is the 13.56 MHz tag sold under the brand name Taggit™ available from Texas Instruments, Inc. (http://www.tiris.com, Product No. RI-103-110A). The tag 920 has a useful read/write range of about 25 cm and contains 256-bits of on-board memory arranged in 8*32-bit blocks which may be programmed (written) and read by a suitably configured read/write device. If a longer read/write range and/or more memory is desired, optional battery-powered tags may be used instead, such as available from ACXESS, Inc. and/or various other vendors known to those skilled in the art.
Cards 900 may be collected or traded and/or they may be used to play various games, such as a Pokemon arena competition using an electronic interface capable of reading the card information. Such games may be carried out using a specially configured gaming device or, alternatively, using a conventional computer gaming platform, home game console, arcade game console, hand-held game device, internet gaming device or other gaming device that has been modified to include an RF reader or magnetic “swipe” reader device as illustrated and described above. Advantageously, play participants can use the trading cards 900 to transport information pertinent to a particular depicted person, character or object to a favorite computer action game, adventure game, interactive play structure or the like. For example, a suitably configured video game console and video game may be provided which reads the card information and recreates the appearance and/or traits of particular depicted person, character of object within the game. If desired, the game console may further be configured to write information to the card in order to change or update certain characteristics or traits of the character, person or object depicted by the card 900 in accordance with a predetermined game play progression.
Of course, those skilled in the art will readily appreciate that the underlying concept of an RIFD trading card 900 and card game is not limited to cards depicting fantasy characters or objects, but may be implemented in a wide variety of alternative embodiments, including sporting cards, baseball, football and hockey cards, movie character cards, dinosaur cards, educational cards and the like. If desired, any number of other suitable collectible/tradable tokens or trinkets may also be provided with a similar RFID tag device in accordance with the teachings of the present invention as dictated by consumer tastes and market demand.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Claims
1. A wireless toy for amusing or entertaining a game participant playing an interactive game within a wireless-compatible play environment, said wireless toy comprising:
- a portable body comprising an internal cavity configured to accommodate one or more batteries and associated electronics configured to power and operate said wireless toy;
- a microprocessor and associated non-volatile programmable memory configured to store game-relevant information;
- a short-range radio frequency (RF) transceiver configured to provide short-range two-way wireless communication with a first wireless-compatible device over a limited communication range of less than 60 cm and wherein said short-range wireless communication includes communication of a first selection of game-relevant information from said wireless toy to said first wireless-compatible device; and
- a medium-range transmitter configured to wirelessly transmit a unique identification number to a second wireless-compatible device over a communication range greater than 10 feet and wherein said unique identification number is configured to uniquely identify said wireless toy within said game.
2. The wireless toy of claim 1, wherein said portable body is configured to be held or worn by said game participant.
3. The wireless toy of claim 1, wherein said portable body comprises a housing shaped in the form of a toy wand and further comprising motion- or position-sensitive circuitry configured to enable said toy wand to be operated by said game participant at least in part by moving said portable body in free space to wirelessly activate or control one or more effects associated with said interactive game.
4. The wireless toy of claim 1, further comprising an antenna configured to receive energy from an external energy source through inductive coupling and to supply said energy to power said short-range RF transceiver.
5. The wireless toy of claim 1, wherein said short-range RF transceiver is configured to provide short-range two-way wireless communication with said first wireless-compatible device over a limited communication range of less than 25 cm, wherein said short-range two-way wireless communication is facilitated at least in part through inductive coupling, and wherein said short-range wireless communication includes communication of a second selection of game-relevant information from said first wireless-compatible device to said wireless toy.
6. The wireless toy of claim 1, wherein said medium-range transmitter is selected from the group consisting of an RF transmitter and an infrared transmitter and wherein said medium-range transmitter is powered by said one or more batteries.
7. The wireless toy of claim 1, in combination with said first wireless-compatible device and wherein said first wireless-compatible device comprises a radio frequency identification (RFID) reader.
8. A wireless gaming device for entertaining one or more game participants playing a computer-animated game on a wireless-compatible computer gaming platform or home game console, said gaming device comprising:
- a portable body comprising an internal cavity configured to hold one or more batteries and associated electronics configured to power and operate said gaming device;
- non-volatile memory storing a unique identifier configured to uniquely identify said gaming device within said game;
- a short-range radio frequency (RF) transceiver configured to provide short-range two-way wireless communication with a first wireless-compatible device over a limited communication range of less than 60 cm and wherein said short-range wireless communication includes communication of at least a first selection of game-relevant information from said gaming device to said first wireless-compatible device; and
- a medium-range RF transceiver configured to provide medium-range two-way wireless communication with a second wireless-compatible device over a communication range greater than 10 feet and wherein said medium-range wireless communication includes communication of at least a second selection of game-relevant information from said gaming device to said second wireless-compatible device.
9. The gaming device of claim 8, wherein said portable body is configured to be held and moved freely in the air and wherein said gaming device further comprises motion- or position-sensitive circuitry configured to enable said gaming device to be operated by a game participant at least in part by moving said portable body in free space to wirelessly activate or control one or more effects associated with said game.
10. The gaming device of claim 8, wherein said short-range RF transceiver is configured to provide two-way wireless communication with said first wireless-compatible device over a limited communication range of less than 25 cm and wherein said short-range two-way wireless communication is facilitated at least in part through inductive coupling.
11. The gaming device of claim 8, wherein said first or second selection of game-relevant information comprises one or more items of information selected from the following group: said unique identifier, a tracking identifier uniquely associated with a particular game participant, the name of said particular game participant, the age of said particular game participant, the rank or level of said particular game participant within said game, points accumulated by said particular game participant in said game, tasks completed by said particular game participant in said game, attributes of a game character played by said particular game participant in said game, and facilities visited by said particular game participant.
12. The gaming device of claim 8, in combination with said first wireless-compatible device and wherein said first wireless-compatible device is selected from the group consisting of: an RFID transponder, an RFID reader, and an RFID reader/writer.
13. The gaming device of claim 8, in combination with an image capture system configured to capture one or more digital images of a game participant playing said game using said gaming device.
14. The gaming device of claim 8, further comprising a display screen configured to display game-relevant information based on one or more wireless communications received by said medium-range RF transceiver.
15. The gaming device of claim 8, further comprising an effects generator configured to produce one or more lighting, vibration or sound effects based on one or more wireless communications received by said medium-range RF transceiver.
16. A dual-range wireless tracking device for wirelessly tracking a guest as part of an entertainment experience carried out within a wireless-compatible play or entertainment facility, said tracking device comprising:
- a portable body comprising one or more internal batteries and associated electronics configured to power and operate said tracking device;
- non-volatile memory for storing at least one unique identifier that uniquely identifies said guest as a trackable object within said wireless-compatible play or entertainment facility when said guest is using, wearing or carrying said tracking device;
- a wirelessly-powered short-range radio frequency (RF) transceiver configured to provide short-range two-way wireless communication with a first wireless-compatible device over a limited communication range of less than 60 cm and wherein said short-range wireless communication includes a first selection of guest-specific information relevant to said entertainment experience; and
- a battery-powered medium-range transmitter configured to provide medium-range wireless communication with a second wireless-compatible device over a communication range greater than 10 feet and wherein said medium-range wireless communication includes a second selection of guest-specific information relevant to said entertainment experience.
17. The tracking device of claim 16, wherein said portable body comprises a housing shaped in the form of a toy wand and further comprising motion- or position-sensitive circuitry configured to enable said toy wand to be operated by said guest at least in part by moving said portable body in free space to wirelessly activate or control one or more effects associated with said entertainment experience.
18. The tracking device of claim 16, wherein said short-range RF transceiver is configured to provide short-range two-way wireless communication with said first wireless-compatible device over a limited communication range of less than 25 cm and wherein said short-range two-way wireless communication is facilitated at least in part through inductive coupling.
19. The tracking device of claim 16, wherein said short-range RF transceiver is configured such that when said guest selectively causes said tracking device to come within said limited wireless communication range of said first wireless-compatible device, said short-range RF transceiver wirelessly transmits said first selection of guest-specific information to said first wireless-compatible device and wherein said first selection of guest-specific information includes said at least one unique identifier.
20. The tracking device of claim 16, wherein said short-range RF transceiver comprises at least one antenna configured to be wirelessly energized through inductive coupling with an external electromagnetic field and to thereby power said short-range RF transceiver when said guest selectively causes said tracking device to come within said limited wireless communication range of said first wireless-compatible device.
21. The tracking device of claim 16, wherein said first or second selection of guest-specific information comprises one or more items of information selected from the following group: said at least one unique identifier, a tracking identifier unique to said tracking device, selected guest identification information, the name of said guest, the age of said guest, the rank or level of said guest within a game played using said tracking device, points accumulated by said guest in said game, tasks completed by said guest in said game, attributes of a game character played by said guest in said game, and facilities visited by said guest.
22. The tracking device of claim 16, further comprising programmable memory configured to store information relevant to said guest or to said entertainment experience.
973105 | October 1910 | Chamberlain, Jr. |
1661058 | February 1928 | Theremin |
1789680 | January 1931 | Gwinnett |
2001366 | May 1935 | Mittelman |
2752725 | July 1956 | Unsworth |
2902023 | September 1959 | Waller |
3135512 | June 1964 | Taylor |
3336030 | August 1967 | Martell et al. |
3395920 | August 1968 | Moe |
3454920 | July 1969 | Mehr |
3456134 | July 1969 | Ko |
3468533 | September 1969 | House, Jr. |
3474241 | October 1969 | Kuipers |
D220268 | March 1971 | Kliewer |
3572712 | March 1971 | Vick |
3633904 | January 1972 | Kojima |
3660648 | May 1972 | Kuipers |
3707055 | December 1972 | Pearce |
3795805 | March 1974 | Swanberg et al. |
3843127 | October 1974 | Lack |
3949364 | April 6, 1976 | Clark et al. |
3949679 | April 13, 1976 | Barber |
3973257 | August 3, 1976 | Rowe |
3978481 | August 31, 1976 | Angwin et al. |
3997156 | December 14, 1976 | Barlow et al. |
4009619 | March 1, 1977 | Snymann |
4038876 | August 2, 1977 | Morris |
4055341 | October 25, 1977 | Martinez |
4063111 | December 13, 1977 | Dobler et al. |
4153250 | May 8, 1979 | Anthony |
4166406 | September 4, 1979 | Maughmer |
4171737 | October 23, 1979 | McLaughlin |
4175665 | November 27, 1979 | Dogliotti |
4205785 | June 3, 1980 | Stanley |
4231077 | October 28, 1980 | Joyce et al. |
4240638 | December 23, 1980 | Morrison et al. |
4287765 | September 8, 1981 | Kreft |
4296929 | October 27, 1981 | Meyer et al. |
4303978 | December 1, 1981 | Shaw |
4318245 | March 9, 1982 | Stowell et al. |
4321678 | March 23, 1982 | Krogmann |
4325199 | April 20, 1982 | McEdwards |
4337948 | July 6, 1982 | Breslow |
4342985 | August 3, 1982 | Desjardins |
4402250 | September 6, 1983 | Baasch |
4412205 | October 25, 1983 | Von Kemenczky |
4425488 | January 10, 1984 | Moskin |
4443866 | April 17, 1984 | Burgiss |
4450325 | May 22, 1984 | Luque |
4503299 | March 5, 1985 | Henrard |
4514600 | April 30, 1985 | Lentz |
4514798 | April 30, 1985 | Lesche |
4540176 | September 10, 1985 | Baer |
4546551 | October 15, 1985 | Franks |
4558604 | December 17, 1985 | Auer |
4561299 | December 31, 1985 | Orlando |
4578674 | March 25, 1986 | Baker et al. |
4595369 | June 17, 1986 | Downs |
4623887 | November 18, 1986 | Welles |
4623930 | November 18, 1986 | Oshima |
4672374 | June 9, 1987 | Desjardins |
4678450 | July 7, 1987 | Scolari et al. |
4695058 | September 22, 1987 | Carter, III et al. |
4699379 | October 13, 1987 | Chateau et al. |
4739128 | April 19, 1988 | Grisham |
4750733 | June 14, 1988 | Foth |
4761540 | August 2, 1988 | McGeorge |
4776253 | October 11, 1988 | Downes |
4787051 | November 22, 1988 | Olson |
4816810 | March 28, 1989 | Moore |
4819182 | April 4, 1989 | King et al. |
4837568 | June 6, 1989 | Snaper et al. |
4839838 | June 13, 1989 | LaBiche et al. |
4843568 | June 27, 1989 | Krueger et al. |
4846568 | July 11, 1989 | Krueger |
4849655 | July 18, 1989 | Bennett |
4851685 | July 25, 1989 | Dubgen |
4858390 | August 22, 1989 | Kenig |
4858930 | August 22, 1989 | Sato |
4862165 | August 29, 1989 | Gart |
4891032 | January 2, 1990 | Davis |
4910677 | March 20, 1990 | Remedio et al. |
4914598 | April 3, 1990 | Krogmann |
4918293 | April 17, 1990 | McGeorge |
4924358 | May 8, 1990 | VonHeck |
4932917 | June 12, 1990 | Klitsner |
4957291 | September 18, 1990 | Miffitt |
4960275 | October 2, 1990 | Magon |
4961369 | October 9, 1990 | McGill |
4964837 | October 23, 1990 | Collier |
4967321 | October 30, 1990 | Cimock |
4969647 | November 13, 1990 | Mical et al. |
4980519 | December 25, 1990 | Mathews |
4988981 | January 29, 1991 | Zimmerman et al. |
4994795 | February 19, 1991 | MacKenzie |
5011161 | April 30, 1991 | Galphin |
5036442 | July 30, 1991 | Brown |
RE33662 | August 13, 1991 | Blair et al. |
5045843 | September 3, 1991 | Hansen |
D320624 | October 8, 1991 | Taylor |
5058480 | October 22, 1991 | Suzuki et al. |
5059958 | October 22, 1991 | Jacobs et al. |
5062696 | November 5, 1991 | Oshima |
5068645 | November 26, 1991 | Drumm |
D322242 | December 10, 1991 | Cordell |
5076584 | December 31, 1991 | Openiano |
D325225 | April 7, 1992 | Adhida |
5124938 | June 23, 1992 | Algrain |
5127657 | July 7, 1992 | Ikezawa et al. |
5128671 | July 7, 1992 | Thomas, Jr. |
D328463 | August 4, 1992 | King et al. |
5136222 | August 4, 1992 | Yamamoto |
5138154 | August 11, 1992 | Hotelling |
5145446 | September 8, 1992 | Kuo |
D331058 | November 17, 1992 | Morales |
5166502 | November 24, 1992 | Rendleman |
5170002 | December 8, 1992 | Suzuki et al. |
5175481 | December 29, 1992 | Kanno |
5177311 | January 5, 1993 | Suzuki et al. |
5178477 | January 12, 1993 | Gambaro |
5181181 | January 19, 1993 | Glynn |
5184830 | February 9, 1993 | Okada et al. |
5188368 | February 23, 1993 | Ryan |
5192082 | March 9, 1993 | Inoue et al. |
5192823 | March 9, 1993 | Suzuki et al. |
5202844 | April 13, 1993 | Kamio |
5207426 | May 4, 1993 | Inoue et al. |
5212368 | May 18, 1993 | Hara |
5213327 | May 25, 1993 | Kitaue |
5223698 | June 29, 1993 | Kapur |
D338242 | August 10, 1993 | Cordell |
5232223 | August 3, 1993 | Dornbusch |
5236200 | August 17, 1993 | McGregor et al. |
5247651 | September 21, 1993 | Clarisse |
D340042 | October 5, 1993 | Copper et al. |
5259626 | November 9, 1993 | Ho |
5262777 | November 16, 1993 | Low et al. |
D342256 | December 14, 1993 | Payne et al. |
5277645 | January 11, 1994 | Kelley et al. |
5279513 | January 18, 1994 | Connelly |
5280744 | January 25, 1994 | DeCarlo |
D345164 | March 15, 1994 | Grae |
5290964 | March 1, 1994 | Hiyoshi et al. |
5296871 | March 22, 1994 | Paley |
5299967 | April 5, 1994 | Gilbert |
5307325 | April 26, 1994 | Scheiber |
5310192 | May 10, 1994 | Miyake |
5317394 | May 31, 1994 | Hale |
5319548 | June 7, 1994 | Germain |
5329276 | July 12, 1994 | Hirabayashi |
5332322 | July 26, 1994 | Gambaro |
5339095 | August 16, 1994 | Redford |
D350736 | September 20, 1994 | Takahashi et al. |
D350782 | September 20, 1994 | Barr |
D351430 | October 11, 1994 | Barr |
5357267 | October 18, 1994 | Inoue |
5359321 | October 25, 1994 | Ribic |
5359348 | October 25, 1994 | Pilcher et al. |
5363120 | November 8, 1994 | Drumm |
5365214 | November 15, 1994 | Angott et al. |
5369580 | November 29, 1994 | Monji |
5369889 | December 6, 1994 | Callaghan |
5372365 | December 13, 1994 | McTeigue et al. |
5373857 | December 20, 1994 | Travers et al. |
5382026 | January 17, 1995 | Harvard et al. |
5392613 | February 28, 1995 | Goto |
5393074 | February 28, 1995 | Bear et al. |
5396227 | March 7, 1995 | Carroll et al. |
5396265 | March 7, 1995 | Ulrich et al. |
5403238 | April 4, 1995 | Baxter et al. |
5405294 | April 11, 1995 | Briggs |
5411269 | May 2, 1995 | Thomas |
5416535 | May 16, 1995 | Sato et al. |
5421575 | June 6, 1995 | Triner |
5421590 | June 6, 1995 | Robbins |
5422956 | June 6, 1995 | Wheaton |
5430435 | July 4, 1995 | Hoch |
5432864 | July 11, 1995 | Lu et al. |
5435561 | July 25, 1995 | Conley |
5435569 | July 25, 1995 | Zilliox |
D360903 | August 1, 1995 | Barr et al. |
5439199 | August 8, 1995 | Briggs et al. |
5440326 | August 8, 1995 | Quinn |
5443261 | August 22, 1995 | Lee et al. |
5452893 | September 26, 1995 | Faulk et al. |
5453053 | September 26, 1995 | Danta et al. |
5453758 | September 26, 1995 | Sato |
D362870 | October 3, 1995 | Oikawa |
5459489 | October 17, 1995 | Redford |
5469194 | November 21, 1995 | Clark et al. |
5481957 | January 9, 1996 | Paley |
5482510 | January 9, 1996 | Ishii et al. |
5484355 | January 16, 1996 | King |
5485171 | January 16, 1996 | Copper et al. |
5488362 | January 30, 1996 | Ullman et al. |
5490058 | February 6, 1996 | Yamasaki |
5502486 | March 26, 1996 | Ueda |
5506605 | April 9, 1996 | Paley |
5509806 | April 23, 1996 | Ellsworth |
5516105 | May 14, 1996 | Eisenbrey et al. |
5517183 | May 14, 1996 | Bozeman |
5523800 | June 4, 1996 | Dudek |
5524637 | June 11, 1996 | Erickson |
5526022 | June 11, 1996 | Donahue et al. |
5528265 | June 18, 1996 | Harrison |
5531443 | July 2, 1996 | Cruz |
5533933 | July 9, 1996 | Garnjost et al. |
5541860 | July 30, 1996 | Takei et al. |
5550721 | August 27, 1996 | Rapisarda |
5551701 | September 3, 1996 | Bouton et al. |
5554033 | September 10, 1996 | Bizzi et al. |
5554980 | September 10, 1996 | Hashimoto et al. |
5561543 | October 1, 1996 | Ogawa |
5563628 | October 8, 1996 | Stroop |
5569085 | October 29, 1996 | Igarashi et al. |
D375326 | November 5, 1996 | Yokoi et al. |
5573011 | November 12, 1996 | Felsing |
5574479 | November 12, 1996 | Odell |
5579025 | November 26, 1996 | Itoh |
D376826 | December 24, 1996 | Ashida |
5580319 | December 3, 1996 | Hamilton |
5581484 | December 3, 1996 | Prince |
5585584 | December 17, 1996 | Usa |
5586767 | December 24, 1996 | Bohland |
5587558 | December 24, 1996 | Matsushima |
5587740 | December 24, 1996 | Brennan |
5594465 | January 14, 1997 | Poulachon |
5598187 | January 28, 1997 | Ide et al. |
5602569 | February 11, 1997 | Kato |
5603658 | February 18, 1997 | Cohen |
5605505 | February 25, 1997 | Han |
5606343 | February 25, 1997 | Tsuboyama |
5611731 | March 18, 1997 | Bouton et al. |
5615132 | March 25, 1997 | Horton |
5621459 | April 15, 1997 | Ueda |
5623581 | April 22, 1997 | Attenberg |
5624117 | April 29, 1997 | Ohkubo et al. |
5627565 | May 6, 1997 | Morishita et al. |
5629981 | May 13, 1997 | Nerlikar |
5632878 | May 27, 1997 | Kitano |
D379832 | June 10, 1997 | Ashida |
5640152 | June 17, 1997 | Copper |
5641288 | June 24, 1997 | Zzenglein, Jr. |
5642931 | July 1, 1997 | Gappelberg |
5643087 | July 1, 1997 | Marcus et al. |
5645077 | July 8, 1997 | Foxlin |
5645277 | July 8, 1997 | Cheng |
5647796 | July 15, 1997 | Cohen |
5649867 | July 22, 1997 | Briggs |
5651049 | July 22, 1997 | Easterling et al. |
5662332 | September 2, 1997 | Garfield |
5662525 | September 2, 1997 | Briggs |
5666138 | September 9, 1997 | Culver |
5667217 | September 16, 1997 | Kelly et al. |
5667220 | September 16, 1997 | Cheng |
5670845 | September 23, 1997 | Grant |
5670988 | September 23, 1997 | Tickle |
5672090 | September 30, 1997 | Liu |
5674128 | October 7, 1997 | Holch et al. |
5676450 | October 14, 1997 | Sink et al. |
5676673 | October 14, 1997 | Ferre et al. |
5679004 | October 21, 1997 | McGowan et al. |
5682181 | October 28, 1997 | Nguyen et al. |
5685776 | November 11, 1997 | Stambolic et al. |
5685778 | November 11, 1997 | Sheldon et al. |
5694340 | December 2, 1997 | Kim |
5698784 | December 16, 1997 | Hotelling et al. |
5701131 | December 23, 1997 | Kuga |
5702232 | December 30, 1997 | Moore |
5702305 | December 30, 1997 | Norman et al. |
5702323 | December 30, 1997 | Poulton |
5703623 | December 30, 1997 | Hall et al. |
5716216 | February 10, 1998 | O'Loughlin et al. |
5716281 | February 10, 1998 | Dote |
5724106 | March 3, 1998 | Autry et al. |
5726675 | March 10, 1998 | Inoue |
5734371 | March 31, 1998 | Kaplan |
5734373 | March 31, 1998 | Rosenberg |
5734807 | March 31, 1998 | Sumi |
D393884 | April 28, 1998 | Hayami |
5736970 | April 7, 1998 | Bozeman |
5739811 | April 14, 1998 | Rosenberg et al. |
5741182 | April 21, 1998 | Lipps et al. |
5741189 | April 21, 1998 | Briggs |
5742233 | April 21, 1998 | Doe et al. |
5742331 | April 21, 1998 | Uomori |
5745226 | April 28, 1998 | Gigioli |
D394264 | May 12, 1998 | Sakamoto et al. |
5746602 | May 5, 1998 | Kikinis |
5752880 | May 19, 1998 | Gabai et al. |
5752882 | May 19, 1998 | Acres et al. |
5757305 | May 26, 1998 | Xydis |
5757354 | May 26, 1998 | Kawamura |
5757360 | May 26, 1998 | Nitta et al. |
D395464 | June 23, 1998 | Shiibashi et al. |
5764224 | June 9, 1998 | Lilja et al. |
5769719 | June 23, 1998 | Hsu |
5770533 | June 23, 1998 | Franchi |
5771038 | June 23, 1998 | Wang |
5772508 | June 30, 1998 | Sugita et al. |
D396468 | July 28, 1998 | Schindler et al. |
5779240 | July 14, 1998 | Santella |
5785317 | July 28, 1998 | Sasaki |
5785592 | July 28, 1998 | Jacobsen |
D397162 | August 18, 1998 | Yokoi et al. |
5791648 | August 11, 1998 | Hohl |
5794081 | August 11, 1998 | Itoh |
5796354 | August 18, 1998 | Cartabiano et al. |
5803740 | September 8, 1998 | Gesink et al. |
5803840 | September 8, 1998 | Young |
5806849 | September 15, 1998 | Rutkowski |
5807284 | September 15, 1998 | Foxlin |
5819206 | October 6, 1998 | Horton et al. |
5820462 | October 13, 1998 | Yokoi et al. |
5820471 | October 13, 1998 | Briggs |
5820472 | October 13, 1998 | Briggs |
5822713 | October 13, 1998 | Profeta |
5825298 | October 20, 1998 | Walter |
5825350 | October 20, 1998 | Case, Jr. et al. |
D400885 | November 10, 1998 | Goto |
5830065 | November 3, 1998 | Sitrick |
5831553 | November 3, 1998 | Lenssen et al. |
5833549 | November 10, 1998 | Zur et al. |
5835077 | November 10, 1998 | Dao et al. |
5835156 | November 10, 1998 | Blonstein et al. |
5835576 | November 10, 1998 | Katz |
5838138 | November 17, 1998 | Henty |
5841409 | November 24, 1998 | Ishibashi et al. |
D402328 | December 8, 1998 | Ashida |
5847854 | December 8, 1998 | Benson, Jr. |
5850624 | December 15, 1998 | Gard |
5851149 | December 22, 1998 | Xidos et al. |
5853332 | December 29, 1998 | Briggs |
5854622 | December 29, 1998 | Brannon |
5855483 | January 5, 1999 | Collins et al. |
D405071 | February 2, 1999 | Gambaro |
5865680 | February 2, 1999 | Briggs |
5867146 | February 2, 1999 | Kim et al. |
5874941 | February 23, 1999 | Yamada |
5875257 | February 23, 1999 | Marrin et al. |
D407071 | March 23, 1999 | Keating |
D407761 | April 6, 1999 | Barr |
5893562 | April 13, 1999 | Spector |
5897437 | April 27, 1999 | Nishiumi |
5898421 | April 27, 1999 | Quinn |
5900867 | May 4, 1999 | Schindler et al. |
5902968 | May 11, 1999 | Sato et al. |
5906542 | May 25, 1999 | Neumann |
D410909 | June 15, 1999 | Tickle |
5908996 | June 1, 1999 | Litterst et al. |
5911634 | June 15, 1999 | Nidata et al. |
5912612 | June 15, 1999 | DeVolpi |
5913019 | June 15, 1999 | Attenberg |
5913727 | June 22, 1999 | Ahdoot |
5919149 | July 6, 1999 | Allen |
5923317 | July 13, 1999 | Sayler et al. |
5924695 | July 20, 1999 | Heykoop |
5926780 | July 20, 1999 | Fox et al. |
5929782 | July 27, 1999 | Stark et al. |
5929841 | July 27, 1999 | Fujii |
D412940 | August 17, 1999 | Kato et al. |
5931739 | August 3, 1999 | Layer et al. |
5942969 | August 24, 1999 | Wicks |
5944533 | August 31, 1999 | Wood |
5946444 | August 31, 1999 | Evans et al. |
5947789 | September 7, 1999 | Chan |
5947868 | September 7, 1999 | Dugan |
5955713 | September 21, 1999 | Titus |
5955988 | September 21, 1999 | Blonstein |
5956035 | September 21, 1999 | Sciammarella |
5957779 | September 28, 1999 | Larson |
5961386 | October 5, 1999 | Sawaguchi |
5963136 | October 5, 1999 | O'Brien |
5967898 | October 19, 1999 | Takasaka et al. |
5967901 | October 19, 1999 | Briggs |
5971270 | October 26, 1999 | Barna |
5971271 | October 26, 1999 | Wynn et al. |
5973757 | October 26, 1999 | Aubuchon et al. |
5982352 | November 9, 1999 | Pryor |
5982356 | November 9, 1999 | Akiyama |
5984785 | November 16, 1999 | Takeda et al. |
5986570 | November 16, 1999 | Black et al. |
5986644 | November 16, 1999 | Herder |
5989120 | November 23, 1999 | Truchsess |
5991085 | November 23, 1999 | Rallison et al. |
5991693 | November 23, 1999 | Zalewski |
5999168 | December 7, 1999 | Rosenberg |
6001014 | December 14, 1999 | Ogata |
6001015 | December 14, 1999 | Nishiumi et al. |
6002394 | December 14, 1999 | Schein |
D419199 | January 18, 2000 | Cordell et al. |
D419200 | January 18, 2000 | Ashida |
6010406 | January 4, 2000 | Kajikawa et al. |
6011526 | January 4, 2000 | Toyoshima et al. |
6012980 | January 11, 2000 | Yoshida et al. |
6013007 | January 11, 2000 | Root et al. |
6016144 | January 18, 2000 | Blonstein |
6019680 | February 1, 2000 | Cheng |
6020876 | February 1, 2000 | Rosenberg |
6024647 | February 15, 2000 | Bennett et al. |
6024675 | February 15, 2000 | Kashiwaguchi |
6025830 | February 15, 2000 | Cohen |
6037882 | March 14, 2000 | Levy |
6044297 | March 28, 2000 | Sheldon |
6049823 | April 11, 2000 | Hwang |
6052083 | April 18, 2000 | Wilson |
6057788 | May 2, 2000 | Cummings |
6058342 | May 2, 2000 | Orbach |
6059576 | May 9, 2000 | Brann |
6060847 | May 9, 2000 | Hettema et al. |
6066075 | May 23, 2000 | Poulton |
6069594 | May 30, 2000 | Barnes et al. |
6072467 | June 6, 2000 | Walker |
6072470 | June 6, 2000 | Ishigaki |
6075443 | June 13, 2000 | Schepps et al. |
6075575 | June 13, 2000 | Schein et al. |
6076734 | June 20, 2000 | Dougherty et al. |
6078789 | June 20, 2000 | Bodenmann |
6079982 | June 27, 2000 | Meader |
6080063 | June 27, 2000 | Khosla |
6081819 | June 27, 2000 | Ogino |
6084315 | July 4, 2000 | Schmitt |
6084577 | July 4, 2000 | Sato et al. |
6085805 | July 11, 2000 | Bates |
6087950 | July 11, 2000 | Capan |
6089987 | July 18, 2000 | Briggs |
6091342 | July 18, 2000 | Janesch et al. |
D429718 | August 22, 2000 | Rudolph |
6095926 | August 1, 2000 | Hettema et al. |
6102406 | August 15, 2000 | Miles et al. |
6110000 | August 29, 2000 | Ting |
6110039 | August 29, 2000 | Oh |
6115028 | September 5, 2000 | Balakrishnan |
6127928 | October 3, 2000 | Issacman et al. |
6127990 | October 3, 2000 | Zwern |
6132318 | October 17, 2000 | Briggs |
6137457 | October 24, 2000 | Tokuhashi |
D433381 | November 7, 2000 | Talesfore |
6142870 | November 7, 2000 | Wada |
6142876 | November 7, 2000 | Cumbers |
6144367 | November 7, 2000 | Berstis |
6146278 | November 14, 2000 | Kobayashi |
6148100 | November 14, 2000 | Anderson et al. |
6149490 | November 21, 2000 | Hampton |
6154723 | November 28, 2000 | Cox et al. |
6155926 | December 5, 2000 | Miyamoto et al. |
6160405 | December 12, 2000 | Needle |
6160540 | December 12, 2000 | Fishkin et al. |
6160986 | December 12, 2000 | Gabai et al. |
6162122 | December 19, 2000 | Acres et al. |
6162123 | December 19, 2000 | Woolston |
6162191 | December 19, 2000 | Foxlin |
6164808 | December 26, 2000 | Shibata |
6171190 | January 9, 2001 | Thanasack et al. |
6174242 | January 16, 2001 | Briggs et al. |
6176837 | January 23, 2001 | Foxlin |
6181253 | January 30, 2001 | Eschenbach et al. |
6181329 | January 30, 2001 | Stork et al. |
6183364 | February 6, 2001 | Trovato |
6183365 | February 6, 2001 | Tonomura et al. |
6184847 | February 6, 2001 | Fateh et al. |
6184862 | February 6, 2001 | Leiper |
6184863 | February 6, 2001 | Sibert |
6191774 | February 20, 2001 | Schena |
6196893 | March 6, 2001 | Casola et al. |
6198295 | March 6, 2001 | Hill |
6198470 | March 6, 2001 | Agam et al. |
6198471 | March 6, 2001 | Cook |
6200216 | March 13, 2001 | Peppel |
6200219 | March 13, 2001 | Rudell et al. |
6200253 | March 13, 2001 | Nishiumi |
6201554 | March 13, 2001 | Lands |
6206782 | March 27, 2001 | Walker et al. |
6210287 | April 3, 2001 | Briggs |
6211861 | April 3, 2001 | Rosenberg et al. |
6214155 | April 10, 2001 | Leighton |
6217450 | April 17, 2001 | Meredith |
6217478 | April 17, 2001 | Vohmann |
6220171 | April 24, 2001 | Hettema et al. |
6220964 | April 24, 2001 | Miyamoto |
6220965 | April 24, 2001 | Hanna et al. |
6222522 | April 24, 2001 | Mathews |
D442998 | May 29, 2001 | Ashida |
6224486 | May 1, 2001 | Walker et al. |
6224491 | May 1, 2001 | Hiromi et al. |
6225987 | May 1, 2001 | Matsuda |
6226534 | May 1, 2001 | Aizawa |
6227966 | May 8, 2001 | Yokoi |
6227974 | May 8, 2001 | Eilat et al. |
6231451 | May 15, 2001 | Briggs |
6238289 | May 29, 2001 | Sobota et al. |
6238291 | May 29, 2001 | Fujimoto et al. |
6239806 | May 29, 2001 | Nishiumi et al. |
RE37220 | June 12, 2001 | Rapisarda et al. |
6241611 | June 5, 2001 | Takeda et al. |
6243491 | June 5, 2001 | Andersson |
6243658 | June 5, 2001 | Raby |
6244987 | June 12, 2001 | Ohsuga et al. |
6245014 | June 12, 2001 | Brainard et al. |
6254101 | July 3, 2001 | Young |
6264202 | July 24, 2001 | Briggs |
6264558 | July 24, 2001 | Nishiumi et al. |
6267673 | July 31, 2001 | Miyamoto et al. |
6273425 | August 14, 2001 | Westfall et al. |
6273819 | August 14, 2001 | Strauss et al. |
6276353 | August 21, 2001 | Briggs et al. |
6283862 | September 4, 2001 | Richter |
6287200 | September 11, 2001 | Sharma |
6290565 | September 18, 2001 | Galyean, III et al. |
6293684 | September 25, 2001 | Riblett |
6297751 | October 2, 2001 | Fadavi-Ardekani |
6301534 | October 9, 2001 | McDermott |
6304250 | October 16, 2001 | Yang |
6315673 | November 13, 2001 | Kopera |
6320495 | November 20, 2001 | Sporgis |
6322365 | November 27, 2001 | Shechter et al. |
6323614 | November 27, 2001 | Palazzolo |
6323654 | November 27, 2001 | Needle |
6325718 | December 4, 2001 | Nishiumi et al. |
6328650 | December 11, 2001 | Fukawa et al. |
6329648 | December 11, 2001 | Delatorre |
6330427 | December 11, 2001 | Tabachnik |
6331841 | December 18, 2001 | Tokuhashi |
6331856 | December 18, 2001 | Van Hook |
6332840 | December 25, 2001 | Nishiumi et al. |
6337954 | January 8, 2002 | Soshi |
6342010 | January 29, 2002 | Slifer |
6346047 | February 12, 2002 | Sobota |
6347993 | February 19, 2002 | Kondo et al. |
6347998 | February 19, 2002 | Yoshitomi et al. |
6350199 | February 26, 2002 | Williams et al. |
6352478 | March 5, 2002 | Gabai et al. |
6356867 | March 12, 2002 | Gabai et al. |
6361396 | March 26, 2002 | Snyder |
6361507 | March 26, 2002 | Foxlin |
D456410 | April 30, 2002 | Ashida |
6364735 | April 2, 2002 | Bristow et al. |
6368217 | April 9, 2002 | Kanno |
6369794 | April 9, 2002 | Sakurai et al. |
6369908 | April 9, 2002 | Frey et al. |
6371853 | April 16, 2002 | Borta |
6375566 | April 23, 2002 | Yamada |
6375569 | April 23, 2002 | Acres |
6375572 | April 23, 2002 | Masuyama et al. |
6375578 | April 23, 2002 | Briggs |
6377793 | April 23, 2002 | Jenkins |
6377906 | April 23, 2002 | Rowe |
D456854 | May 7, 2002 | Ashida |
6383079 | May 7, 2002 | Takeda et al. |
6386538 | May 14, 2002 | Mejia |
6392613 | May 21, 2002 | Goto |
6394904 | May 28, 2002 | Stallker |
6400480 | June 4, 2002 | Thomas |
6400996 | June 4, 2002 | Hoffberg et al. |
6409379 | June 25, 2002 | Gabathuler et al. |
6409604 | June 25, 2002 | Matsuno |
6409687 | June 25, 2002 | Foxlin |
D459727 | July 2, 2002 | Ashida |
D460787 | July 23, 2002 | Nishikawa |
6414589 | July 2, 2002 | Angott et al. |
6415223 | July 2, 2002 | Lin |
6421056 | July 16, 2002 | Nishiumi |
6424264 | July 23, 2002 | Giraldin et al. |
6424333 | July 23, 2002 | Tremblay |
6426719 | July 30, 2002 | Nagareda |
6426741 | July 30, 2002 | Goldsmith et al. |
D462683 | September 10, 2002 | Ashida |
6445960 | September 3, 2002 | Borta |
6452494 | September 17, 2002 | Harrison |
6456276 | September 24, 2002 | Park |
D464052 | October 8, 2002 | Fletcher |
D464950 | October 29, 2002 | Fraquelli et al. |
6462769 | October 8, 2002 | Trowbridge et al. |
6463257 | October 8, 2002 | Wood |
6463859 | October 15, 2002 | Ikezawa et al. |
6466198 | October 15, 2002 | Feinstein |
6466831 | October 15, 2002 | Shibata |
6473070 | October 29, 2002 | Mishra et al. |
6473713 | October 29, 2002 | McCall |
6474159 | November 5, 2002 | Foxlin et al. |
6484080 | November 19, 2002 | Breed |
6492981 | December 10, 2002 | Stork et al. |
6496122 | December 17, 2002 | Sampsell |
6512511 | January 28, 2003 | Willner |
6517438 | February 11, 2003 | Tosaki |
6518952 | February 11, 2003 | Leiper |
6527638 | March 4, 2003 | Walker et al. |
6527646 | March 4, 2003 | Briggs |
6530838 | March 11, 2003 | Ha et al. |
6530841 | March 11, 2003 | Bull et al. |
6538675 | March 25, 2003 | Aratani |
D473942 | April 29, 2003 | Motoki et al. |
6540607 | April 1, 2003 | Mokris et al. |
6540611 | April 1, 2003 | Nagata |
6544124 | April 8, 2003 | Ireland |
6544126 | April 8, 2003 | Sawano |
6545661 | April 8, 2003 | Goschy et al. |
6551165 | April 22, 2003 | Smirnov |
6551188 | April 22, 2003 | Toyama et al. |
6554707 | April 29, 2003 | Sinclair et al. |
6554781 | April 29, 2003 | Carter et al. |
D474763 | May 20, 2003 | Tozaki et al. |
6558225 | May 6, 2003 | Rehkemper et al. |
6560511 | May 6, 2003 | Yokoo et al. |
6565438 | May 20, 2003 | Ogino |
6565444 | May 20, 2003 | Nagata et al. |
6567536 | May 20, 2003 | McNitt et al. |
6569023 | May 27, 2003 | Briggs |
6572108 | June 3, 2003 | Bristow |
6575753 | June 10, 2003 | Rosa et al. |
6577350 | June 10, 2003 | Proehl |
6579098 | June 17, 2003 | Shechter |
6582299 | June 24, 2003 | Matsuyama et al. |
6582380 | June 24, 2003 | Kazlausky et al. |
6583783 | June 24, 2003 | Dietrich |
6585596 | July 1, 2003 | Leifer et al. |
6589120 | July 8, 2003 | Takahashi |
6590536 | July 8, 2003 | Walton |
6591677 | July 15, 2003 | Rothoff |
6592461 | July 15, 2003 | Raviv et al. |
6595863 | July 22, 2003 | Chamberlain et al. |
6597342 | July 22, 2003 | Haruta |
6597443 | July 22, 2003 | Boman |
6598978 | July 29, 2003 | Hasegawa |
6599194 | July 29, 2003 | Smith |
6605038 | August 12, 2003 | Teller et al. |
6607123 | August 19, 2003 | Jollifee et al. |
6608563 | August 19, 2003 | Weston et al. |
6609969 | August 26, 2003 | Luciano et al. |
6609977 | August 26, 2003 | Shimizu |
6616452 | September 9, 2003 | Clark et al. |
6616535 | September 9, 2003 | Nishizaki |
6616607 | September 9, 2003 | Hashimoto |
6626728 | September 30, 2003 | Holt |
6628257 | September 30, 2003 | Oka |
6629019 | September 30, 2003 | Legge et al. |
6633155 | October 14, 2003 | Liang |
6634949 | October 21, 2003 | Briggs et al. |
6636826 | October 21, 2003 | Abe et al. |
6641482 | November 4, 2003 | Masuyama et al. |
6642837 | November 4, 2003 | Vigoda et al. |
6650029 | November 18, 2003 | Johnston |
6650313 | November 18, 2003 | Levine |
6650345 | November 18, 2003 | Saito |
6651268 | November 25, 2003 | Briggs |
6654001 | November 25, 2003 | Su |
6672962 | January 6, 2004 | Ozaki et al. |
6676520 | January 13, 2004 | Nishiumi et al. |
6676524 | January 13, 2004 | Botzas |
6677990 | January 13, 2004 | Kawahara |
6681629 | January 27, 2004 | Foxlin et al. |
6682074 | January 27, 2004 | Weston |
6682351 | January 27, 2004 | Abraham-Fuchs et al. |
6684062 | January 27, 2004 | Gosior et al. |
D486145 | February 3, 2004 | Kaminski et al. |
6686954 | February 3, 2004 | Kitaguchi |
6692170 | February 17, 2004 | Abir |
6693622 | February 17, 2004 | Shahoian et al. |
6702672 | March 9, 2004 | Angell et al. |
6712692 | March 30, 2004 | Basson |
6716102 | April 6, 2004 | Whitten et al. |
6717573 | April 6, 2004 | Shahoian et al. |
6717673 | April 6, 2004 | Janssen |
6718280 | April 6, 2004 | Hermann |
6725107 | April 20, 2004 | MacPherson |
6725173 | April 20, 2004 | An |
6726099 | April 27, 2004 | Becker et al. |
D489361 | May 4, 2004 | Mori et al. |
6729934 | May 4, 2004 | Driscoll et al. |
6736009 | May 18, 2004 | Schwabe |
6739874 | May 25, 2004 | Marcus et al. |
6739979 | May 25, 2004 | Tracy |
D491924 | June 22, 2004 | Kaminski et al. |
D492285 | June 29, 2004 | Ombao et al. |
6743104 | June 1, 2004 | Ota et al. |
6746334 | June 8, 2004 | Barney |
6747562 | June 8, 2004 | Giraldin et al. |
6747632 | June 8, 2004 | Howard |
6747690 | June 8, 2004 | Molgaard |
6749432 | June 15, 2004 | French et al. |
6752719 | June 22, 2004 | Himoto et al. |
6753849 | June 22, 2004 | Curran et al. |
6753888 | June 22, 2004 | Kamiwada |
6757068 | June 29, 2004 | Foxlin |
6757446 | June 29, 2004 | Li |
6761637 | July 13, 2004 | Weston et al. |
6765553 | July 20, 2004 | Odamura |
D495336 | August 31, 2004 | Andre et al. |
6770863 | August 3, 2004 | Walley |
6773325 | August 10, 2004 | Mawle et al. |
6785539 | August 31, 2004 | Hale |
6786877 | September 7, 2004 | Foxlin |
6796177 | September 28, 2004 | Mori |
6796908 | September 28, 2004 | Weston |
6797895 | September 28, 2004 | Lapstun |
6811489 | November 2, 2004 | Shimizu |
6811491 | November 2, 2004 | Levenberg et al. |
6812881 | November 2, 2004 | Mullaly et al. |
6813525 | November 2, 2004 | Reid |
6813574 | November 2, 2004 | Yedur |
6813584 | November 2, 2004 | Zhou et al. |
6816151 | November 9, 2004 | Dellinger |
6821204 | November 23, 2004 | Aonuma et al. |
6821206 | November 23, 2004 | Ishida et al. |
6836705 | December 28, 2004 | Hellmann |
6836751 | December 28, 2004 | Paxton |
6836971 | January 4, 2005 | Wang |
6842991 | January 18, 2005 | Levi |
6846238 | January 25, 2005 | Wells |
6850221 | February 1, 2005 | Tickle |
6850844 | February 1, 2005 | Walters |
6852032 | February 8, 2005 | Ishino |
6856327 | February 15, 2005 | Choi |
D502468 | March 1, 2005 | Knight et al. |
6868738 | March 22, 2005 | Moscrip et al. |
6872139 | March 29, 2005 | Sato et al. |
6873406 | March 29, 2005 | Hines |
D503750 | April 5, 2005 | Kit et al. |
D504298 | April 26, 2005 | Hedderich et al. |
6878066 | April 12, 2005 | Leifer |
6882824 | April 19, 2005 | Wood |
D504677 | May 3, 2005 | Kaminski et al. |
D505424 | May 24, 2005 | Ashida et al. |
6890262 | May 10, 2005 | Oishi |
6891469 | May 10, 2005 | Engellenner et al. |
6891526 | May 10, 2005 | Gombert |
6894686 | May 17, 2005 | Stamper et al. |
6897845 | May 24, 2005 | Ozawa |
6897854 | May 24, 2005 | Cho |
6902483 | June 7, 2005 | Lin |
6903725 | June 7, 2005 | Nacson |
6906700 | June 14, 2005 | Armstrong |
6908386 | June 21, 2005 | Suzuki et al. |
6908388 | June 21, 2005 | Shimizu |
6918833 | July 19, 2005 | Emmerson et al. |
6921332 | July 26, 2005 | Fukunaga |
6922632 | July 26, 2005 | Foxlin |
6924787 | August 2, 2005 | Kramer et al. |
6925410 | August 2, 2005 | Narayanan |
6929543 | August 16, 2005 | Ueshima et al. |
6929548 | August 16, 2005 | Wang |
6932706 | August 23, 2005 | Kaminkow |
6933861 | August 23, 2005 | Wang |
6933923 | August 23, 2005 | Feinstein |
6935864 | August 30, 2005 | Shechter et al. |
6935952 | August 30, 2005 | Walker et al. |
6939232 | September 6, 2005 | Tanaka et al. |
6948999 | September 27, 2005 | Chan |
6954980 | October 18, 2005 | Song |
6955606 | October 18, 2005 | Taho et al. |
6956564 | October 18, 2005 | Williams |
6965374 | November 15, 2005 | Villet et al. |
6966775 | November 22, 2005 | Kendir et al. |
6967566 | November 22, 2005 | Weston et al. |
6982697 | January 3, 2006 | Wilson et al. |
6983219 | January 3, 2006 | Mantyjarvi |
6984208 | January 10, 2006 | Zheng |
6990639 | January 24, 2006 | Wilson |
6993451 | January 31, 2006 | Chang et al. |
6995748 | February 7, 2006 | Gordon et al. |
6998966 | February 14, 2006 | Pedersen |
7000469 | February 21, 2006 | Foxlin et al. |
7002591 | February 21, 2006 | Leather |
7004847 | February 28, 2006 | Henry |
7029400 | April 18, 2006 | Briggs |
7031875 | April 18, 2006 | Ellenby et al. |
7040986 | May 9, 2006 | Koshima |
7040993 | May 9, 2006 | Lovitt |
7040998 | May 9, 2006 | Jolliffe et al. |
7052391 | May 30, 2006 | Luciano, Jr. |
7055101 | May 30, 2006 | Abbott et al. |
7056221 | June 6, 2006 | Thirkettle et al. |
7059974 | June 13, 2006 | Golliffe et al. |
7066781 | June 27, 2006 | Weston |
D524298 | July 4, 2006 | Hedderich et al. |
7081033 | July 25, 2006 | Mawle |
7081051 | July 25, 2006 | Himoto et al. |
7086645 | August 8, 2006 | Hardie |
7090582 | August 15, 2006 | Danieli et al. |
7094147 | August 22, 2006 | Nakata |
7098891 | August 29, 2006 | Pryor |
7098894 | August 29, 2006 | Yang |
7102615 | September 5, 2006 | Marks |
7102616 | September 5, 2006 | Sleator |
7107168 | September 12, 2006 | Oystol |
D531228 | October 31, 2006 | Ashida et al. |
7115032 | October 3, 2006 | Cantu et al. |
7117009 | October 3, 2006 | Wong et al. |
7118482 | October 10, 2006 | Ishihara et al. |
7126584 | October 24, 2006 | Nishiumi et al. |
7127370 | October 24, 2006 | Kelly |
D531585 | November 7, 2006 | Weitgasser et al. |
7133026 | November 7, 2006 | Horie et al. |
7136674 | November 14, 2006 | Yoshie et al. |
7136826 | November 14, 2006 | Alsafadi |
7139983 | November 21, 2006 | Kelts |
7140962 | November 28, 2006 | Okuda et al. |
7142191 | November 28, 2006 | Idesawa et al. |
7145551 | December 5, 2006 | Bathiche |
7149627 | December 12, 2006 | Ockerse |
7154475 | December 26, 2006 | Crew |
7155604 | December 26, 2006 | Kawai |
7158116 | January 2, 2007 | Poltorak |
7158118 | January 2, 2007 | Liberty |
7160196 | January 9, 2007 | Thirkettle et al. |
7173604 | February 6, 2007 | Marvit |
7176919 | February 13, 2007 | Drebin |
7180414 | February 20, 2007 | Nyfelt |
7180503 | February 20, 2007 | Burr |
7182691 | February 27, 2007 | Schena |
7183480 | February 27, 2007 | Nishitani et al. |
7184059 | February 27, 2007 | Fouladi |
D543246 | May 22, 2007 | Ashida et al. |
7220220 | May 22, 2007 | Stubbs et al. |
7223173 | May 29, 2007 | Masuyama et al. |
7225101 | May 29, 2007 | Usuda et al. |
7231063 | June 12, 2007 | Naimark |
7233316 | June 19, 2007 | Smith et al. |
7236156 | June 26, 2007 | Liberty et al. |
7239301 | July 3, 2007 | Liberty et al. |
7261690 | August 28, 2007 | Teller et al. |
7262760 | August 28, 2007 | Liberty |
RE39818 | September 4, 2007 | Slifer |
7288028 | October 30, 2007 | Rodriquez et al. |
D556201 | November 27, 2007 | Ashida et al. |
7291014 | November 6, 2007 | Chung et al. |
7292151 | November 6, 2007 | Ferguson et al. |
7297059 | November 20, 2007 | Vancura et al. |
7301527 | November 27, 2007 | Marvit |
7301648 | November 27, 2007 | Foxlin |
D556760 | December 4, 2007 | Ashida et al. |
7307617 | December 11, 2007 | Wilson et al. |
D559847 | January 15, 2008 | Ashida et al. |
D561178 | February 5, 2008 | Azuma |
7331857 | February 19, 2008 | MacIver |
7335134 | February 26, 2008 | LaVelle |
D563948 | March 11, 2008 | d-Hoore |
7337965 | March 4, 2008 | Thirkettle et al. |
7339105 | March 4, 2008 | Eitaki |
7345670 | March 18, 2008 | Armstrong |
D567243 | April 22, 2008 | Ashida et al. |
7359121 | April 15, 2008 | French et al. |
7361073 | April 22, 2008 | Martin |
RE40324 | May 20, 2008 | Crawford |
7379566 | May 27, 2008 | Hildreth |
7387559 | June 17, 2008 | Sanchez-Castro et al. |
7394459 | July 1, 2008 | Bathiche et al. |
7395181 | July 1, 2008 | Foxlin |
7398151 | July 8, 2008 | Burrell et al. |
7414611 | August 19, 2008 | Liberty |
7419428 | September 2, 2008 | Rowe |
7424388 | September 9, 2008 | Sato |
7428499 | September 23, 2008 | Philyaw |
7435179 | October 14, 2008 | Ford |
7441151 | October 21, 2008 | Whitten et al. |
7442108 | October 28, 2008 | Ganz |
7445550 | November 4, 2008 | Barney et al. |
7465212 | December 16, 2008 | Ganz |
7488231 | February 10, 2009 | Weston |
7488254 | February 10, 2009 | Himoto |
7489299 | February 10, 2009 | Liberty et al. |
7492268 | February 17, 2009 | Ferguson et al. |
7492367 | February 17, 2009 | Mahajan et al. |
7500917 | March 10, 2009 | Barney et al. |
7502759 | March 10, 2009 | Hannigan et al. |
7519537 | April 14, 2009 | Rosenberg |
7524246 | April 28, 2009 | Briggs et al. |
7535456 | May 19, 2009 | Liberty et al. |
7536156 | May 19, 2009 | Tischer |
7564426 | July 21, 2009 | Poor |
7568289 | August 4, 2009 | Burlingham et al. |
7572191 | August 11, 2009 | Weston et al. |
7582016 | September 1, 2009 | Suzuki |
7596466 | September 29, 2009 | Ohta |
7614958 | November 10, 2009 | Weston et al. |
7623115 | November 24, 2009 | Marks |
7627139 | December 1, 2009 | Marks |
7627451 | December 1, 2009 | Vock et al. |
7662015 | February 16, 2010 | Hui |
7663509 | February 16, 2010 | Shen |
7674184 | March 9, 2010 | Briggs et al. |
7704135 | April 27, 2010 | Harrison |
7749089 | July 6, 2010 | Briggs et al. |
7774155 | August 10, 2010 | Sato et al. |
7775882 | August 17, 2010 | Kawamura et al. |
7775884 | August 17, 2010 | McCauley |
7789741 | September 7, 2010 | Fields |
7796116 | September 14, 2010 | Salsman et al. |
7828295 | November 9, 2010 | Matsumoto et al. |
7850527 | December 14, 2010 | Barney et al. |
7878905 | February 1, 2011 | Weston et al. |
7883420 | February 8, 2011 | Bradbury |
7896742 | March 1, 2011 | Barney et al. |
7927216 | April 19, 2011 | Ikeda |
7942745 | May 17, 2011 | Ikeda |
8021239 | September 20, 2011 | Weston et al. |
8025573 | September 27, 2011 | Stenton et al. |
8089458 | January 3, 2012 | Barney et al. |
8164567 | April 24, 2012 | Barney et al. |
8169406 | May 1, 2012 | Barney et al. |
8184097 | May 22, 2012 | Barney et al. |
8226493 | July 24, 2012 | Briggs et al. |
8248367 | August 21, 2012 | Barney et al. |
8287373 | October 16, 2012 | Marks et al. |
8330284 | December 11, 2012 | Weston et al. |
8342929 | January 1, 2013 | Briggs et al. |
8368648 | February 5, 2013 | Barney et al. |
8373659 | February 12, 2013 | Barney et al. |
8384668 | February 26, 2013 | Barney et al. |
8475275 | July 2, 2013 | Weston et al. |
8491389 | July 23, 2013 | Weston et al. |
8531050 | September 10, 2013 | Barney et al. |
8608535 | December 17, 2013 | Weston et al. |
8686579 | April 1, 2014 | Barney et al. |
8702515 | April 22, 2014 | Weston et al. |
8708821 | April 29, 2014 | Barney et al. |
8711094 | April 29, 2014 | Barney et al. |
8753165 | June 17, 2014 | Weston |
8758136 | June 24, 2014 | Briggs et al. |
8790180 | July 29, 2014 | Barney et al. |
8795079 | August 5, 2014 | Penzias, III |
8814688 | August 26, 2014 | Barney et al. |
8827810 | September 9, 2014 | Weston et al. |
8834271 | September 16, 2014 | Ikeda |
8870655 | October 28, 2014 | Ikeda |
8913011 | December 16, 2014 | Barney et al. |
8915785 | December 23, 2014 | Barney et al. |
8961260 | February 24, 2015 | Weston |
8961312 | February 24, 2015 | Barney et al. |
20010010514 | August 2, 2001 | Ishino |
20010015123 | August 23, 2001 | Nishitani et al. |
20010018361 | August 30, 2001 | Acres |
20010024973 | September 27, 2001 | Meredith |
20010031652 | October 18, 2001 | Gabai et al. |
20010031662 | October 18, 2001 | Larian |
20010049302 | December 6, 2001 | Hagiwara et al. |
20010054082 | December 20, 2001 | Rudolph et al. |
20020005787 | January 17, 2002 | Gabai et al. |
20020008622 | January 24, 2002 | Weston et al. |
20020024500 | February 28, 2002 | Howard |
20020024675 | February 28, 2002 | Foxlin |
20020028071 | March 7, 2002 | Molgaard |
20020032067 | March 14, 2002 | Barney |
20020036617 | March 28, 2002 | Pryor |
20020038267 | March 28, 2002 | Can et al. |
20020052238 | May 2, 2002 | Muroi |
20020058459 | May 16, 2002 | Holt |
20020068500 | June 6, 2002 | Gabai et al. |
20020072418 | June 13, 2002 | Masuyama et al. |
20020075335 | June 20, 2002 | Rekimoto |
20020090985 | July 11, 2002 | Tochner et al. |
20020090992 | July 11, 2002 | Legge et al. |
20020098887 | July 25, 2002 | Himoto et al. |
20020103026 | August 1, 2002 | Himoto et al. |
20020107069 | August 8, 2002 | Ishino |
20020116615 | August 22, 2002 | Nguyen et al. |
20020118147 | August 29, 2002 | Solomon |
20020123377 | September 5, 2002 | Shulman |
20020126026 | September 12, 2002 | Lee et al. |
20020128056 | September 12, 2002 | Kato |
20020137427 | September 26, 2002 | Peters |
20020137567 | September 26, 2002 | Cheng |
20020140745 | October 3, 2002 | Ellenby |
20020158751 | October 31, 2002 | Bormaster |
20020158843 | October 31, 2002 | Levine |
20020183961 | December 5, 2002 | French et al. |
20030013513 | January 16, 2003 | Rowe |
20030022736 | January 30, 2003 | Cass |
20030027634 | February 6, 2003 | Matthews, III |
20030037075 | February 20, 2003 | Hannigan |
20030038778 | February 27, 2003 | Noguera |
20030040347 | February 27, 2003 | Roach et al. |
20030052860 | March 20, 2003 | Park et al. |
20030057808 | March 27, 2003 | Lee et al. |
20030063068 | April 3, 2003 | Anton |
20030069077 | April 10, 2003 | Korienek |
20030073505 | April 17, 2003 | Tracy |
20030095101 | May 22, 2003 | Jou |
20030096652 | May 22, 2003 | Siegel et al. |
20030106455 | June 12, 2003 | Weston |
20030107551 | June 12, 2003 | Dunker |
20030114233 | June 19, 2003 | Hiei |
20030134679 | July 17, 2003 | Siegel et al. |
20030144047 | July 31, 2003 | Sprogis |
20030144056 | July 31, 2003 | Leifer et al. |
20030166416 | September 4, 2003 | Ogata |
20030171190 | September 11, 2003 | Rice |
20030190967 | October 9, 2003 | Henry |
20030193572 | October 16, 2003 | Wilson et al. |
20030195041 | October 16, 2003 | McCauley |
20030195046 | October 16, 2003 | Bartsch |
20030204361 | October 30, 2003 | Townsend |
20030214259 | November 20, 2003 | Dowling et al. |
20030216176 | November 20, 2003 | Shimizu |
20030222851 | December 4, 2003 | Lai |
20030234914 | December 25, 2003 | Solomon |
20040028258 | February 12, 2004 | Naimark |
20040033833 | February 19, 2004 | Briggs et al. |
20040034289 | February 19, 2004 | Teller et al. |
20040048666 | March 11, 2004 | Bagley |
20040063480 | April 1, 2004 | Wang |
20040070564 | April 15, 2004 | Dawson |
20040075650 | April 22, 2004 | Paul |
20040077423 | April 22, 2004 | Weston et al. |
20040081313 | April 29, 2004 | McKnight et al. |
20040095317 | May 20, 2004 | Zhang |
20040119693 | June 24, 2004 | Kaemmler |
20040134341 | July 15, 2004 | Sandoz |
20040140954 | July 22, 2004 | Faeth |
20040143413 | July 22, 2004 | Oystol |
20040147317 | July 29, 2004 | Ito et al. |
20040152515 | August 5, 2004 | Wegmuller et al. |
20040174287 | September 9, 2004 | Deak |
20040193413 | September 30, 2004 | Wilson |
20040198158 | October 7, 2004 | Driscoll et al. |
20040198517 | October 7, 2004 | Briggs |
20040203638 | October 14, 2004 | Chan |
20040204240 | October 14, 2004 | Barney |
20040207597 | October 21, 2004 | Marks |
20040218104 | November 4, 2004 | Smith |
20040222969 | November 11, 2004 | Buchenrieder |
20040227725 | November 18, 2004 | Calarco |
20040229693 | November 18, 2004 | Lind |
20040229696 | November 18, 2004 | Beck |
20040236453 | November 25, 2004 | Szoboszlay |
20040239626 | December 2, 2004 | Noguera |
20040252109 | December 16, 2004 | Trent et al. |
20040254020 | December 16, 2004 | Dragusin |
20040259651 | December 23, 2004 | Storek |
20040268393 | December 30, 2004 | Hunleth et al. |
20050017454 | January 27, 2005 | Endo et al. |
20050020369 | January 27, 2005 | Davis |
20050032582 | February 10, 2005 | Mahajan et al. |
20050047621 | March 3, 2005 | Cranfill |
20050054457 | March 10, 2005 | Eyestone |
20050059488 | March 17, 2005 | Larsen et al. |
20050059503 | March 17, 2005 | Briggs et al. |
20050060586 | March 17, 2005 | Burger |
20050076161 | April 7, 2005 | Albanna |
20050085298 | April 21, 2005 | Woolston |
20050125826 | June 9, 2005 | Hunleth |
20050127868 | June 16, 2005 | Calhoon et al. |
20050130739 | June 16, 2005 | Argentar |
20050134555 | June 23, 2005 | Liao |
20050138851 | June 30, 2005 | Ingraselino |
20050143173 | June 30, 2005 | Barney et al. |
20050162389 | July 28, 2005 | Obermeyer |
20050164601 | July 28, 2005 | McEachen |
20050170889 | August 4, 2005 | Lum et al. |
20050172734 | August 11, 2005 | Alsio |
20050174324 | August 11, 2005 | Liberty |
20050176485 | August 11, 2005 | Ueshima |
20050179644 | August 18, 2005 | Alsio |
20050210418 | September 22, 2005 | Marvit |
20050210419 | September 22, 2005 | Kela |
20050212749 | September 29, 2005 | Marvit |
20050212750 | September 29, 2005 | Marvit |
20050212751 | September 29, 2005 | Marvit |
20050212752 | September 29, 2005 | Marvit |
20050212753 | September 29, 2005 | Marvit |
20050212754 | September 29, 2005 | Marvit |
20050212755 | September 29, 2005 | Marvit |
20050212756 | September 29, 2005 | Marvit |
20050212757 | September 29, 2005 | Marvit |
20050212758 | September 29, 2005 | Marvit |
20050212759 | September 29, 2005 | Marvit |
20050212760 | September 29, 2005 | Marvit |
20050212764 | September 29, 2005 | Toba |
20050212767 | September 29, 2005 | Marvit |
20050215295 | September 29, 2005 | Arneson |
20050215322 | September 29, 2005 | Himoto et al. |
20050217525 | October 6, 2005 | McClure |
20050233808 | October 20, 2005 | Himoto et al. |
20050239548 | October 27, 2005 | Ueshima et al. |
20050243061 | November 3, 2005 | Liberty |
20050243062 | November 3, 2005 | Liberty |
20050253806 | November 17, 2005 | Liberty |
20050256675 | November 17, 2005 | Kurata |
20050277465 | December 15, 2005 | Whitten et al. |
20050278741 | December 15, 2005 | Robarts |
20060007115 | January 12, 2006 | Furuhashi |
20060028446 | February 9, 2006 | Liberty |
20060030385 | February 9, 2006 | Barney et al. |
20060040720 | February 23, 2006 | Harrison |
20060046849 | March 2, 2006 | Kovacs |
20060092133 | May 4, 2006 | Touma |
20060094502 | May 4, 2006 | Katayama et al. |
20060122474 | June 8, 2006 | Teller et al. |
20060123146 | June 8, 2006 | Wu et al. |
20060148563 | July 6, 2006 | Yang |
20060152487 | July 13, 2006 | Grunnet-Jepsen |
20060152488 | July 13, 2006 | Salsman |
20060152489 | July 13, 2006 | Sweetser |
20060154726 | July 13, 2006 | Weston et al. |
20060178212 | August 10, 2006 | Penzias |
20060205507 | September 14, 2006 | Ho |
20060229134 | October 12, 2006 | Briggs et al. |
20060231794 | October 19, 2006 | Sakaguchi et al. |
20060234601 | October 19, 2006 | Weston |
20060252475 | November 9, 2006 | Zalewski |
20060252477 | November 9, 2006 | Zalewski et al. |
20060256081 | November 16, 2006 | Zalewski |
20060258452 | November 16, 2006 | Hsu |
20060258471 | November 16, 2006 | Briggs et al. |
20060264258 | November 23, 2006 | Zalewski et al. |
20060264260 | November 23, 2006 | Zalewski |
20060267935 | November 30, 2006 | Corson |
20060273907 | December 7, 2006 | Heiman |
20060282873 | December 14, 2006 | Zalewski |
20060284842 | December 21, 2006 | Poltorak |
20060287030 | December 21, 2006 | Briggs et al. |
20060287084 | December 21, 2006 | Mao et al. |
20060287085 | December 21, 2006 | Mao |
20060287086 | December 21, 2006 | Zalewski |
20060287087 | December 21, 2006 | Zalewski |
20070015588 | January 18, 2007 | Matsumoto et al. |
20070021208 | January 25, 2007 | Mao et al. |
20070049374 | March 1, 2007 | Ikeda et al. |
20070050597 | March 1, 2007 | Ikeda et al. |
20070052177 | March 8, 2007 | Ikeda et al. |
20070060391 | March 15, 2007 | Ikeda et al. |
20070066394 | March 22, 2007 | Ikeda et al. |
20070066396 | March 22, 2007 | Weston et al. |
20070072680 | March 29, 2007 | Ikeda et al. |
20070091084 | April 26, 2007 | Ueshima et al. |
20070093291 | April 26, 2007 | Hulvey |
20070159362 | July 12, 2007 | Shen |
20070173705 | July 26, 2007 | Teller et al. |
20070249425 | October 25, 2007 | Weston et al. |
20070252815 | November 1, 2007 | Kuo |
20070257884 | November 8, 2007 | Taira |
20070265075 | November 15, 2007 | Zalewski |
20070265076 | November 15, 2007 | Lin |
20070265088 | November 15, 2007 | Nakada et al. |
20080014835 | January 17, 2008 | Weston et al. |
20080015017 | January 17, 2008 | Ashida et al. |
20080039202 | February 14, 2008 | Sawano et al. |
20080119270 | May 22, 2008 | Ohta |
20080121782 | May 29, 2008 | Hotelling et al. |
20080174550 | July 24, 2008 | Laurila |
20080183678 | July 31, 2008 | Weston et al. |
20080273011 | November 6, 2008 | Lin |
20080278445 | November 13, 2008 | Sweetser |
20090009294 | January 8, 2009 | Kupstas |
20090033621 | February 5, 2009 | Quinn |
20090051653 | February 26, 2009 | Barney et al. |
20090124165 | May 14, 2009 | Weston |
20090156309 | June 18, 2009 | Weston et al. |
20090215534 | August 27, 2009 | Wilson et al. |
20090305799 | December 10, 2009 | Weston et al. |
20090326851 | December 31, 2009 | Tanenhaus |
20100056285 | March 4, 2010 | Weston et al. |
20100105475 | April 29, 2010 | Mikhailov |
20100144436 | June 10, 2010 | Marks et al. |
20100203932 | August 12, 2010 | Briggs et al. |
20100273556 | October 28, 2010 | Briggs et al. |
20100289744 | November 18, 2010 | Cohen |
20110081969 | April 7, 2011 | Ikeda |
20110081970 | April 7, 2011 | Barney et al. |
20110177853 | July 21, 2011 | Ueshima |
20110190052 | August 4, 2011 | Takeda |
20110263330 | October 27, 2011 | Weston et al. |
20110300941 | December 8, 2011 | Weston et al. |
20120004031 | January 5, 2012 | Barney et al. |
20120034980 | February 9, 2012 | Weston et al. |
20120094759 | April 19, 2012 | Barney et al. |
20120122575 | May 17, 2012 | Barney et al. |
20120190452 | July 26, 2012 | Weston et al. |
20120208638 | August 16, 2012 | Barney et al. |
20120258802 | October 11, 2012 | Weston et al. |
20120270657 | October 25, 2012 | Barney et al. |
20120295710 | November 22, 2012 | Barney et al. |
20120309528 | December 6, 2012 | Barney et al. |
20130079141 | March 28, 2013 | Barney et al. |
20130116020 | May 9, 2013 | Barney et al. |
20130116048 | May 9, 2013 | Briggs et al. |
20130116051 | May 9, 2013 | Barney et al. |
20130196727 | August 1, 2013 | Barney et al. |
20130303276 | November 14, 2013 | Weston et al. |
20140194206 | July 10, 2014 | Barney et al. |
20140235341 | August 21, 2014 | Barney et al. |
20140256446 | September 11, 2014 | Barney et al. |
20140323221 | October 30, 2014 | Ikeda |
20140357373 | December 4, 2014 | Barney et al. |
20140378233 | December 25, 2014 | Weston et al. |
20150050971 | February 19, 2015 | Briggs et al. |
2113224 | August 1992 | CN |
1338961 | March 2002 | CN |
1559644 | January 2005 | CN |
3930581 | March 1991 | DE |
19701374 | July 1997 | DE |
19632273 | February 1998 | DE |
19648487 | June 1998 | DE |
19814254 | October 1998 | DE |
19937307 | February 2000 | DE |
10029173 | January 2002 | DE |
10219198 | November 2003 | DE |
0264782 | April 1988 | EP |
0570999 | December 1988 | EP |
0322825 | July 1989 | EP |
0695565 | February 1996 | EP |
0835676 | April 1998 | EP |
0848226 | June 1998 | EP |
0852961 | July 1998 | EP |
1062994 | December 2000 | EP |
1279425 | January 2003 | EP |
1293237 | March 2003 | EP |
0993845 | December 2005 | EP |
2547093 | December 1984 | FR |
2244546 | December 1991 | GB |
2284478 | June 1995 | GB |
2307133 | May 1997 | GB |
2310481 | August 1997 | GB |
2316482 | February 1998 | GB |
2319374 | May 1998 | GB |
2325558 | November 1998 | GB |
2388418 | November 2003 | GB |
62-14527 | January 1987 | JP |
63-186687 | August 1988 | JP |
03-210622 | September 1991 | JP |
06-050758 | February 1994 | JP |
06-154422 | June 1994 | JP |
06-190144 | July 1994 | JP |
06-198075 | July 1994 | JP |
H0677387 | October 1994 | JP |
06-308879 | November 1994 | JP |
07-028591 | January 1995 | JP |
07-044315 | February 1995 | JP |
07-107573 | April 1995 | JP |
07-115690 | May 1995 | JP |
07-146123 | June 1995 | JP |
07-200142 | August 1995 | JP |
07-262797 | October 1995 | JP |
07-302148 | November 1995 | JP |
07-318332 | December 1995 | JP |
08-095704 | April 1996 | JP |
08-106352 | April 1996 | JP |
08-111144 | April 1996 | JP |
08-114415 | May 1996 | JP |
08-122070 | May 1996 | JP |
08-152959 | June 1996 | JP |
08-191953 | July 1996 | JP |
08-211993 | August 1996 | JP |
08-221187 | August 1996 | JP |
08-305355 | November 1996 | JP |
08-335136 | December 1996 | JP |
09-149915 | June 1997 | JP |
09-164273 | June 1997 | JP |
09-34456 | July 1997 | JP |
09-225137 | September 1997 | JP |
09-230997 | September 1997 | JP |
09-237087 | September 1997 | JP |
09-274534 | October 1997 | JP |
09-319510 | December 1997 | JP |
10 021000 | January 1998 | JP |
10-033831 | February 1998 | JP |
10-043349 | February 1998 | JP |
10-099542 | April 1998 | JP |
10-154038 | June 1998 | JP |
10-235019 | August 1998 | JP |
10-254614 | September 1998 | JP |
11-053994 | February 1999 | JP |
11-099284 | April 1999 | JP |
11-114223 | April 1999 | JP |
2000-033184 | February 2000 | JP |
2000-176150 | June 2000 | JP |
2000-270237 | September 2000 | JP |
2000-300839 | October 2000 | JP |
2000-308756 | November 2000 | JP |
2000-325653 | November 2000 | JP |
2001-038052 | February 2001 | JP |
2001-058484 | March 2001 | JP |
2001-104643 | April 2001 | JP |
U20009165 | April 2001 | JP |
2001-175412 | June 2001 | JP |
2001-251324 | September 2001 | JP |
2001-265521 | September 2001 | JP |
2001-306245 | November 2001 | JP |
2002-007057 | January 2002 | JP |
2002-062981 | February 2002 | JP |
2002-78969 | March 2002 | JP |
2002-082751 | March 2002 | JP |
2002-091692 | March 2002 | JP |
2002-126375 | May 2002 | JP |
2002-136694 | May 2002 | JP |
2002-153673 | May 2002 | JP |
2002-202843 | July 2002 | JP |
2002-224444 | August 2002 | JP |
2002-233665 | August 2002 | JP |
2002-298145 | October 2002 | JP |
2003-053038 | February 2003 | JP |
2003-140823 | May 2003 | JP |
2003-208263 | July 2003 | JP |
2003 236246 | August 2003 | JP |
2003-325974 | November 2003 | JP |
2004-062774 | February 2004 | JP |
2004-313429 | November 2004 | JP |
2004-313492 | November 2004 | JP |
2005-040493 | February 2005 | JP |
2005-063230 | March 2005 | JP |
2006-113019 | April 2006 | JP |
2006-136694 | June 2006 | JP |
2006-216569 | August 2006 | JP |
2007-083024 | April 2007 | JP |
04043702 | February 2008 | JP |
9300171 | August 1994 | NL |
2077358 | April 1997 | RU |
2125853 | February 1999 | RU |
2126161 | February 1999 | RU |
WO 90/07961 | July 1990 | WO |
WO 94/02931 | March 1994 | WO |
WO 95/11730 | May 1995 | WO |
WO 96/05766 | February 1996 | WO |
WO 96/14115 | May 1996 | WO |
WO 96/14121 | May 1996 | WO |
WO 97/09101 | March 1997 | WO |
WO 97/12337 | April 1997 | WO |
WO 97/17598 | May 1997 | WO |
WO 97/20305 | June 1997 | WO |
WO 97/28864 | August 1997 | WO |
WO 97/32641 | September 1997 | WO |
WO 98/11528 | March 1998 | WO |
WO 98/36400 | August 1998 | WO |
WO 99/58214 | November 1999 | WO |
WO 00/33168 | June 2000 | WO |
WO 00/35345 | June 2000 | WO |
WO 00/061251 | October 2000 | WO |
WO 00/63874 | October 2000 | WO |
WO 00/67863 | November 2000 | WO |
WO 01/87426 | November 2001 | WO |
WO 01/91042 | November 2001 | WO |
WO 02/17054 | February 2002 | WO |
WO 02/34345 | May 2002 | WO |
WO 03/015005 | February 2003 | WO |
WO 03/088147 | October 2003 | WO |
WO 03/107260 | December 2003 | WO |
WO 2004/039055 | May 2004 | WO |
WO 2004/051391 | June 2004 | WO |
WO 2004/087271 | October 2004 | WO |
WO 2006/039339 | April 2006 | WO |
WO 2006/101880 | September 2006 | WO |
WO 2007/058996 | May 2007 | WO |
WO 2007/120880 | October 2007 | WO |
- “Kirby Tilt ‘n’ Tumble 2” http://www.unseen64.net/2008/04/08/koro-koro-kirby-2-kirby-tilt-n-tumble-2- gc-unreleased/, Apr. 8, 2008 (accessed on Jul. 29, 2011).
- “Emerald Forest Toys” [online] [retrieved on Sep. 14, 2005], retrieved from Internet <URL:http://www.pathworks.net/print—eft.html>.
- Boulanger et al., “The 1997 Mathews Radio Baton and Improvisation Modes,” Music Synthesis Department, Berklee College of Music (1997).
- Complainants' Petition for Review, dated Sep. 17, 2012.
- Complainants' Response to Commission's Request for Statements on the Public Interest, dated Oct. 10, 2012.
- Complainants' Response to Respondents' Petition for Review, dated Sep. 25, 2012.
- Exintaris, et al., “Ollivander's Magic Wands : HCI Development,” available at http://www.cim.mcgill.ca/˜jer/courses/hci/project/2002/www.ece.mcgill.ca/%257Eeurydice/hci/notebook/final/MagicWand.pdf (2002).
- Expert Report of Branimir R. Vojcic, Ph.D. on Behalf of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Nov. 17, 2011.
- Expert Report of Kenneth Holt on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011.
- Expert Report of Nathaniel Polish, Ph.D. on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011.
- IGN Article—Mad Catz Rumble Rod Controller, Aug. 20, 1999.
- Initial Determination on Violation of Section 337 and Recommended Determination on Rememdy and Bond, dated Aug. 31, 2012.
- Marrin, Teresa, “Toward an Understanding of Musical Gesture: Mapping Expressive Intention with the Digital Baton,” Masters Thesis, Massachusetts Institute of Technology, Program in Media Arts and Sciences (1996).
- Nintendo N64 Controller Pak Instruction Booklet, 1997.
- Paradiso, Joseph A., “The Brain Opera Technology: New Instruments and Gestural Sensors for Musical Interaction and Performance” (Nov. 1998) (electronic copy available at http://pubs.media.mit.edu/pubs/papers/98—3—JNMR—Brain—Opera.pdf).
- Petition of the Office of Unfair Import Investigations for Review-In-Part of the Final Initial Determination, dated Sep. 17, 2012.
- Pre-Hearing Statement of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Jan. 13, 2012.
- Public Version of Commission Opinion from United States International Trade Commission, dated Oct. 28, 2013.
- Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Contingent Petition for Review of Initial Determination, dated Sep. 17, 2012.
- Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Objections and Supplemental Responses to Complainants Creative Kingdoms, LLC and New Kingdoms, LLC's Interrogatory Nos. 35, 44, 47, 53, and 78, dated Oct. 13, 2011.
- Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Response to Complainants' and Staff's Petitions for Review, dated Sep. 25, 2012.
- Response of the Office of Unfair Import Investigations to the Petitions for Review, dated Sep. 25, 2012.
- Response to Office Action dated Sep. 18, 2009 for U.S. Appl. No. 11/404,844.
- Specification of the Bluetooth System—Core v1.0b, Dec. 1, 1999.
- U.S. Appl. No. 60/214,317, filed Jun. 27, 2000.
- U.S. Appl. No. 60/730,659 to Marks et al., filed Oct. 25, 2005.
- Verplaetse, “Inertial Proprioceptive Devices: Self-Motion Sensing Toys and Tools,” IBM Systems Journal, vol. 35, Nos. 3&4 (Sep. 1996).
- Kirby Tilt ‘n’ Tumble (GCN-GBA Spaceworld 2001, You Tube Video, uploaded by adonfjv on Sep. 5, 2006 (accessed at http://www.youtube.com/watch?v=5rLhlwp2iGk on Sep. 7, 2011; digital copy of video available upon request).
- Creative Kingdoms LLC v. ITC, The United States Court of Appeals for the Federal Circuit, No. 2014-1072, dated Dec. 19, 2014.
- “At-home fishing”, http:www.virtualpet.com/vp/media/fishing/homef.jpg (accessed on Jan. 14, 2010).
- “Coleco Vision: Super Action™ Controller Set,” www.vintagecomputing.com/wp-content/images/retroscan/ coleco—sac—1—large.jpg., Sep. 2006.
- “Controllers-Atari Space Age Joystic,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID-12., Sep. 1, 2006.
- “Controllers-Booster Grip,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID=18., Sep. 1, 2006.
- “Electronic Plastic: BANDAI—Power Fishing” “Power Fishing Company: BANDAI,” 1 page, http://www.handhelden.com/Bandai/ PowerFishing.html., 1984 (accessed on Jul. 29, 2011).
- “Game Controller” Wikipedia, Jan. 5, 2005.
- “Get Bass,” Videogame by Sega, The International Arcade Museum and the KLOV (accessed at http://www.arcade-museum.com/game—detail.php?game—id=7933 on Jul. 29, 2011).
- “Glove-based input interfaces” Cyberglove/Cyberforce, http://www.angelfire.com/ca7/mellott124/glove1.htm (accessed on Jul. 29, 2011).
- “Harry Potter Magic Spell Challenge,” Tiger Electronics, 2001.
- “Imp Coexists With Your Mouse,” Byte, p. 255 (Jan. 1994).
- “MEMS enable smart golf clubs,” Small Times, Jan. 6, 2005, accessed at http://dpwsa.electroiq.com/index/display/semiconductors-article-display/269788/articles/small-times/consumer/2005/01/mems-enable-smart-golf-clubs.html on Jul. 29, 2011.
- “Miacomet and Interact Announce Agreement to Launch Line of Reel Feel™Sport Controllers”, PR Newswire (May 13, 1999), accessed at http://www.thefreelibarary.com/—print/PrintArticle.aspx?id=54621351 on Sep. 7, 2011.
- “The N.I.C.E. Project,” YouTube video uploaded by evltube on Nov. 20, 2007 (accessed at http://www.youtube.com/watch?v=ihGXa21qLms on Sep. 8, 2011; digital copy of video available upon request).
- “212 Series of Decoders” HT12D/HT12F by Holtek—Product Specification (Nov. 2002).
- “212” Series Encoders HT12A/HT12E by Holtek—Product Specification (Apr. 2000).
- “ASCII Entertainment releases the Grip,” ASCII Entertainment Software—Press News—Coming Soon Magazine, May 1997 (electronic version accessed at http://www.csoon.com/issue25/p—ascii4.htm on Sep. 6, 2011).
- “Enchanted Spell-Casting Sorcerers Wand” by Ken Holt as featured on www.inventionconnection.com online advertisement (Dec. 2002).
- “Interview with Pat Goschy, the ”Real“ Nintendo Wii Inventor,” YouTube video uploaded by agbulls on Jan. 14, 2008 (accessed at http://www.youtube.com/watch?v=oKtZysYGDLE on Feb. 11, 2011; digital copy of video available upon request).
- “Micro Tilt Switch” D6B by Omron® Product Specification, Jan. 2007.
- “Nintendo Wii Controller Invented by Americans: Midway Velocity Controller Technology Brief,” YouTube Video presentation dated Jun. 28, 2000; uploaded by drjohniefever on Sep. 8, 2007 (accessed at http://www.youtube.com/watch?v=wjLhSrSxFNw on Jun. 30, 2010; digital copy of video available upon request).
- “Raise High the 3D Roof Beam: Kids shape these PC games as they go along.” by Anne Field, article as featured in Business Week 2001.(Nov. 26, 2001).
- “Serial-in Parallel-out Shift Register” SN54/74LS164 by Motorola-Product Specification, Fifth Edition, 1992.
- “Sony PS2 Motion Controller 5 years ago (2004),” YouTube Video uploaded by r1oot on Jul. 8, 2009 (accessed at http://www.youtube.com/watch?v=JbSzmRt7HhQ&feature=related on Sep. 6, 2011; digital copy of video available upon request).
- “The Big Ideas Behind Nintendo's Wii,” Business Week, Nov. 16, 2006 (accessed at http://www.businessweek.com/technology/content/nov2006/tc20061116—750580.htm on Aug. 31, 2011).
- “The Magic Labs Conjure Wands” as featured on www.magic-lab.com Product Specification Dec. 2002.
- “Tilt Switch” by Fuji & Co. as featured on www.fuji-piezo.com online advertisement May 2001.
- “Toy Wand Manufacturer Selects MEMSIC Sensor: Magic Labs cuts costs with MEMSIC sensor” Press Release by Memsic, Inc. as featured on www.memsic.com May 2002.
- “Wii Mailbag,” IGN.com, Jan. 26, 2006 (accessed at http://uk.wii.ign.com/mail/2006-01-26.html on Aug. 31, 2011).
- Acar, et al., “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” Journal of Micromechanics and Microengineering, vol. 13 (1), pp. 634-645, May 2003.
- Achenbach, “Golf's New Measuring Stick,” Golfweek, 1 page., Jun. 11, 2005.
- Act Labs, Miacomet Background, Jan. 27, 2001, http://web.archive.org/web/200101271753/http://www.act-labs.com/ realfeel—background.htm, (accessed on Sep. 7, 2011).
- Agard, “Advances in Strapdown Inertial Systems,” Agard Lecture Series No. 133, Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France) (1984).
- AirPad Controller Manual, (AirPad Corp. 2000).
- Airpad Motion Reflex Controller for Sony Playstation—Physical Product, (AirPad Corp. 2000).
- Algrain, “Estimation of 3-D Angular Motion Using Gyroscopes and Linear Accelerometers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, No. 6, pp. 910-920 (Nov. 1991).
- Algrain, et al., “Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking System,” Second IEEE Conference on Control Applications, Sep. 13-16, 1993 Vancouver, B.C.., pp. 159-163 (1993).
- Algrain, et al., “Interlaced Kalman Filtering of 3-D Angular Motion Based on Euler's Nonlinear Equations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, No. 1 (Jan. 1994).
- Allen, et al., “A General Method for Comparing the Expected Performance of Tracing and Motion Capture Systems,” {VRST} '05: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Nov. 7-9, 2005 Monterey, California (2005).
- Allen, et al., “Tracking: Beyond 15 Minutes of Thought,” SIGGRAPH 2001 Course 11 (2001).
- Analog Devices “ADXL202E Low-Cost .+−.2 g Dual-Axis Accelerometer with Duty Cycle Output” Data Sheet, Rev. A (2000).
- Analog Devices “ADXL330 Small, Low Power, 3-Axis ±2 g iMEMS Accelerometer” Data Sheet, Rev. PrA (2005).
- Analog Devices “ADXL50 Monolithic Accelerometer with Signal Conditioning” Data Sheet (1996).
- Analog Devices “ADXRS150±150°/s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. B (2004).
- Analog Devices “ADXRS401 ±75°/s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. O (2004).
- Analog Devices “MicroConverter®, Multichannel 12-Bit ADC with Embedded Flash MCU, ADuC812” Data Sheet (2003), available at http://www.analog.com/static/imported-files/data—sheets/ADUC812.pdf.
- Analog Devices, “ADXL150/ADXL250, ±5g to ±50g, Low Noise, Low Power, Single/Dual Axis iMEMS® Accelerometers,” Data Sheet, Rev. 0 (1998).
- Ang, et al., “Design and Implementation of Active Error Canceling in Hand-held Microsurgical Instrument,” Paper presented at 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (2001).
- Ang, et al., “Design of All-Accelerometer Inertial Measurement Unit for Tremor Sensing in Hand-held Microsurgical Instrument,” Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Sep. 14-19, 2003, Taipei, Taiwan, pp. 1781-1786 (2003).
- Apostolyuk, Vladislav, “Theory and Design of Micromechanical Vibratory Gyroscopes,” MEMS/NEMS Handbook, Springer, vol. 1, pp. 173-195 (2006).
- Ascension Technology, 6D Bird Class B Installation and Operation Guide (2003).
- ASCII, picture of one-handed controller, 2 pages, Feb. 6, 2006.
- ATOR, “Image-Velocity Sensing with Parallel-Slit Reticles,” Journal of the Optical Society of America, vol. 53, No. 12, pp. 1416-1422 (Dec. 1963).
- Azarbayejani, et al, “Real-Time 3-D Tracking of the Human Body,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in Proceedings of Image'Com 96, Bordeaux, France, May 1996.
- Azarbayejani, et al., “Visually Controlled Graphics,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, pp. 602-605 (Jun. 1993).
- Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMD,” Paper Presented at SIGGRAPH '94 Annual Conference in Orlando, FL (1994).
- Azuma et al., “Making Augmented Reality Work Outdoors Requires Hybrid Tracking,” Proceedings of the International Workshop on Augmented Reality, San Francisco, CA, Nov. 1, 1998.
- Azuma, “Predictive Tracking for Augmented Reality,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Department of Computer Science (1995).
- Azuma, et al., “A Frequency-Domain Analysis of Head-Motion Prediction,” Paper Presented at SIGGRAPH '95 Annual Conference in Los Angeles, CA (1995).
- Azuma, et al., “A motion-stabilized outdoor augmented reality system,” Proceedings of IEEE Virtual Reality '99, Houston, TX, Mar. 13-17, 1999, pp. 252-259.
- Bachmann et al., “Inertial and Magnetic Posture Tracking for Inserting Humans into Networked Virtual Environments,” Virtual Reality Software and Technology archive, Paper Presented at ACM Symposium on Virtual Reality Software and Technology in Banff, Alberta, Canada (2001).
- Bachmann et al., “Orientation Tracking for Humans and Robots Using Inertial Sensors” Paper Presented at 199 International Symposium on Computational Intelligence in Robotics & Automation (CIRA '99) (1999).
- Bachmann, “Inertial and Magnetic Angle Tracking of Limb Segments for Inserting Humans into Synthetic Environments,” Dissertation, Naval Postgraduate School, Monterey, CA (Dec. 2000).
- Badler, et al., “Multi-Dimensional Input Techniques and Articulated Figure Positioning by Multiple Constraints,” Interactive 3D Graphics, Oct. 1986; pp. 151-169.
- Baker et al., “Active Multimodal Control of a ‘Floppy’ Telescope Structure,” Proc. SPIE, vol. 4825, pp. 74-81 (2002).
- Balakrishnan, “The Rockin' Mouse: Integral 3D Manipulation on a Plane,” Published in Proceedings of 1997 ACM Conference on Human Factors in Computing Systems (CHI'97), pp. 311-318, (1997).
- Ballagas, et al., “iStuff: A Physical User Interface Toolkit for Ubiquitous Computer Environments,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems (2003).
- Baraff, “An Introduction to Physically Based Modeling: Rigid Body Simulation I—Unconstrained Rigid Body Dynamics,” SIGGRAPH 97 Course Notes, Robotics Institute, Carnegie Mellon University (1997).
- Baudisch, et al., “Soap: a Pointing Device that Works in Mid-air,” Proc. UIST'06, Oct. 15-18, 2006, Montreux, Switzerland (2006).
- BBN Report No. 7661, “Virtual Environment Technology for Training (VETT),” The Virtual Environment and Teleoperator Research Consortium (VETREC), pp. III-A-27 to III-A-40 (Mar. 1992).
- Behringer, “Improving the Registration Precision by Visual Horizon Silhouette Matching,” Paper presented at First IEEE Workshop on Augmented Reality (1998).
- Behringer, “Registration for Outdoor Augmented Reality Applications Using Computer Vision Techniques and Hybrid Sensors,” Paper presented at IEEE Virtual Reality (VR '99) Conference in Houston, TX (1999).
- BEI GyrochipTM Model QRS11 Data Sheet, BEI Systron Donner Inertial Division, BEI Technologies, Inc., (Sep. 1998).
- Benbasat, “An Inertial Measurement Unit for User Interfaces,” Massachusetts Institute of Technology Masters Thesis, (Sep. 2000).
- Benbasat, et al., “An Inertial Measurement Framework for Gesture Recognition and Applications,” Paper Presented at International Gesture Workshop on Gesture and Sign Languages in Human-Computer Interaction (GW '01), London, UK (2001).
- Bhatnagar, “Position trackers for Head Mounted Display systems: A survey” (Technical Report), University of North Carolina at Chapel Hill (Mar. 1993).
- Bianchi, “A Tailless Mouse, New cordless Computer Mouse Invented by ArcanaTech,” Inc.com, Jun. 1, 1992 (accessed at http://www.inc.com/magazine/19920601/4115.html on Jun. 17, 2010).
- Bishop, “The Self-Tracker: A Smart Optical Sensor on Silicon,” Ph.D. Dissertation, Univ. of North Carolina at Chapel Hill (1984), 65 pages.
- Bjork, Staffan et al., “Pirates! Using the Physical World as a Game Board,” Reportedly presented as part of Interact 2001: 8th TC.13 IFIP International Conference on Human-Computer Interaction, Tokyo Japan (Jul. 9-13, 2001).
- Bluffing Your Way in Pokemon, Oct. 14, 2002, 7 pages.
- Bona, et al., “Optimum Reset of Ship's Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, Abstract only (1965) (accessed at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0908193 on Jun. 17, 2010).
- Borenstein, et al., “Where am I? Sensors and Methods for Mobile Robot Positioning” (1996).
- Borovoy, R. ,et al., “Things that Blink: Computationally Augmented Name Tags,” IBM Systems Journal, vol. 35, Nos. 3 & 4, 1996; pp. 488-495.
- Borovoy, Richard et al., “Groupwear: Nametags That Tell About Relationships,” Chi 98, Apr. 1998, pp. 329-330.
- Boser, “3-Axis Accelerometer with Differential Sense Electronics,” Berkeley Sensor & Actuator Center, available at http://www.eecs.berkeley.edu/.about.boser/pdf/3axis.pdf (1997).
- Boser, “Accelerometer Design Example: Analog Devices XL-05/5,” Berkeley Sensor & Actuator Center, available at http://wvvw.eecs.berkeley.edu/.about.boser/pdf/xl05.pdf (1996).
- Bowman, et al., “An Introduction to 3-D User Interface Design,” MIT Presence, vol. 10, No. 1, pp. 96-108 (Feb. 2001).
- Briefs, (New & Improved), (Brief Article), PC Magazine, Oct. 26, 1993.
- Britton et al., “Making Nested Rotations Convenient for the User,” SIGGRAPH '78 Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, vol. 12, Issue 3, pp. 222-227 (Aug. 1978).
- Britton, “A Methodology for the Ergonomic Design of Interactive Computer Graphic Systems, and its Application to Crystallography” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1977).
- Brownell, Richard, Review: Peripheral-GameCube-G3 Wireless Controller, gamesarefun.com, Jul. 13, 2003 (accessed at http://www.gamesarefun.com/gamesdb/perireview.php?perireviewid=1 on Jul. 29, 2011).
- Buchanan, Levi: “Happy Birthday, Rumble Pak,” IGN.com, Apr. 3, 2008 (accessed at http://retro.ign.com/articles/864/864231p1.html on Jul. 29, 2011).
- Business Wire, “Feature/Virtual reality glasses that interface to Sega channel,Time Warner, TCI; project announced concurrent with COMDEX,” Nov. 14, 1994 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1994—Nov—14/ai—15923497/?tag=content;col1 on Jul. 7, 2010).
- Business Wire, “Free-space ‘Tilt’ Game Controller for Sony Playstation Uses Scenix Chip; SX Series IC Processes Spatial Data in Real Time for On-Screen,” Dec. 6, 1999 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1999—Dec—6/ai—58042965/?tag=content;col1 on Jul. 7, 2010)).
- Business Wire, “Logitech Magellan 3D Controller,” Apr. 14, 1997 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=19306114 on Feb. 10, 2011).
- Business Wire, “Mind Path Introduces Gyropoint RF Wireless Remote,” Jan. 27, 2000 (accessed at http://www.allbusiness.com/company-activities-management/operations-office/6381880-1.html on Jun. 17, 2010).
- Business Wire, “Pegasus' Wireless PenCell Writes on Thin Air with ART's Handwriting Recognition Solutions,” Business Editors/High Tech Writers Telecom Israel 2000 Hall 29, Booth 19-20, Nov. 7, 2000 (accessed at http://www.highbeam.com/doc/1G1-66658008.html on Jun. 17, 2010).
- Business Wire, “RPI ships low-cost pro HMD Plus 3D Mouse and VR PC graphics card system for CES,” Jan. 9, 1995 (accessed at http://www.highbeam.com/doc/1G1-16009561.html on Jun. 17, 2010).
- Business Wire, “InterSense Inc. Launches InertiaCube2—The World's Smallest Precision Orientation Sensor with Serial Interface,” Aug. 14, 2001 (accessed at http://www.highbeam.com/doc/1G1-77183067.html/print on Sep. 7, 2011.
- Buxton et al., “A Study in Two-Handed Input,” Proceedings of CHI '86, pp. 321-326 (1986) (accessed at http://www.billbuxton.com/2hands.html on Jul. 29, 2011).
- Buxton, Bill, “Human input/output devices,” In M. Katz (ed.), Technology Forecast: 1995, Menlo Park, CA: Price Waterhouse World Firm Technology Center, pp. 49-65 (1994).
- Buxton, Bill, A Directory of Sources for Input Technologies (last updated Apr. 19, 2001), http://web.archive.org/web/20010604004849/http://www.billbuxton.com/InputSources.html (accessed on Sep. 8, 2011).
- Canaday, “R67-26 The Lincoln Wand,” IEEE Transactions on Electronic Computers, vol. EC-16, No. 2, p. 240 (Apr. 1967) (downloaded from IEEE Xplore on Jul. 7, 2010).
- Caruso et al., “A New Perspective on Magnetic Field Sensing,” Sensors Magazine, Dec. 1, 1998 (accessed at http://www.sensorsmag.com/sensors/electric-magnetic/a-new-perspective-magnetic-field-sensing-855 on Jun. 17, 2010).
- Caruso et al., “Vehicle Detection and Compass Applications using AMR Magnetic Sensors”, Paper presented at 1999 Sensors Expo in Baltimore, Maryland (May 1999), available at http://masters.donntu.edu.ua/2007/kita/gerus/library/amr.pdf.
- Caruso, “Application of Magnetoresistive Sensors in Navigation Systems,” Sensors and Actuators, SAE SP-1220, pp. 15-21 (Feb. 1997); text of article accessed at http://www.ssec.honeywell.com/position-sensors/datasheets/sae.pdf.
- Caruso, “Applications of Magnetic Sensors for Low Cost Compass Systems,” Honeywell, SSEC, Paper presented at IEEE 2000 Position Location and Navigation Symposium (2000), accessed at http://www.ssec.honeywell.com/magnetic/datasheets/lowcost.pdf.
- Chatfield, “Fundamentals of High Accuracy Inertial Navigation,” vol. 174 Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc. (1997).
- Cheng, “Direct interaction with Large-Scale Display Systems using Infrared Laser Tracking Devices,” Paper presented at Australasian Symposium on Information Visualisation, Adelaide, Australia (2003).
- Cho et al., “Magic Wand: A Hand-Drawn Gesture Input Device in 3-D Space with Inertial Sensors,” Proceedings of the 9th Intl Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), IEEE (2004).
- Clark, James H. , “Three Dimensional Man Machine Interaction,” Siggraph '76, Jul. 14-16 Philadelphia, Pennsylvania, 1 page.
- Clark, James H., “Designing Surfaces in 3-D,” Graphics and Image Processing—Communications of the ACM, Aug. 1976; vol. 19; No. 8; pp. 454-460.
- CNET News.com, “Nintendo Wii Swings Into Action,” May 25, 2006 (accessed at http://news.cnet.com/2300-1043—3-6070295-4.html on Aug. 5, 2011).
- Colella, Vanessa, et al., “Participatory Simulations: Using Computational Objects to Learn about Dynamic Systems,” Chi 98; Apr. 1998, pp. 9-10.
- Cooke, et al., “NPSNET: Flight simulation dynamic modeling using quaternions,” Presence, vol. 1, No. 4, pp. 404-420, (Jan. 25, 1994).
- Crecente, Brian, “Motion Gaming Gains Momentum,” kotaku.com, Sep. 17, 2010 (accessed at http://kotaku.com/5640867/motion-gaming-gains-momentum on Aug. 31, 2011).
- CSIDC Winners—“Tablet-PC Classroom System Wins Design Competition,” IEEE Computer Society Press, vol. 36, Issue 8, pp. 15-18, IEEE Computer Society, Aug. 2003.
- Cutrone, “Hot products: Gyration GyroPoint Desk, GyroPoint Pro gyroscope-controlled wired and wireless mice,” Results from the Comdex Show Floor, Computer Reseller News, Dec. 4, 1995 (accessed from LexisNexis research database on Feb. 17, 2011; see pp. 8 and 9 of reference submitted herewith).
- Deering, Michael F. , “HoloSketch a Virtual Reality Sketching Animation Tool,” ACM Transactions on Computer-Human Interaction, Sep. 1995; vol. 2, No. 3; pp. 220-238.
- Deruyck, et al., “An Electromagnetic Position Sensor,” Polhemus Navigation Sciences, Inc., Burlington, VT (Nov. 1973) (Abstract from DTIC Online).
- Dichtburn, “Camera in Direct3D” Toymaker (Feb. 6, 2005), http://web.archive.org/web/20050206032104/http:/toymaker.info/games/html/camera.html (accessed on Jul. 29, 2011).
- Digital ID Cards the next generation of ‘smart’ cards will have more than a one-track mind. Wall Street Journal, Jun. 25, 2001.
- Donelson, et al., “Spatial Management of Information”, Proceedings of 1978 ACM SIGGRAPH Conference in Atlanta, Georgia, pp. 203-209 (1978).
- Druin et al., Robots: Exploring New Technologies for Learning for Kids; 2000; Chapter One: To Mindstorms and Beyond; 27 pages
- Drzymala, Robert E., et al., “A Feasibility Study Using a Stereo-Optical Camera System to Verify Gamma Knife Treatment Specification,” Proceedings of 22nd Annual EMBS International Conference, Jul. 2000; pp. 1486-1489.
- Durlach, et al., “Virtual Reality: Scientific and Technological Challenges,” National Academy Press (1995).
- Emura et al. “Sensor Fusion based Measurement of Human Head Motion,” 3rd IEEE International Workshop on Robot and Human Communication (1994).
- Ewalt, David M., “Nintendo's Wii is a Revolution,” Review, Forbes.com, Nov. 13, 2006 (accessed at http://www.forbes.com/2006/11/13/wii-review-ps3-tech-media-cx—de—1113wii.html on Jul. 29, 2011).
- Ferrin, “Survey of Helmet Tracking Technologies,” Proc. SPIE vol. 1456, p. 86-94 (Apr. 1991).
- Fielder, Lauren “E3 2001: Nintendo unleashes GameCube software, a new Miyamoto game, and more,” GameSpot, May 16, 2001 (accessed at http://www.gamespot.com/news/2761390/e3-2001-nintendo-unleashes-gamecube-software-a-new-miyamoto-game-and-more?tag=gallery—summary%3Bstory on Jul. 29, 2011).
- U.S. Appl. No. 09/520,148, filed Mar. 7, 2000 by Miriam Mawle.
- Foremski, T., “Remote Control Mouse Aims at Interactive TV” Electronics Weekly, Mar. 9, 1994.
- Foxlin et al., “An Inertial Head-Orientation Tracker with Automatic Drift Compensation for Use with HDM's,” Proceedings of the 1994 Virtual Reality Software and Technology Conference, Aug. 23-26, 1994, Singapore, pp. 159-173 (1994).
- Foxlin et al., “Miniature 6-DOF Inertial System for Tracking HMDs,” SPIE vol. 3362, Helmet and Head-Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 13-14, 1998 (1998).
- Foxlin et al., “WearTrack: A Self-Referenced Head and Hand Tracker for Wearable Computers and Portable VR,” Proceedings of International Symposium on Wearable Computers (ISWC 2000), Oct. 16-18, 2000, Atlanta, GA (2000).
- Foxlin et al., “FlightTracker: A Novel Optical/Inertial Tracker for Cockpit Enhanced Vision, Symposium on Mixed and Augmented Reality,” Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Nov. 2-5, 2004, Washington, D.C.
- Foxlin, “Head-tracking Relative to a Moving Vehicle or Simulator Platform Using Differential Inertial Sensors,” Proceedings of Helmet and Head-Mounted Displays V, SPIE vol. 4021, AeroSense Symposium, Orlando, FL, Apr. 24-25, 2000.
- Foxlin, “Inertial Head Tracker Sensor Fusion by a Complementary Separate-bias Kalman Filter,” Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, pp. 185-194, 267 (1996).
- Foxlin, “Generalized architecture for simultaneous localization, auto-calibration, and map-building,” IEEE/RSJ Conf. on Intelligent Robots and Systems (IROS 2002), Oct. 2-4, 2002, Lausanne, Switzerland (2002).
- Foxlin, “Motion Tracking Requirements and Technologies,” Chapter 7, from Handbook of Virtual Environment Technology, Kay Stanney, Ed., Lawrence Erlbaum Associates (2002) (extended draft version available for download at http://www.intersense.com/pages/44/119/).
- Foxlin, “Pedestrian Tracking with Shoe-Mounted Inertial Sensors,” IEEE Computer Graphics and Applications, vol. 95, No. 6, pp. 38-46, (2005).
- Foxlin, et al., “Constellation™: A Wide-Range Wireless Motion-Tracking System for Augmented Reality and Virtual Set Applications,” ACM SIGGRAPH 98, Orlando, Florida, Jul. 19-24, 1998 (1998).
- Foxlin, et al., “Miniaturization, Calibration & Accuracy Evaluation of a Hybrid Self-Tracker,” IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2003), Oct. 7-10, 2003, Tokyo, Japan (2003).
- Foxlin, et al., “VIS-Tracker: A Wearable Vision-Inertial Self-Tracker,” IEEE VR2003, Mar. 22-26, 2003, Los Angeles, CA (2003).
- Frankle, “E3 2002: Roll O Rama,” Roll-o-Rama GameCube Preview at IGN, May 23, 2002 (accessed at http://cube.ign.com/articles/360/360662p1.html on Sep. 7, 2011).
- Friedmann, et al., “Device Synchronization Using an Optimal Linear Filter,” SI3D '92: Proceedings of the 1992 symposium on Interactive 3D graphics, pp. 57-62 (1992).
- Friedmann, et al., “Synchronization in virtual realities,” M.I.T. Media Lab Vision and Modeling Group Technical Report No. 157, Jan. 1991 to appear in Presence, vol. 1, No. 1, MIT Press, Cambridge, MA (1991).
- FrontSide Field Test, “Get This!” Golf Magazine, Jun. 2005, p. 36.
- Fuchs, Eric, “Inertial Head-Tracking,” MS Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science (Sep. 1993).
- Furniss, Maureen, “Motion Capture,” posted at http://web.mit.edu/m-i-t/articles/index—furniss.html on Dec. 19, 1999; paper presented at the Media in Transition Conference at MIT on Oct. 8, 1999 (accessed on Sep. 8, 2011).
- gamecubicle.com News Article, Nintendo WaveBird Controller, http://www.gamecubicle.com/news-Nintendo—gamecube—wavebird—controller.htm, May 14, 2002 (accessed on Aug. 5, 2011).
- Geen et al., “New iMEMS® Angular-Rate-Sensing Gyroscope,” Analog Dialogue 37-03, pp. 1-3 (2003).
- Gelmis, J., “Ready to Play, The Future Way,” Buffalo News, Jul. 23, 1996 (accessed from LexisNexis research database on Sep. 6, 2011).
- Green, Jonathan, et al., “Camping in the Digital Wilderness: Tents and Flashlights As Interfaces to Virtual Worlds,” Chi 2002, Apr. 2002, pp. 780-781.
- Grimm, et al., “Real-Time Hybrid Pose Estimation from Vision and Inertial Data,” Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV'04), IEEE Computer Society (2004).
- Gyration Ultra Cordless Optical Mouse, Setting Up Ultra Mouse, Gyration Quick Start Card part No. DL-00071-0001 Rev. A. Gyration, Inc., Jun. 2003.
- Gyration Ultra Cordless Optical Mouse, User Manual, Gyration, Inc., Saratoga, CA (2003).
- Gyration, “Gyration MicroGyro 100 Developer Kit Data Sheet,” http://web.archive.org/web/19980708122611/www.gyration.com/html/devkit.ht- ml (Jul. 1998).
- Gyration, Inc., GyroRemote GP240-01 Professional Series (2003).
- Harada et al., “Portable Absolute Orientation Estimation Device with Wireless Network Under Accelerated Situation” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, Apr. 2004, pp. 1412-1417(2004).
- Harada et al., “Portable orientation estimation device based on accelerometers, magnetometers and gyroscope sensors for sensor network,” Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2003), pp. 191-196, (2003).
- Haykin, et al., “Adaptive Tracking of Linear Time-Variant Systems by Extended RLS Algorithms, IEEE Transactions on Signal Processing,” vol. 45, No. 5, pp. 1118-1128 (May 1997).
- Heath, “Virtual Reality Resource Guide Al Expert,” v9 n5 p32(14) (May 1994) (accessed at http://ftp.hitl.washington.edu/scivw-ftp/commercial/VR-Resource-Guide.txt on Jun. 17, 2010).
- HiBall-3100—“Wide-Area, High-Precision Tracker and 3D Digitizer,” www.3rdtech.com/HiBall.htm (accessed on Jul. 29, 2011).
- Hinckley, “Synchronous Gestures for Multiple Persons and Computers,” Paper presented at ACM UIST 2003 Symposium on User Interface Software & Technology in Vancouver, BC, Canada (Nov. 2003).
- Hinckley, et al., “A Survey of Design Issues in Spatial Input,” Paper presented at 7th Annual ACM Symposium on User Interface Software and Technology (1994).
- Hinckley, et al., “Sensing Techniques for Mobile Interaction,” Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (ACM UIST), San Diego, CA, (2000).
- Hinckley, et al., “The VideoMouse: A Camera-Based Multi-Degree-of-Freedom Input Device” ACM UIST'99 Symposium on User Interface Software & Technology, CHI Letters vol. 1 No. 1, pp. 103-112 (1999).
- Hinckley, Ken “Haptic Issues for Virtual Manipulation,” Ph.D. Dissertation University of Virginia, Dept. of Computer Science (1997).
- Hind, Nicholas, “Cosmos: A composition for Live Electronic Instruments Controlled by the Radio Baton and Computer Keyboard (Radio Baton and Magic Glove),” A Final Project Submitted to the Department of Music of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor Musical Arts/UMI Microform 9837187, Jan. 1998.
- Hoffman, Hunter G., “Physically Touching Virtual Objects Using Tactile Augmentation Enhances the Realism of Virtual Environments,” IEEE Virtual Reality Annual International Symposium '98, Atlanta, Georgia, 1998, 5 pages.
- Hogue, Andrew, “MARVIN: A Mobile Automatic Realtime visual and Inertial tracking system,” Master's Thesis, York University (2003), available at http://www.cse.yorku.ca/˜hogue/marvin.pdf.
- Holden, Maureen K. et al., “Use of Virtual Environments in Motor Learning and Rehabilitation,” Department of Brain and Cognitive Sciences, Handbook of Virtual Environments: Design, Implementation, and Applications, Chap. 49, pp. 999-1026, Stanney (ed), Lawrence Erlbaum Associates (2002).
- Holloway, Richard Lee, “Registration Errors in Augmented Reality Systems,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1995).
- Immersion CyberGlove product, Immersion Corporation, http://www.cyberglovesystem.com (2001).
- Immersion, “Immersion Ships New Wireless CyberGlove(R) II Hand Motion-Capture Glove; Animators, Designers, and Researchers Gain Enhanced Efficiency and Realism for Animation, Digital Prototyping and Virtual Reality Projects,” Business Wire, Dec. 7, 2005 (available at http://ir.immersion.com/releasedetail.cfm?releaseid=181278).
- Interfax Press Release, “Tsinghua Tongfang Releases Unique Peripheral Hardware for 3D Gaming,” 2002, 1 page.
- International Search Report and Written Opinion; International Appl. No. PCT/US2006/043915; mailed Mar. 9, 2007; 8 pages.
- Intersense, “InterSense InertiaCube2 Devices,” (Specification) (image) (2001).
- Intersense, “InterSense InertiaCube2 Manual for Serial Port Model” (2001).
- Intersense, “IS-900 Product Technology Brief,” http://www.intersense.com/uploadedFiles/Products/White—Papers/IS900—Tech—Overview—Enhanced.pdf (1999).
- Intersense, “InterSense Inc., The New Standard in Motion Tracking,” Mar. 27, 2004, http://web.archive,org!web12004040500550Z/http://intersense.com (accessed on May 19, 2009).
- Intersense, “InterSense Mobile Mixed Reality Demonstration,” YouTube Video dated Oct. 2006 on opening screen; uploaded by InterSenseInc. on Mar. 14, 2008 (accessed at http://www.youtube.com/watch?v=daVdzGK0nUE&feature=channel—page on Sep. 8, 2011; digital copy of video available upon request).
- Intersense, “IS-900 Precision Motion Trackers,” Jun. 14, 2002, http://web.archive.org/web/20020614110352/http://www.isense.com/products/prec/is900/ (accessed on Sep. 8, 2011).
- Intersense, Inc., “Comparison of Intersense IS-900 System and Optical Systems,” Whitepaper, Jul. 12, 2004., available at http://www.jazdtech.com/techdirect/research/InterSense-Inc.htm?contentSetId=60032939&supplierId=60018705.
- Jacob, “Human-Computer Interaction—Input Devices,” ACM Computing Surveys, vol. 28, No. 1, pp. 177-179 (Mar. 1996); link to text of article provided at http://www.cs.tufts.edu/˜jacob/papers/.
- Jakubowski, et al., “Increasing Effectiveness of Human Hand Tremor Separation Process by Using Higher-Order Statistics,” Measurement Science Review, vol. 1, No. 1 (2001).
- Ji, H. “Study on the Infrared Remote-Control Lamp-Gesture Device,” Yingyong Jiguang/Applied Laser Technology, vol. 17, No. 5, p. 225-227, Language: Chinese-Abstract only, Oct. 1997.
- Jiang, “Capacitive position-sensing interface for micromachined inertial sensors,” Dissertation at Univ. of Cal. Berkeley, 2003.
- Ju, et al., “The Challenges of Designing a User Interface for Consumer Interactive Television Consumer Electronics Digest of Technical Papers.,” IEEE 1994 International Conference on Volume , Issue , Jun. 21-23, 1994 pp. 114-115 (downloaded from IEEE Xplore on Jul. 13, 2010).
- Keir et al., “Gesture-recognition with Nonreferenced Tracking,” IEEE Symposium on 3D User Interfaces, pp. 151-158, Mar. 25-26, 2006.
- Kennedy, P.J. “Hand-held Data Input Device,” IBM Technical Disclosure Bulletin, vol. 26, No. 11, pp. 5826-5827, Apr. 1984.
- Kessler, et al., “The Simple Virtual Environment Library: an Extensible Framework for Building VE Applications,” Presence, MIT Press (2000).
- Kindratenko, “A Comparison of the Accuracy of an Electromagnetic and a Hybrid Ultrasound-Inertia Position Tracking System,” MIT Presence, vol. 10, No. 6, pp. 657-663, Dec. 2001.
- Klein et al., “Tightly Integrated Sensor Fusion for Robust Visual Tracking,” British Machine Vision Computing, vol. 22, No. 10, pp. 769-776, 2004.
- Kohlhase, “NASA Report, The Voyager Neptune travel guide,” Jet Propulsion Laboratory Publication 89-24, (Jun. 1989).
- Kormos, D.W., et al., “Intraoperative, Real-Time 3-D Digitizer for Neurosurgical Treatment and Planning,” IEEE (1993) (Abstract only).
- Kosak, Dave, “Mind-Numbing New Interface Technologies,” Gamespy.com, Feb. 1, 2005 (accessed at http://www.gamespy.com/articles/584/584744p1.html on Aug. 31, 2011).
- Krumm et al., “How a Smart Environment can Use Perception,” Paper presented at UBICOMP 2001 Workshop on Perception for Ubiquitous Computing (2001).
- Kuipers, Jack B., “SPASYN—An Electromagnetic Relative Position and Orientation Tracking System,” IEEE Transactions on Instrumentation and Measurement, vol. 29, No. 4, pp. 462-466 (Dec. 1980).
- Kunz, Andreas M. et al., “Design and Construction of a New Haptic Interface,” Proceedings of DETC '00, ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore, Maryland, Sep. 10-13, 2000.
- La Scala, et al., “Design of an Extended Kalman Filter Frequency Tracker,” IEEE Transactions on Signal Processing, vol. 44, No. 3 (Mar. 1996).
- Laser Tag: Lazer Tag Branded Gear; last update Sep. 26, 2006, http://home.comcast.net/˜ferret1963/Lazer—Tag—Brand.HTML (accessed on Mar. 13, 2008; historical dates start in 1986).
- Laughlin et al., “Inertial Angular Rate Sensors: Theory and Applications,” Sensors Magazine Oct. 1992.
- Lee et al, “Tilta-Pointer: the Free-Space Pointing Device,” Princeton COS 436 Project (Fall 2004); retrieved from Google's cache of http://www.milyehuang.com/cos436/project/specs.html on May 27, 2011.
- Lee et al., “Innovative Estimation Method with Measurement Likelihood for all-Accelerometer Type Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, No. 1, Jan. 2002.
- Lee et al., “Two-Dimensional Position Detection System with MEMS Accelerometer for Mouse Applications,” Design Automation Conference, 2001, Proceedings, 2001 pp. 852-857, Jun. 2001.
- Leganchuk et al., “Manual and Cognitive Benefits of Two-Handed Input: An Experimental Study,” ACM Transactions on Computer-Human Interaction, vol. 5, No. 4, pp. 326-259, Dec. 1998.
- Liang, et al., “On Temporal-Spatial Realism in the Virtual Reality Environment,” ACM 1991 Symposium on User Interface Software and Technology (Nov. 1991).
- Link, “Field-Qualified Silicon Accelerometers from 1 Milli g to 200,000 g,” Sensors, Mar. 1993.
- Liu, et al., “Enhanced Fisher Linear Discriminant Models for Face Recognition,” Paper presented at 14th International Conference on Pattern Recognition (ICPR'98), Queensland, Australia (Aug. 1998).
- Lobo et al., “Vision and Inertial Sensor Cooperation Using Gravity as a Vertical Reference,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, No. 12, pp. 1597-1608, Dec. 2003.
- Logitech, “Logitech Tracker—Virtual Reality Motion Tracker,” downloaded from http://www.vrealities.com/logitech.html on Jun. 18, 2010.
- Logitech, Inc. “3D Mouse & Head Tracker Technical Reference Manual,” 1992.
- Logitech's WingMan Cordless RumblePad Sets PC Gamers Free, Press Release, Sep. 2, 2001 (accessed at http://www.logitech.com/en-us/172/1373 on Aug. 5, 2011).
- Louderback, J. “Nintendo Wii”, Reviews by PC Magazine, Nov. 13, 2006 (accessed at http://www.pcmag.com/article/print/193909 on Sep. 8, 2011).
- Luethi, P. et al., “Low Cost Inertial Navigation System” (2000); downloaded from http://www.electronic-engineering.ch/study/ins/ins.html on Jun. 18, 2010.
- Luinge, “Inertial sensing of human movement,” Thesis, University of Twente, Twente University Press, 2002.
- Luinge, et al., “Estimation of orientation with gyroscopes and accelerometers,” Proceedings of the First Joint BMES/EMBS Conference, 1999., vol. 2, p. 844 (Oct. 1999).
- Mackenzie et al., “A two-ball mouse affords three degrees of freedom,” Extended Abstracts of the CHI '97 Conference on Human Factors in Computing Systems, pp. 303-304. New York: ACM (1997).
- Mackinlay, “Rapid Controlled Movement Through a Virtual 3D Workspace,” ACM SIGGRAPH Computer Graphics archive, vol. 24, No. 4, pp. 171-176 (Aug. 1990).
- Maclean, “Designing with Haptic Feedback”, Paper presented at IEEE Robotics and Automation (ICRA '2000) Conference in San Francisco, CA, Apr. 22-28, 2000.
- Maggioni, C., “A novel gestural input device for virtual reality,” IEEE Virtual Reality Annual International Symposium (Cat. No. 93CH3336-5), 118-24, 1993.
- Marks, Richard (Jan. 21, 2004) (Windows Media v7). EyeToy: A New Interface for Interactive Entertainment, Stanford University (accessed at http://lang.stanford.edu/courses/ee380/2003-2004/040121-ee380-100.wmv on Sep. 7, 2011; digital copy of video available upon request).
- Marrin, “Possibilities for the Digital Baton as a General Purpose Gestural Interface,” Late-Breaking/Short Talks, Paper presented at CHI 97 Conference in Atlanta Georgia, Mar. 22-27, 1997 (accessed at http://www.sigchi.org/chi97/proceedings/short-talk/tm.htm on Aug. 5, 2011).
- Marrin, Teresa et al., “The Digital Baton: A Versatile Performance Instrument,” Paper presented at International Computer Music Conference, Thessaloniki, Greece (1997) (text of paper available at http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.1997.083).
- Marti et al., “Biopsy navigator: a smart haptic interface for interventional radiological gestures” Proceedings of the Computer Assisted Radiology and Surgery (CARS 2003) Conference, International Congress Series, vol. 1256, pp. 788-793 (2003) (e-copy of text of paper available at http://infoscience.epfl.ch/record/29966/files/CARS03-GM.pdf).
- Masliah, “Measuring the Allocation of Control in 6 Degree of Freedom Docking Experiment,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems, The Hague, Netherlands (2000).
- Maybeck, “Stochastic Models, Estimation and Control,” vol. 1, Chapter 1, Introduction (1979).
- Merians, et al., “Virtual Reality-Augmented Rehabilitation for Patients Following Stroke,” Physical Therapy, vol. 82, No. 9, Sep. 2002.
- Merrill, “FlexiGesture: A sensor-rich real-time adaptive gesture and affordance learning platform for electronic music control,” Thesis, Massachusetts Institute of Technology, Jun. 2004.
- Meyer et al., “A Survey of Position Tracker,” MIT Presence, vol. 1, No. 2, pp. 173-200, (1992).
- Miller, Paul, “Exclusive shots of Goschy's prototype ‘Wiimote’ controllers,” Engadget, Jan. 15, 2008 (accessed at http://www.engadget.com/2008/01/15/exclusive-shots-of-goschys-prototype-wiimote-controllers/ on Aug. 31, 2011).
- Miller, Ross, “Joystiq interview: Patrick Goschy talks about Midway, tells us he ‘made the Wii’,” Joystiq.com, Jan. 16, 2008 (accessed at http://www.joystiq.com/2008/01/16/joystiq-interview-patrick-goschy-talks-about-midway-tells-us-h/ on Aug. 31, 2011).
- Mizell, “Using Gravity to Estimate Accelerometer Orientation,” Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC '03), IEEE Computer Society (2003).
- Morgan, C., “Still chained to the overhead projector instead of the podium,” (TV Interactive Corp's LaserMouse Remote Pro infrared mouse) (clipboard) (brief article) (product announcement) Government Computer News, Jun. 13, 1994.
- Morris, “Accelerometry—a technique for the measurement of human body movements,” J Biomechanics vol. 6, pp. 729-736 (1973).
- Moser, “Low Budget Inertial Navigation Platform (2000),” www.tmoser.ch/typo3/11.0.html (accessed on Jul. 29, 2011).
- Mulder, “Human movement tracking technology,” Technical Report, NSERC Hand Centered Studies of Human Movement project, available through anonymous ftp in fas.sfu.ca:/pub/cs/graphics/vmi/HMTT.pub.ps.Z., Burnab, B.C, Canada: Simon Fraser University (Jul. 1994).
- Myers et al., “Interacting at a Distance: Measuring the Performance of Laser Pointers and Other Devices,” CHI 2002, Apr. 2002.
- Naimark et al., “Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial Self-Tracker,” IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2002), Darmstadt, Germany (2002).
- Naimark, et al., “Encoded LED System for Optical Trackers,” Paper presented at Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2005), Oct. 5-8, 2005, Vienna Austria (2005) (electronic version of text of paper available for download at http://www.intersense.com/pages/44/129/).
- Navarrete, et al., “Eigenspace-based Recognition of Faces: Comparisons and a new Approach,” Paper Presented at 11th International Conference on Image Analysis and Processing (2001).
- New Strait Times Press Release, “Microsoft's New Titles,” 1998, 1 page.
- News Article, “New Game Controllers Using Analog Devices' G-Force Tilt to be Featured at E3”, Norwood, MA (May 10, 1999) (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 17, 2010).
- Nintendo Tilt Controller Ad, Electronic Gaming Monthly, 1994, 1 page.
- Nintendo, Game Boy Advance SP System Instruction Booklet (2003).
- Nintendo, Nintendo Game Boy Advance System Instruction Booklet (2001-2003).
- Nintendo, Nintendo Game Boy Advance Wireless Adapter, Sep. 26, 2003.
- Nishiyama, “A Nonlinear Filter for Estimating a Sinusoidal Signal and its Parameters in White Noise: On the Case of a Single Sinusoid,” IEEE Transactions on Signal Processing, vol. 45, No. 4, pp. 970-981 (Apr. 1997).
- Nishiyama, “Robust Estimation of a Single Complex Sinusoid in White Noise-H∞ Filtering Approach,” IEEE Transactions on Signal Processing, vol. 47, No. 10, pp. 2853-2856 (Oct. 1999).
- Odell, “An Optical Pointer for Infrared Remote Controllers,” (1995) (downloaded from IEEE Xplore on Jul. 7, 2010).
- Ojeda, et al., “No GPS? No Problem!” University of Michigan Develops Award-Winning Personal Dead-Reckoning (PDR) System for Walking Users, available at http://www.engine.umich.edu/research/mrl/urpr/In—Press/P135.pdf, (2004 or later).
- Omelyan, “On the numerical integration of motion for rigid polyatomics: The modified quaternion approach” Computers in Physics, vol. 12 No. 1, pp. 97-103 (1998).
- Ovaska, “Angular Acceleration Measurement: A Review,” Paper presented at IEEE Instrumentation and Measurement Technology Conference, St. Paul, MN, May 18-21, 1998.
- Pai, et al., “The Tango: A Tangible Tangoreceptive Whole-Hand Interface,” Paper presented at Joint Eurohaptics and IEEE Symposium on Haptic in for Virtual Environment and Teleoperator Systems, Pisa, Italy, Mar. 18-20, 2005.
- Pajama Sam: No Need To Hide When It's Dark Outside Infogames, Sep. 6, 2002.
- Paley, W. Bradford, “Interaction in 3D Graphics,” SIGGRAPH Computer Graphics Newsletter, Col. 32, No. 4 (Nov. 1998) (accessed at http://www.siggraph.org/publications/newsletter/v32n4/contributions/paley.html on Aug. 2, 2011).
- Paradiso, et al., “Interactive Therapy with Instrumented Footwear,” CHI 2004, Apr. 24-29, 2004, Vienna, Austria.
- Paradiso, et al., “Musical Applications of Electric Field Sensing”, available at http://pubs.media.mit.edu/pubs/papers/96—04—cmj.pdf (1996).
- Park, Adaptive control strategies for MEMS gyroscopes (Dissertation), Univ. Cal. Berkley (Dec. 2000).
- PC World, “The 20 Most Innovative Products of the Year,” Dec. 27, 2006 (accessed at http://www.pcworld.com/printable/article/id,128176/printable.html on Aug. 2, 2011).
- PCTracker, Technical Overview, available at http://www.est-kl.com/fileadmin/media/pdf/InterSense/PCTracker—Tech—Overview.pdf (date unknown).
- Perry, Simon, “Nintendo to Launch Wireless Game Boy Adaptor,” Digital Lifestyles, http://digital-lifestyles.info/2003/09/26/Nintendo-to-launch-wireless-game-boy-adaptor/, Sep. 26, 2003 (accessed on Jul. 29, 2011).
- Phillips, “Forward/Up Directional Incompatibilities During Cursor Placement Within Graphical User Interfaces,” Ergonomics, vol. 48, No. 6, May 15, 2005.
- Phillips, “LPC2104/2105/2106, Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM,” 32 pages, Dec. 22, 2004.
- Phillips, “Techwatch: On the Right Track: A unique optical tracking system gives users greater freedom to explore virtual worlds,” Computer Graphics World, vol. 23, Issue 4 (Apr. 2000).
- Pierce et al., “Image Plane Interaction Techniques in 3D Immersive Environments,” Paper presented at 1997 symposium on Interactive 3D graphics, Providence, RI (1997).
- Pilcher, “AirMouse Remote Controls,” IEEE Conference on Consumer Electronics (1992).
- Pique, “Semantics of Interactive Rotations,” Interactive 3D Graphics, Proceedings of the 1986 workshop on Interactive 3D graphics, pp. 259-269 (Oct. 1986).
- Piyabongkarn, “The Development of a MEMS Gyroscope for Absolute Angle Measurement,” Dissertation, Univ. Minnesota, Nov. 2004 (Abstract only).
- Polhemus, “Polhemus 3Space Fastrak devices” (image) (2001).
- PowerGlove product Program Guide, Mattel, 1989 (Text of Program Guide provided from http://hiwaay.net/˜lkseitz/cvtg/power—glove.shtml; the text was typed in by Lee K. Sietz; document created Aug. 25, 1988; accessed on Aug. 2, 2011).
- PR Newswire, “Five New Retailers to Carry Gyration's Gyropoint Point and Gyropoint Pro,” Jul. 8, 1996 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 18, 2010).
- PR Newswire, “Three-Axis MEMS-based Accelerometer From STMicroelectronics Targets Handheld Terminals,” Feb. 18, 2003 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Aug. 3, 2011).
- Pryor et al., “A Reusable Software Architecture for Manual Controller Integration,” IEEE Conf. on Robotics and Automation, Univ of Texas, pp. 3583-3588 (Apr. 1997).
- Raab, et al., “Magnetic Position and Orientation Tracking System,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 5, pp. 709-718 (Sep. 1979).
- Radica Legends of the Lake™ Instruction Manual (2003).
- Regan, “Smart Golf Clubs,” baltimoresun.com, Jun. 17, 2005.
- Rekimoto, “Tilting Operations for Small Screen Interfaces,” Tech Note presented at 9th Annual ACM Symposium on User Interface Software and Technology (UIST'96) (1996) (electronic copy available for download at http://www.sonycsl.co.jp/person/rekimoto/papers/uist96.pdf.
- Resnick, Mitchel et al., “Digital Manipulatives: New Toys to Think With,” Chi 98; Apr. 1998; pp. 281-287.
- Response filed May 3, 2010 to Office Action dated Feb. 5, 2010 for Application No. 12/222,787 filed Aug. 15, 2008, now U.S. Pat. No. 7,774,155 (including Rule 1.132 Declaration by Steve Mayer).
- Reunert, “Fiber-Optic Gyroscopes: Principles and Applications,” SENSORS, Aug. 1993, pp. 37-38.
- Ribo, et al., “Hybrid Tracking for Outdoor Augmented Reality Applications,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 54-63, Nov./Dec. 2.
- Riviere, et al., “Adaptive Canceling of Physiological Tremor for Improved Precision in Microsurgery,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 7, pp. 839-846 (Jul. 1998).
- Roberts, “The Lincoln Wand,” 1966 Proceedings of the Fall Joint Computer Conference (1966), available for electronic download at http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1966.105.
- Robinett et al., “Implementation of Flying, Scaling, and Grabbing in Virtual Worlds,” ACM Symposium (1992).
- Robinett et al., “The Visual Display Transformation for Virtual Reality,” University of North Carolina at Chapel Hill (1994).
- Roetenberg, “Inertial and magnetic sensing of human motion,” Thesis, University of Twente (2006).
- Roetenberg, et al., “Inertial and Magnetic Sensing of Human Movement Near Ferromagnetic Materials,” Paper presented at Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Mar. 2003 (electronic copy available at http://www.xsens.com/images/stories/PDF/Inertial%20and%20magnetic%20sensing%20of%20human%20movement%20near%20ferromagnetic%20materials.pdf.
- Rolland, et al., “A Survey of Tracking Technology for Virtual Environments,” University of Central Florida, Center for Research and Education in Optics Lasers (CREOL) (2001 ).
- Romer, Kay et al., Smart Playing Cards: A Ubiquitous Computing Game, Personal and Ubiquitous Computing, Dec. 2002, vol. 6, Issue 5-6, pp. 371-377, London, England.
- Rothman, Wilson, “Unearthed: Nintendo's Pre-Wiimote Prototype,” gizmodo.com, Aug. 29, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/unearthed-nintendo-2001-prototype-motion+sensing-one+handed-controller-by-gyration-294642.php on Aug. 31, 2011).
- Rothman, Wilson, “Wii-mote Prototype Designer Speaks Out, Shares Sketchbook,” Gizmodo.com, Aug. 30, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/wii+mote-prototype-designer-speaks-out-shares-sketchbook-295276.php on Aug. 31, 2011).
- Sakai, et al., “Optical Spatial Filter Sensor for Ground Speed,” Optical Review, vol. 2, No. 1, pp. 65-67 (1995).
- Santiago, “Extended Kalman filtering applied to a full accelerometer strapdown inertial measurement unit,” M.S. Thesis, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, Santiago (1992).
- Satterfield, Shane, “E3 2002: Nintendo announces new GameCube games,” GameSpot, http://www.gamespot.com/gamecube/action/rollorama/news/2866974/e3-2002-nintendo-announces-new-gamecube-games, May 21, 2002 (accessed on Aug. 11, 2011).
- Sawada, et al., “A Wearable Attitude-Measurement System Using a Fiberoptic Gyroscope,” MIT Presence, vol. 11, No. 2, pp. 109-118, Apr. 2002.
- Saxena, et al., “In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-Static States,” Berlin: Springer-Verlag, pp. 595-601 (2005).
- Sayed, “A Framework for State-Space Estimation with Uncertain Models,” IEEE Transactions on Automatic Control, vol. 46, No. 7, Jul. 2001.
- Schofield, Jack et al., Games reviews, “Coming up for airpad,” The Guardian (Feb. 3, 2000) (accessed at http://www.guardian.co.uk/technology/2000/feb/03/online supplement5/print on Jun. 18, 2010).
- Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Instruction Manual, Optional Equipment Manual (1994).
- Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Photos of baseball bat (1994).
- Selectech Airmouse, “Mighty Mouse”, Electronics Today International, p. 11 (Sep. 1990).
- Shoemake, Ken, “Quaternions,” available online at http://campar.in.turn.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf (date unknown).
- Skiens, Mike, “Nintendo Announces Wireless GBA Link”, Bloomberg, Sep. 25, 2003 (accessed at http://www.nintendoworldreport.com/news/9011).
- Smartswing, “SmartSwing: Intelligent Golf Clubs that Build a Better Swing,” http://web.archive.org/web/20040728221951/http://www.smartswinggolf.com/ (accessed on Sep. 8, 2011).
- Smartswing, “The SmartSwing Learning System Overview,” Apr. 26, 2004, http://web.archive.org/web/2004426215355/http://www.smartswinggolf.com/tls/index.html (accessed on Jul. 29, 2011).
- Smartswing, “The SmartSwing Learning System: How it Works,” 3 pages, Apr. 26, 2004, http://web.archive.org/web/20040426213631/http://www.smartswinggolf.com/tls/how—it—works.html (accessed on Jul. 29, 2011).
- Smartswing, “The SmartSwing Product Technical Product: Technical Information,” Apr. 26, 2004, http://web.archive.org/web/20040426174854/http://www.smartswinggolf.com/products/technical—info.html (accessed on Jul. 29, 2011).
- Smartswing, Training Aid, Austin, Texas, Apr. 2005.
- Sorenson, et al., “The Minnesota Scanner: A Prototype Sensor for Three-Dimensional Tracking of Moving Body Segments,” IEEE Transactions on Robotics and Animation, vol. 5, No. 4 (Aug. 1989).
- Star Wars Action Figure with CommTech Chip by Hasbro (1999).
- Stars Wars Episode 1 CommTech Reader Instruction Manual (1998).
- Stovall, “Basic Inertial Navigation,” NAWCWPNS TM 8128, Navigation and Data Link Section, Systems Integration Branch (Sep. 1997).
- Sulic, “Logitech Wingman Cordless Rumblepad Review,” Gear Review at IGN, Jan. 14, 2002 (accessed at http://gear.ign.com/articles/317/317472p1.html on Aug. 1, 2011).
- Sutherland, “A Head-Mounted Three Dimensional Display,” Paper presented at AFIPS '68 Fall Joint Computer Conference, Dec. 9-11, 1968, (1968); electronic copy of paper available at www.cise.uffedu/˜lok/teaching/dcvef05/papers/sutherland-headmount.pdf.
- Sutherland, Ivan E., “Sketchpad: A Man-Machine Graphical Communication System,” Proceedings of the AFIPS Spring Joint Computer Conference, Detroit, Michigan, May 21-23, 1963, pp. 329-346 (source provided is reprinting of text accessed at http://www.guidebookgallery.org/articles/sketchpadamanmachinegraphicalcommunicationsystem on Sep. 8, 2011).
- Tech Designers Rethink Toys: Make Them Fun Wall Street Journal, Dec. 17, 2001.
- Templeman, James N., “Virtual Locomotion: Walking in Place through Virtual Environments,” Presence, vol. 8, No. 6, pp. 598-617, Dec. 1999.
- Timmer, “Modeling Noisy Time Series: Physiological Tremor,” International Journal of Bifurcation and Chaos, vol. 8, No. 7 (1998).
- Timmer, et al, “Pathological Tremors: Deterministic Chaos or Nonlinear Stochastic Oscillators?” Chaos, vol. 10, No. 1 pp. 278-288 (Mar. 2000).
- Timmer, et al., “Characteristics of Hand Tremor Time Series,” Biological Cybernetics, vol. 70, No. 1, pp. 75-80 (1993).
- Timmer, et al., “Cross-Spectral Analysis of Tremor Time Series,” International Journal of Bifurcation and Chaos, vol. 10, No. 11 pp. 2595-2610 (2000); electronic copy of text available at http://www.fdmold.uni-freiburg.de/groups/timeseries/tremor/pubs/cs—review.pdf.
- Timmer, et al., Cross-Spectral Analysis of Physiological Tremor and Muscle Activity: II Application to Synchronized Electromyogram, Biological Cybernetics, vol. 78 (1998) (copy provided obtained from http://arxiv.org/abs/chao-dyn/9805012).
- Titterton et al., “Strapdown Inertial Navigation Technology,” Peter Peregrinus Ltd., pp. 1-56 and pp. 292-321 (1997).
- Toy Designers Use Technology in New Ways as Sector Matures, WSJ.com, Dec. 17, 2001.
- Traq 3D, “Healthcare,”http: //www.traq3d.com/Healthcare/Healthcare.aspx (accessed on Jan. 21, 2010).
- Ulanoff, Lance, “Nintendo's Wii is the Best Product Ever,” PC Magazine, Jun. 21, 2007 (accessed at http://www.pcmag.com/print—article2/0,1217,a=210070,00.asp?hidPrint=true on Aug. 1, 2011).
- UNC Computer Science Department, “News & Notes from Sitterson Hall,” UNC Computer Science, Department Newsletter, Issue 24, Spring 1999 (Apr. 1999) (accessed at http://www.cs.unc.edu/NewsAndNotes/Issue24/ on Jun. 18, 2010).
- Urban, “BAA 96-37 Proposer Information,” DARPA/ETO (1996) (accessed at http://www.fbodaily.com/cbd/archive/1996/08(August)/19-Aug-1996/Aso1001.htm on Jul. 27, 2010).
- US Dynamics Corp, “Spinning Mass Mechanical Gyroscopes,” Aug. 2006.
- US Dynamics Corp, “The Concept of ‘Rate’, (more particularly, angular rate pertaining to rate gyroscopes) (rate gyro explanation),” Aug. 2006.
- US Dynamics Corp, “US Dynamics Model 475 Series Rate Gyroscope Technical Brief,” Dec. 2005.
- US Dynamics Corp, “US Dynamics Rate Gyroscope Interface Brief (rate gyro IO)” Aug. 2006.
- Van Den Bogaard, Thesis, “Using linear filters for real-time smoothing of rotational data in virtual reality application,” dated Aug. 2, 2004, available at http://www.science.uva.nl/research/ias/alumni/m.sc.theses/theses/RobvandenBogaarad.pdf.
- Van Laerhoven et al., “Using an Autonomous Cube for Basic Navigation and Input,” Proceedings of the 5th International Conference on Multimodal interfaces, Vancouver, British Columbia, Canada, pp. 203-210, Nov. 5-7, 2003.
- Van Rheeden, et al., “Noise Effects on Centroid Tracker Aim Point Estimation, ” IEEE Trans. on Aerospace and Electronic Systems, vol. 24, No. 2, pp. 177-185 (Mar. 1988).
- Vaz, et al., “An Adaptive Estimation of Periodic Signals Using a Fourier Linear Combiner,” IEEE Transactions on Signal Processing, vol. 42, No. 1, pp. 1-10 (Jan. 1994).
- Verplaetse, “Inertial-Optical Motion-Estimating Camera for Electronic Cinematography,” Masters Thesis, MIT, Media Arts and Sciences (1997).
- Villoria, Gerald, “Hands on Roll-O-Rama Game Cube,” Game Spot, http://www.gamespot.com/gamecube/action/rollorama/news.html?sid=2868421&com—act=convert&om—clk=newsfeatures&tag=newsfeatures;title;1&m, May 29, 2002 (accessed on Jul. 29, 2011).
- Virtual Fishing, Operational Manual, 2 pages, Tiger Electronics, Inc. (1998).
- Vorozcovs et al., “The Hedgehog: A Novel Optical Tracking Method for Spatially Immersive Displays,” MIT Presence, vol. 15, No. 1, pp. 108-121, Feb. 2006.
- VTI, Mindflux-Vti CyberTouch, http://www.mindflux.com/au/products/vti/cybertouch.html (1996).
- Wang, et al., “Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras,” Paper presented at SPIE 1990 Technical Symposium on Optical Engineering and Photonics in Aerospace Sensing (1990).
- Ward, et al., “A Demonstrated Optical Tracker With Scalable Work Area for Head-Mounted Display Systems,” Paper presented at 1992 Symposium on Interactive 3D Graphics (1992).
- Watt, Alan, 3D Computer Graphics, Chapter 1: “Mathematical fundamentals of computer graphics,” 3rd ed. Addison-Wesley, pp. 1-26 (2000).
- Welch et al., “Complementary Tracking and Two-Handed Interaction for Remote 3D Medical Consultation with a PDA,” Paper presented at Trends and Issues in Tracking for Virtual Environments Workshop at IEEE Virtual Reality 2007 Conference (2007), available at http://www.cs.unc.edu/˜welch/media/pdf/Welch2007—TwoHanded.pdf.
- Welch et al., “Motion Tracking: No Silver Bullet, but a Respectable Arsenal,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 24-38 (2002), available at http://www.cs.unc.edu/˜tracker/media/pdf/cga02—welch—tracking.pdf.
- Welch, “Hawkeye Zooms in on Mac Screens with Wireless Infrared Penlight Pointer,” MacWeek, May 3, 1993 (excerpt of article accessed at http://www.accessmylibrary.com/article/print/1G1-13785387 on Jun. 18, 2010).
- Welch, et al., “High-Performance Wide-Area Optical Tracking: The HiBall Tracking System,” MIT Presence: Teleoperators & Virtual Environments (Feb. 2001).
- Welch, et al., “SCAAT: Incremental Tracking with Incomplete Information,” Paper presented at SIGGRAPH 97 Conference on Computer Graphics and Interactive Techniques (1997), available at http://www.cs.unc.edu/˜welch/media/pdf/scaat.pdf.
- Welch, et al., “The HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented Environments,” Paper presented at 1999 Symposium on Virtual Reality Software and Technology in London, Dec. 20-22, 1999, available at http://www.cs.unc.edu/˜welch/media/pdf/VRST99—HiBall.pdf.
- Welch, Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking System, University of North Carolina Chapel Hill Department of Computer Science, TR 95-048 (1995).
- Widrow, et al., “Fundamental Relations Between the LMS Algorithm and the DFT,” IEEE Transactions on Circuits and Systems, vol. CAS-34, No. 7 (Jul. 1987).
- Wiley, M., “Nintendo Wavebird Review,” Jun. 11, 2002, http://gear.ign.com/articles/361/361933p1.html (accessed on Aug. 1, 2011).
- Williams et al., “Implementation and Evaluation of a Haptic Playback System,” vol. 3, No. 3, Haptics-e, 2004.
- Williams et al., “The Virtual Haptic Back Project,” presented at the IMAGE 2003 Conference, Scottsdale, Arizona, Jul. 14-18, 2003.
- Williams, et al., “Physical Presence: Palettes in Virtual Spaces,” Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3639, No. 374-384 (May 1999), available at http://www.fakespacelabs.com/papers/3639—46—LOCAL.pdf.
- Wilson “WorldCursor: Pointing in Intelligent Environments with the World Cursor,” http://www.acm.org/uist/archive/adjunct/2003/pdf/demos/d4-wilson.pdf (2003).
- Wilson “XWand: UI for Intelligent Environments,” http://research.microsoft.com/en-us/um/people/awilson/wand/default.htm, Apr. 2004.
- Wilson et al., “Demonstration of the Xwand Interface for Intelligent Spaces,” UIST '02 Companion, pp. 37-38 (2002).
- Wilson et al., “Gesture Recognition Using the Xwand,” http://www.ri.cmu.edu/pub—files/pub4/wilson—daniel—h—2004—1/wilson—daniel—h—2004—1.pdf (2004).
- Wilson et al., “Xwand: UI for Intelligent Spaces,” Paper presented at CHI 2003 Conference, Ft. Lauderdale, FL, Apr. 5-10, 2003, available at http://research.microsoft.com/en-us/um/people/awilson/publications/WilsonCHI2003/CHI%202003%20XWand.pdf (2003).
- Wilson, “Wireless User Interface Devices for Connected Intelligent Environments,” http://research.microsoft.com/en-us/um/people/awilson/publications/old/ubicomp%202003.pdf (2003).
- Wired Glove, Wikipedia article, 4 pages, http://en.wikipedia.org/wiki/Wired—glove, Nov. 18, 2010.
- Wormell et al., “Advancements in 3D Interactive Devices for Virtual Environments,” Presented at the Joint International Immersive Projection Technologies (IPT)/Eurographics Workshop on Virtual Environments (EGVE) 2003 Workshop, Zurich, Switzerland, May 22-23, 2003 (available for download at http://www.intersense.com/pages/44/123/) (2003).
- Wormell, “Unified Camera, Content and Talent Tracking in Digital Television and Movie Production,” Presented at NAB 2000, Las Vegas, NV Apr. 8-13, 2000 (available for download at http://www.intersense.com/pages/44/116/) (2003).
- Worringham, et al., “Directional Stimulus-Response Compatibility: A Test of Three Alternative Principles,” Ergonomics, vol. 41, Issue 6, pp. 864-880 (Jun. 1998).
- Yang et al., “Implementation and Evaluation of ‘Just Follow Me’: An Immersive, VR-Based, Motion-Training System,” MIT Presence: Teleoperators and Virtual Environments, vol. 11, No. 3, at 304-23 (MIT Press), Jun. 2002.
- You, et al., “Hybrid Inertial and Vision Tracking for Augmented Reality Registration,” http://graphics.usc.edu/cgit/pdf/papers/Vr1999.PDF (1999).
- You, et al., “Orientation Tracking for Outdoor Augmented Reality Registration,” IEEE Computer Graphics and Applications, IEEE, vol. 19, No. 6, pp. 36-42 (Nov. 1999).
- Youngblut, et al., “Review of Virtual Environment Interface Technology,” Institute for Defense Analyses (Mar. 1996).
- Yun et al., “Recent Developments in Silicon Microaccelerometers,” Sensors, 9(10) University of California at Berkeley, Oct. 1992.
- Zhai, “Human Performance in Six Degree of Freedom Input Control,” Ph.D. Thesis, University of Toronto (1995).
- Zhai, “User Performance in Relation to 3D Input Device Design,” Computer Graphics 32(4), pp. 50-54, Nov. 1998; text downloaded from http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html on Aug. 1, 2011.
- Zhou et al., “A survey—Human Movement Tracking and Stroke Rehabilitation,” Technical Report: CSM-420, ISSN 1744-8050, Dept. of Computer Sciences, University of Essex, UK, Dec. 8, 2004.
- Zhu et al., “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 2, Jun. 2004.
- Zowie Playsets, http://www.piernot.com/proj/zowie/ (accessed on Jul. 29, 2011).
Type: Grant
Filed: Mar 11, 2014
Date of Patent: Oct 6, 2015
Patent Publication Number: 20140194206
Assignee: MQ Gaming, LLC (Irvine, CA)
Inventors: Jonathan A. Barney (Newport Beach, CA), Denise Chapman Weston (Wakefield, RI)
Primary Examiner: Omkar Deodhar
Application Number: 14/204,305
International Classification: A63F 9/24 (20060101); A63F 13/20 (20140101); A63G 31/00 (20060101); A63H 30/04 (20060101); A63F 1/00 (20060101); A63F 1/04 (20060101); A63F 9/18 (20060101); A63J 21/00 (20060101);