Elastomeric coatings having hydrophobic and/or oleophobic properties

This disclosure deals with novel formulations to create highly durable hydrophobic, superhydrophobic, oleophobic and/or superoleophobic surfaces that can be nearly transparent. The formulations of this invention can be applied by -dip, spray and painting processes.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/663,985, filed Jun. 25, 2012; U.S. Provisional Application No. 61/708,760, filed Oct. 2, 2012; and U.S. Provisional Application No. 61/768,290, filed Feb. 22, 2013, the entirety of each of which application is incorporated herein by reference.

BACKGROUND

The surfaces of objects that are exposed to the environment come into contact with a variety of agents, including dust, moisture, water, and oils. In industrial applications, surfaces may be exposed to a variety of agents in addition to water, such as aqueous salt solutions, solutions of aqueous acid or base, and chemical components that may be dissolved or suspended in aqueous compositions or other liquids, including those used in manufacturing processes. Not only are the surfaces of objects exposed to a variety of chemical agents, but the temperatures to which the surfaces are exposed can also affect their interaction with those agents and the performance of the coated surfaces of objects. For example, freezing liquids, such as water, can result in frozen deposits tightly attached to the surfaces that prevent access to the surfaces and in some instances prevent proper operation of equipment bound by the frozen liquid. In addition, elevated temperatures can accelerate processes such as corrosion or leaching.

SUMMARY

Embodiments of coatings and surface treatments are provided herein that can provide advantageous surface properties including, but not limited to, hydrophobicity or superhydrophobicity (collectively HP), oleophobicity or superoleophobicity (collectively OP), and resistance to ice formation, adherence and/or accumulation. Embodiments of the coatings described herein that are HP and OP, and which may also display anti-icing behavior, may be applied to a surface using two or more steps. Embodiments of methods of applying such coatings and surface treatments also are provided, together with embodiments of compositions for applying such coatings and surface treatments, and surfaces and/or objects so treated and coated are provided as well.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic showing an embodiment of a polystyrene and rubber elastomeric copolymer.

FIG. 2 is a schematic showing various spatial orientations of embodiments of polystyrene and rubber copolymers. S is styrene and B is a rubber phase (i.e. butylene).

FIG. 3 shows some solvents suitable for dissolving styrene (styrenic) block copolymers (SBCs). The scale represents suitable solvents that can be used as SBC copolymers. Letters to the left axis are indicators of: S (styrene), B butylene (polybutadiene), I (polyisoprene), and EB (ethylene/butylene). Those solvents indicated as “Good Solvents” are solvents that tend to dissolve or suspend SBC polymers.

FIG. 4 depicts a shower test apparatus. The upper panel shows the showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on a circular showerhead. For testing the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa. The lower panel depicts a sample, which is placed about 1.5 meters below the showerhead and subject to the shower.

FIG. 5 shows a plot of “glove rubs,” which are an estimate of the surface resistance to the loss of either or both of HP or OP properties as a function of percentage of EXPANCEL first particles employed in a nearly transparent coating prepared without colorants. The glove rub estimates tend to trend in the same direction as loss of HP or OP properties due to handling, abrasion resistance, and/or the shower time. The weight percent of EXPANCEL particles is given as the percentage of the base coat formulation weight as opposed to a dry weight basis (see Example 1).

FIG. 6 shows the variation in the resistance to the loss of superhydrophobic behavior of an elastomeric binder system due to wear based on “glove rubs” and exposure to a shower of water using five different types of EXPANCEL particles. Duplicate samples containing EXPANCEL 031 DU 400 heated before or after the second component (referred to as “top coat”) comprising hydrophobic fumed silica in acetone is applied. See Example 2 for details.

FIG. 7 shows the effect of coating thickness on coating resistance to the loss of superhydrophobic behavior due to wear based on Taber Abraser testing using a 1,000 g load and CS-10 wheels on 10×10 cm plates treated with 2 or 4 ml of top coat (second component) applied over the base coating. See Example 5 for details.

FIG. 8 shows Thermogravimetric Analysis (TGA) data for a nearly transparent elastomeric coating incorporating EXPANCEL461 EXPANCEL DE 40 D 25 microspheres.

FIG. 9 shows TGA data for an embodiment of a non-transparent HP/OP elastomeric coating incorporating SoftSand™ rubber particles.

DETAILED DESCRIPTION

Embodiments of elastomeric coating methods, compositions, and treatments are provided that impart a variety of desirable characteristics to objects and their surfaces, including hydrophobicity (including superhydrophobicity), oleophobicity (including superoleophobicity), and/or anti-icing. As used herein, the term “hydrophobicity” and the abbreviation HP includes superhydrophobicity, and the term “oleophobicity” and the abbreviation OP includes superoleophobicity. The abbreviation “HP/OP” is used collectively herein to mean HP and/or OP and may also include anti-icing properties (including ice formation, adherence and/or accumulation). Treating surfaces with coatings having HP/OP characteristics can result in objects and surfaces with a variety of advantageous properties including, but not limited to, resistance to wetting, corrosion, swelling, rotting, cracking or warping, exfoliation, fouling, dust and/or dirt accumulation on surfaces (self cleaning), and resistance to surface ice formation, adherence and/or accumulation. Not only do embodiments of the coating compositions and treatments described herein provide properties including HP/OP, but the coatings also are durable in that they substantially retain those properties despite some amount of mechanical abrasion. In addition to providing durable HP/OP behavior, embodiments of the elastomeric coatings can also remain flexible and provide substantial resistance to cracking, peeling, and delamination from the coated surface over a wide range of temperatures. Further, embodiments of the coatings can readily be repaired where the surface has been abraded sufficiently to compromise the coating's properties including HP/OP behavior.

Embodiments of the HP/OP elastomeric coatings described herein may be applied in a process comprising two or more steps in which the first component applied comprises an elastomeric binding agent and optionally comprises first particles. Once applied, the coating formed by the first component is termed a “substrate coating,” a “base coating,” or a “base coat” particularly when dried. Following the application of the elastomer base coat, an amount of second component is applied to the base coat. The second component comprises second particles that are treated to cause the second particles, and the coatings into which they are suitably incorporated, to display advantageous properties including HP/OP and/or anti-icing behavior. The second component may be applied to an elastomeric base coat after the base coat is applied, but before it is dried and/or set. Alternatively, depending on the carrier/solvent used with the second component, the second component may be applied to the elastomer after the base coat is dried and/or set.

The use of second component coating compositions comprising solvents that can be applied to the elastomeric base coat after it has dried and set permits repair of coatings that have been abraded or otherwise damaged to the point where the desired HP/OP properties is/are no longer observed. Provided the base coat is intact, or the base coat has not been damaged to the point that material underlying the base coat is exposed, repair is accomplished by the reapplication of the second component which comprises second particles.

Where the HP/OP elastomeric coatings have been abraded so as to compromise the elastomer binder coating or its properties (e.g., abraded, worn too thin, or damaged to the point where the surface of the coated object or underlying material such as a primer is exposed), the coating may be reapplied to the abraded area (i.e., it may be repaired) by repeating the application of both the first and second components. Suitable repair/preparation of exposed/damaged surfaces and/or underlying primers may be required prior to the reapplication of the elastomeric coating. In contrast, other HP or OP coatings using non-elastomeric binder systems (e.g., polyurethane systems) may not be as readily repaired because the HP/OP behavior of the original coating that remains in place can prevent newly applied coating compositions from binding to the surface.

In one embodiment, a method of applying a HP/OP coating to a substrate comprises the steps of:

    • a) applying to the substrate a first component comprising: i) an elastomeric binder comprising one or more styrenic block copolymers, and optionally comprising ii) first particles having a size of about 1 micron to about 300 microns (e.g., 10 microns to about 100 microns), to provide a base coating; and
    • b) applying to the base coating a second component comprising second particles having a size of about 1 nanometer to 25 microns, where the second particles are associated with one or more siloxanes and/or have one or more independently selected alkyl, haloalkyl, or perfluoroalkyl groups covalently bound, either directly or indirectly, to the second particles, and wherein the second component optionally comprises an agent to suspend or assist in suspending the particles (e.g., a solvent such as hexane or tert-butyl acetate).
      To assist in the application process, embodiments of the first and second components may include any necessary solvents, liquids or propellants.

In some embodiments of the application method, the base coating is treated with the second component after drying and curing the base coating at room temperature (e.g., about 18 to about 23° C.) or at an elevated temperature (e.g., about 30° to about 100° C., about 30° to about 60° C., about 50° to about 100° C., or about 40° to about 90° C.). In other embodiments, the solvent used to apply the base coat is allowed to evaporate until the coating is no longer liquid and cannot be removed by contact (i.e., dry to the touch); however, the base coating is not fully dried and cured when treated with the second component containing second particles. In still other embodiments, the composition comprising second particles may be applied directly to the base coat before solvents used in the application of the base coating have fully, substantially, or partly evaporated.

Diverse elastomeric binders, first particles, and second particles may be employed in the methods and compositions described herein. In some embodiments, first particles may be filler particles. In some embodiments second particles may be considered nanoparticles. In some embodiments described herein, the coating formed by the application of the first and second components will be nearly transparent to visible light. In other embodiments, the coatings may be colored but nearly transparent to visible light that is not absorbed by the coating components and/or colorants. In still other embodiments, the coatings will have colorants (e.g., insoluble pigments or colored first and/or second particles) that will render them opaque or block the transmission of light. Embodiments of such coating components, materials, and compositions are described more fully below.

A skilled artisan will readily understand that the selection of first particles and second particles needs to include consideration of not only the desired properties of the coating and the ultimate conditions to which the coating will be subject in use, but also the process used to prepare the coating. Where, for example, particles must withstand elevated temperatures or specific solvents in the coating process, they should be selected so as to be suitable for use in the required temperature ranges or in the required solvents. For example, in those embodiments where coatings or the first and/or second particles are intended for use at elevated temperatures (e.g., above room temperature), the particles need to be compatible with the elevated temperatures that the coatings will be subjected to when in use and/or in processes employed to prepare the coatings. Similarly, the particles should be selected to be compatible with solvents used in the application process and with solvents the coatings will become exposed to in use.

In methods described herein, where second particles are applied to a base coat on a substrate, which may be coated with a primer, the methods can produce coatings having (i) a surface in contact with said substrate (or primer) and (ii) an exposed surface that is not in contact with the substrate (or primer) where these surfaces bear different amounts of first particles, second particles, or both first and second particles. In some embodiments the exposed surface can have a greater amount of first and/or second particles on, at, or adjacent to the exposed surface, compared to the amount of first and/or second particles at or adjacent to the surface of the coating that is in contact with the substrate (or primer). In one embodiment the coatings have a greater amount of second particles on, at, or adjacent to the exposed surface than the surface of the coating that is in contact with the substrate (or primer). In embodiments where a greater amount of first and/or second particles may be present at the exposed surface, the coatings may be considered composite coatings.

The amount of particles in any portion of a coating may be assessed by any means known in the art including, but not limited to, microscopy or electron microscopy. Using those techniques on cross or oblique sections of coatings, the amount (e.g., the number) of particles can be determined. In addition, where it is possible to remove coatings, or where the substrate permits (e.g., it is transparent), the surfaces can be examined directly using microscopy or electron microscopy to determine the amount of particles present at the exposed surface or adjacent to the substrate.

Embodiments of the coatings described herein are durable in that they can withstand some amount of abrasion without a substantial loss of HP/OP properties. To provide an endpoint for the loss of superhydrophobic (SH) behavior as a result of abrasion testing, substantially planar abraded surfaces are tested for their propensity to shed water droplets at an indicated angle of incline (5 degrees unless indicated otherwise). Typically, twenty droplets are placed on the surface to be assessed, which is inclined at the desired angle. The end of SH behavior is indicated when more than half (ten or more drops) stay in place. While such measurements provide a consistent endpoint, a skilled artisan will understand that, even when the endpoint is reached, the abraded surfaces may still be quite hydrophobic, e.g., having water contact angles greater than 130° or 140° in many instances.

Resistance to abrasion may be measured using any method known in the art including, but not limited to, mechanized or manual assessment with a Taber abrasion-testing instrument (e.g., a Taber “Abraser”) or a Crockmeter. Alternatively, a manual measure used to assess the durability of surfaces is a glove rub (GR) test. Each of those tests is described in more detail below.

For the purpose of this application, wherever Taber testing results are recited, the tests are conducted on a Taber Model 503 instrument using CS-0 or CS10 wheels with 250 g or 1,000 g loads as indicated. Unless indicated otherwise, a load of 1,000 g was employed, and tests were conducted at room temperature at a speed of 95 rpm.

Where resistance to the loss of HP is measured with a Crockmeter, a motorized American Association of Textile Chemists and Colorists (AATCC) CM-5 Crockmeter is employed. The finger of the Crockmeter is fitted with a 14/20 white rubber septum having an outside diameter of 13 mm and an inside diameter of 7 mm with a contact surface area of 94 mm2 (Ace Glass, Inc., Vineland, N.J., Catalog No. 9096-244). The septum is brought into contact with the coating with a force of 9N (Newtons). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20 droplets) to run (roll) off when the surface is inclined at 5 degrees from horizontal. Abrasion resistance may also be measured using a manually operated AATCC Crockmeter.

Although an absolute correlation between Taber Abraser Testing, Crockmeter testing, and glove-rub testing is not provided, the manual glove-rub test is useful as an indication of the durability of the coated surface and its ability to be handled. Coatings applied to primed surfaces incorporating rigid particles (e.g., EXTENDO SPHERES) typically give a ratio of about 4.5 glove rubs/Taber Abraser cycles (250 g load) with CS-0 wheels and a ratio of about 7.5 glove rubs/Taber cycles with CS-10 wheels. Coatings incorporating flexible first particles (e.g., black rubber particles) typically give a ratio of about 7.6 glove rubs/Taber Abraser cycles (250 g load) with CS-0 wheels and a ratio of about 12.9 with CS-10 wheels. Results are given below for coatings of several thicknesses, where the thickness measurement includes the thickness of the primer layer. The number of strokes observed in Crockmeter testing is generally about one fourth of the number of “glove rubs” observed in the manual glove rub testing.

Nearly Transparent Coating with Clear Hollow Rigid Thermoplastic First Particles

CS-0 Wheel CS-10 Wheel Ratio Ratio Approximate GR/ GR/ Glove Rubs Thickness Taber Taber Thickness Taber Taber to loss of SH (mils) Cycles cycle (mils) Cycles cycle 500 1.1 130 3.8 1 60 8.3 500 2.1 100 5.0 2 70 7.1 500 3.5 110 4.5 3.5 60 8.3 500 4 110 4.5 4.5 80 6.3

Nontransparent Coating with Flexible Black Rubber First Particles

CS-0 Wheel CS-10 Wheel Ratio Ratio Approximate GR/ GR/ Glove Rubs Thickness Taber Taber Thickness Taber Taber to loss of SH (mils) Cycles cycle (mils) cycles cycle 700 2.7 100 7.0 2.6 60 11.7 700 4.9 90 7.8 4.8 50 14 700 7.5 90 7.8 7.2 50 14 700 9.5 90 7.8 8.5 60 11.7

In addition to resisting the loss of HP/OP properties from abrasion, the compositions provided herein also provide durability in the form of resistance to other conditions. The coatings also resist loss of those properties when subject to:

    • Submersion in water (the duration a coating resists wetting at different depths in water);
    • Flowing water (the ability of a coating or surface treatment to resist the impact of flowing water such as a shower of water);
    • Exposure to liquids other than water (chemical durability and resistance to acids, alkalis, salts, and certain organic solvents such as alcohols);
    • Ultraviolet (UV) radiation;
    • Boiling water; and
    • Salt water, in the form of immersion, spray, or fog.

The elastomer-based coatings described herein have a variety of properties in addition to resisting the loss of HP/OP from abrasion including, but not limited to, resisting ice formation and/or adherence on the coating and flexibility over a wide range of temperatures (e.g., −35° C. to 205° C.).

In one embodiment, the HP/OP elastomeric coatings comprising plastic, glass or rubber first particles (e.g., EXPANCEL spheres or micronized rubber) have a relative electrical permittivity at 100 MHz from about 0.2 to about 4 at about 22° C. (e.g., a permittivity from about 0.2 to about 1, from about 1 to about 2, from about 2 to about 3, or from about 3 to about 4) as measured by ASTM D150 using a single 0.11 mm thick film, or three layers of 0.11 mm film to achieve a 0.33 mm thickness.

In addition to their other properties, the HP/OP coatings described herein can be described by their characteristic roughness that may be measured by any means known in the art. In some embodiments, the surface roughness is measured using a Mahr Pocket Surf PS1 (Mahr Federal Inc., Providence, R.I.). The roughness of a surface can be expressed using a variety of mathematical expressions including, but not limited to, its Arithmetical Mean Roughness and its Ten-Point Mean Roughness.

The coatings resulting from the application of the compositions provided for herein have in some embodiments a surface with an arithmetical mean roughness in a range selected from: greater than about 3 microns to about 4 microns; from about 4 microns to about 6 microns; from about 4 microns to about 8 microns; from about 4 microns to about 12 microns; from about 4 microns to about 20 microns; from about 5 microns to about 10 microns; from about 5 microns to about 12 microns; from about 5 microns to about 20 microns; from about 6 microns to about 10 microns; or from about 6 microns to about 14 microns.

In other embodiments, the coatings, resulting from the application of the compositions provided for herein, have in some embodiments a surface with a ten point mean roughness selected from: from about 7 microns to about 60 microns; from about 7 microns to about 70 microns; from about 7 microns to about 80 microns; from about 7 microns to about 100 microns; from about 8 microns to about 60 microns; from about 8 microns to about 80 microns; from about 8 microns to about 100 microns; from about 12 microns to about 60 microns; from about 12 microns to about 100 microns; from about 15 microns to about 60 microns; or from about 15 microns to about 100 microns.

A more complete discussion of the coating compositions, their methods of preparation and application, and their properties follows. A skilled artisan will understand that the description and examples set forth herein are provided as guidance, and are not limiting to the scope of the methods and compositions described herein.

1.0 Definitions

For the purposes of this disclosure, a HP material or surface is one that results in a water droplet forming a surface contact angle exceeding about 90° at room temperature (which is about 18° C. to about 23° C. for purposes of this disclosure). Similarly, for the purposes of this disclosure, a SH material or surface is one that results in a water droplet forming a surface contact angle exceeding 150° but less than the theoretical maximum contact angle of 180° at room temperature. As SH surface behavior encompasses water contact angles from about 150° to about 180°, SH behavior is considered to include what is sometimes referred to as “ultrahydrophobic” behavior. For the purpose of this disclosure the term hydrophobic (HP) shall include superhydrophobic (SH) behavior unless stated otherwise, and any and all embodiments, claims, and aspects of this disclosure reciting hydrophobic behavior may be limited to either hydrophobic behavior that is not superhydrophobic (contact angles from 90°-150°) or superhydrophobic behavior (contact angles of 150° or greater).

For the purposes of this disclosure an OP material or surface is one that results in a droplet of light mineral oil forming a surface contact angle exceeding about 90°. Similarly, for the purposes of this disclosure a SOP material or surface is one that results in a droplet of light mineral oil forming a surface contact angle exceeding 150° but less than the theoretical maximum contact angle of 180° at room temperature. For the purpose of this disclosure the term oleophobic (OP) shall include superoleophobic (SOP) behavior unless stated otherwise, and any and all embodiments, claims, and aspects of this disclosure reciting oleophobic behavior may be limited to either oleophobic behavior that is not superoleophobic (contact angles from) 90°-150° or superoleophobic behavior (contact angles of 150° or greater).

Anti-icing (AI) surfaces are surfaces that are resistant to ice formation and/or accretion in dynamic testing, or that prevent ice that forms from adhering to the surface (i.e., ice that forms can be removed with less force than from untreated metal surfaces).

For the purpose of this disclosure, HP/OP denotes hydrophobic behavior (including superhydrophobic behavior) or properties and/or oleophobic (including superoleophobic behavior) behavior or properties. HP/OP behavior may be understood to include anti-icing properties and any embodiment recited as having HP/OP behavior may be recited as having anti-icing properties, unless stated otherwise in this disclosure.

Durability, unless stated otherwise, refers to the resistance to loss of superhydrophobic or superoleophobic properties due to mechanical abrasion.

Alkyl as used herein denotes a linear or branched alkyl radical or group. Alkyl groups may be independently selected from C1 to C20 alkyl, C2 to C20 alkyl, C4 to C20 alkyl, C6 to C18 alkyl, C6 to C16 alkyl, or C6 to C20 alkyl. Unless otherwise indicated, alkyl does not include cycloalkyl.

Cycloalkyl as used herein denotes a cyclic alkyl radical or group. Cycloalkyl groups may be independently selected from: C4 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C5 to C18 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C18 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; or C6 to C16 alkyl comprising one, two or more C4 to C8 cycloalkyl functionalities. Where two or more cycloalkyl groups are present they may be present as fused rings or in a spiro configuration. One or more hydrogen atoms of the cycloalkyl groups may be replaced by fluorine atoms.

Haloalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by halogen atoms. Halogen atoms may be limited to chlorine or fluorine atoms in haloalkyl groups.

Fluoroalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by fluorine atoms.

Perfluoroalkyl as used herein denotes an alkyl group in which fluorine atoms have been substituted for each hydrogen atom present in the alkyl group.

Rubber phase as used herein denotes a portion of styrene block copolymers having synthetic rubber attributes. In SBCs rubber phases are typically flanked or joined by polystyrene units that may function as end blocks. Typical synthetic rubbers include an isoprenoid or a polyolefin such as polybutadiene, polyisoprene, or ethylene/butylene.

For the purpose of this disclosure, unless stated otherwise, when content is indicated as being present on a “weight basis,” the content is measured as the percentage of the weight of the components indicated to the total weight of the composition (including recited/required solvents). Optional solvents are not included in the weight of the composition.

“Colorant” as used herein is a material added to the coating composition to cause a change in color, i.e., become colored. Colorants can be dyes which bind at least a portion of the material to be colored, insoluble pigments that are dispersed in at least a portion of the material to be colored, colored chemicals that are dispersed or dissolved in at least a portion of the material to be colored, or inks, which may be any combination of dyes, pigments and colored chemicals. In some embodiments, first or second particles may comprise colorants or may be prepared from materials that are colored.

2.0 Elastomeric Binders

Elastomers are polymers that are elastic (i.e., have viscoelasticity), and which generally have a low Young's modulus and high yield strain compared with other materials. Elastomers may be thermoset materials, which require vulcanization (e.g., covalent crosslinking) during curing, or thermoplastic materials (thermoplastic elastomers), in which the crosslinks are weaker dipole or hydrogen bonds.

Elastomeric binder systems employed to make elastomeric coatings (elastomer based coatings) having HP/OP properties are typically comprised of copolymers of polystyrene and a rubber (a rubber phase) known as Styrenic Block Copolymers (SBCs). SBCs are a class of thermoplastic elastomers consisting of a two-phase structure of hard polystyrene end blocks and soft rubber midblocks. The polystyrene end blocks associate to form domains that lock the molecules into place without vulcanization. Since this is a reversible process, the material can be processed on conventional thermoplastic equipment or dissolved in a suitable solvent for application as a coating. Polystyrene end blocks impart strength and the rubber phase midblocks impart elasticity. FIG. 1 shows a schematic of a typical SBC copolymer, where the rubber phase is linked to the polystyrene phase. In SBCs the rubber phase can be a synthetic rubber such as, for example, ethylene/butylene (EB e.g., —[CH2CH2CH2CH2CH(CH2CH3)CH2]n—) ethylene/propylene (EP, e.g., —[CH2CH2CH(CH3)CH2]n—), polybutadiene, polyisoprene, or polyolefin (see FIG. 1). FIG. 2 shows that the copolymers can have various spatial orientations such as linear, radial, or star like.

SBC compositions, when used as a base coating, produce highly durable HP/OP coatings as measured by a variety of different methods, including those described herein. Moreover, the coatings are compatible with and adhere tightly to a broad range of materials, permitting a large number and type of objects and substrates to be coated.

SBC elastomers offer a variety of advantages and properties for the preparation of base coats used to prepare HP/OP coatings. As they can be dissolved/suspended in a number of solvents, they may be formulated into compositions that are amenable to application using standard equipment including conventional spray guns and aerosol canisters (e.g., an aerosol spray container comprises a valve assembly, a dip tube, and an actuator). As a base coating composition for use in a multi-step (e.g., two-step, three-step, four-step . . . ) HP/OP coating process, SBC elastomer formulations offer flexibility during application and in the application of the second component of the HP/OP coating process. The elastomeric first component can be applied to form a base coating and the second component, which comprises second particles whose application renders the coating HP/OP, can be applied to the base coating when it is wet, tacky, dry to touch, or even completely dried and cured.

A variety of SBCs may be employed to prepare the HP/OP coatings described herein. In an embodiment the SBC-containing binder compositions comprise a rubber phase comprising ethylene/butylene (EB e.g., —[CH2CH2CH2CH2CH(CH2CH3)CH2]n—). In another embodiment, the SBC-containing binder compositions comprise a rubber phase comprising (poly)butadiene (e.g., styrene-butadiene-styrene (SBS) elastomeric polymers. In other embodiments, the rubber phases of suitable SBC polymer compositions comprise ethylene/propylene (EP e.g., —[CH2CH2CH(CH3)CH2]n—), polybutadiene, polyisoprene or polyolefin. In another embodiment, binder compositions used for the preparation of durable HP/OP coatings comprise a mixture of any two, three, or four SBC elastomers having rubber phases comprising: ethylene/butylene butadiene, ethylene/propylene polybutadiene, polyisoprene or polyolefin.

Elastomeric coatings with an elongation at break that is greater than about 500%, 600%, 700%, 750%, or about 800% are generally desirable as binders for preparing the durable HP/OP coatings (e.g., coatings prepared with “Kraton G” elastomers), although elastomeric coating compositions with lower elongation at break values can be employed. The rubber component in the SBC copolymers of such elastomer compositions typically varies from about 69% to about 87%, but the rubber component may be about 65% to about 90%, about 67% to about 75%, about 75% to about 87%, or about 70% to about 80% (based on the weight of the SBC copolymer(s)). Among the commercially available SBC elastomer compositions that can be employed as binders for the HP/OP coating compositions described herein are those developed by KRATON® Polymers U.S. LLC. (Houston, Tex.). Various elastomeric polymers, compositions, and their properties are described, for example, in the KRATON® Polymers' Fact Sheet K0151 Americas available on the world wide web at: docs.kraton.com/kraton/attachments/downloads/82021AM.pdf.

In one embodiment the elastomers employed as binders may be ethylene butylene (EB) elastomeric polymers which have styrene domains (endblocks) and ethylene/butylene rubber phase midblocks. Such EB elastomers may comprise about 65% to 75% rubber phase midblocks, (e.g., about 65%, about 70% or about 75% rubber phase midblocks) and have an elongation at break of 500 to 800% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Some properties of KRATON® EB elastomers are detailed in Table 1.

In one embodiment the elastomers employed as binders may be styrene-butadiene-styrene (SBS) elastomeric polymers. Such SBS elastomers comprise about 60% to 74% butadiene by weight, and have an elongation at break of from 800 to 900% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Some properties of KRATON® styrene-butadiene-styrene (SBS) elastomeric polymers (KRATON® D SBS) are detailed in Table 2.

TABLE 1 EB Based Polymers* G1633 G1650 G1651 G1652 G1654 G1657 G1660 G1726 (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) Property Linear Linear Linear Linear Linear Linear Linear Linear Tensile Strength, 35 >28 31 >28 23 32 2 MPa1,2 300% Modulus 5.6 4.8 2.4 5.5 MPa1,2 Elongation at 500 >800 500 800 750 800 200 Break, %1,2 70 70 70 70 47 68 70 Specific Gravity 0.91 0.91 0.91 0.91 0.91 0.89 0.91 0.91 Brookfield Viscosity, cps at 25° C. 25% w4 8,000 >50,000 1,800 >50,000 4,200 8,000 200 10% w4 50 1,800 30 410 65 50 10 —Melt Index g/10 min. <1 <1 <1 <1 <1 <8 <1 65 (5 kg) 200° C. 230° C. <1 <1 <1 5 <1 22 <1 <100 Styrene/Rubber 30/70 30/70 30/70 30/70 33/67 13/87 31/69 30/70 Ratio Fluffy Powder/ Powder/ Powder/ Powder/ Dense Powder Dense Physical Form Crumb Fluffy Fluffy Fluffy Fluffy Pellet Pellet Crumb Crumb Crumb Crumb Diblock, % <1 <1 <1 <1 29 70 Comments FDA FDA FDA FDA FDA FDA FDA FDA *polymers recited in this table supplied by KRATON ® 1ASTM method D412 tensile tester grip separation speed 10 in./min. 2Typical properties determined on film cast from toluene solution. (3) Typical values on polymer compression molded at 177° C. (4) Neat Polymer concentration in toluene

TABLE 2 SBS Elastomeric Polymers* D0243 (SBS) D1101 D1102 D1116 D1118 D1133 D1152 D1153 Di- (SBS) (SBS) (SBS) (SBS) (SBS) (SBS) (SBS) Property block Linear Linear Radial Diblock Linear Linear Linear Tensile Strength, 2 32 32 32 2 21 32 28 MPa1.2 300% Modulus, 1.0 2.8 2.8 2.4 1.2 2.1 2.8 2.9 MPa1.2 Elongation at 880 880 900 600 800 900 800 Break, %1.2 Set at Break, 10 10 10 40 20 10 %1.2 Hardness, 70 69 66 63 64 74 66 70 Shore A (10 sec.)3 Specific Gravity 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.96 Brookfield 315 4,000 1,100 9,000 630 4,800 1,000 1,650 Viscosity, cps at 25° C. (25% w) Brookfield 2,500 420 Viscosity, cps at 25° C. (15% w) Melt Index 20 <1 14 <1 10 <1 8 3 g/10 min. (200° C./5 kg) Styrene/Rubber 33/67 31/69 28/72 23/77 33/67 36/64 29/71 Ratio Physical Form Porous Porous Porous Porous Porous Porous Porous Porous Pellet Pellet Pellet Pellet Pellet Pellet Pellet Pellet Powder Powder Powder Powder Diblock, % 75 16 17 16 78 34 15 <1 D1155 D1184 D1186 D1189 D1191 D1192 DX405 (SBS) (SBS) (SBS) (SBS) (SBS) (SBS) (SBS) Property Linear Radial Radial Radial Radial Linear Linear Tensile Strength, 28 28 25 MPa1.2 300% Modulus, 2.9 5.5 3 MPa1.2 Elongation at 800 820 800 Break, %1.2 Set at Break, 10 10 %1.2 Hardness, 87 68 74 68 68 66 53 Shore A (10 sec.)3 Specific Gravity 0.94 0.94 0.94 0.94 0.94 0.94 0.94 Brookfield 600 >20,000 TBD5 >20,000 1,500 v Viscosity, cps at 25° C. (25% w) Brookfield 1,100 1,200 TBD 1,100 2,000 Viscosity, cps at 25° C. (15% w) Melt Index 14 <1 <1 <1 <1 <1 3 g/10 min. (200° C./5 kg) Styrene/Rubber 40/60 31/69 30/70 31/69 33/69 30/70 24/76 Ratio Physical Form Porous Porous Porous Porous Porous Porous Porous Pellet Pellet Pellet Pellet Pellet Pellet Pellet Powder Powder Powder Powder Powder Diblock, % <1 16 10 16 18 <1 <1 *polymers recited in this table supplied by KRATON ® 1ASTM method D412 grip separation speed 10 in./min. 2Typical properties determined on film cast from toluene solution 3Typical values on polymer compression molded at 177° C. 4Neat polymer concentration in toluene 5TBD—To Be Determined

In another embodiment the elastomers employed as binders may be maleated styrene-ethylene/butylene-styrene (SEBS) elastomeric polymers. Such maleated SEBS elastomers comprise about 65% to about 90% (e.g., about 70% or about 87%) rubber midblocks by weight, and have an elongation at break of 500 to 750% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Maleated SEBS polymers typically have from about 0.8% to about 2.2% (e.g., 0.9% to 2.1% or 1% to 1.7%) of substitution. Some properties of KRATON® styrene-ethylene/butylene-styrene (SEBS) elastomeric polymers (KRATON® FG Polymers) are detailed in Table 3.

TABLE 3 Maleated SEBS Polymers FG Polymer Grades* FG1901 (SEBS) FG1924 (SEBS) Property Linear Linear Tensile Strength, MPa1 34 23 300% Modulus, MPa1 Elongation at Break, %1 500 750 Hardness, Shore A (10 sec)2 71 49 Specific Gravity 0.91 0.89 Brookfield Viscosity, 25% w 5,000 19,000 (toluene solutions) cps at 25° C. 110 270 10% w Melt Index g/10 min (5 kg) 200° C. 5 11 230° C. 22 40 Styrene/Rubber Ratio 30/70 13/87 Physical Form Dense Pellet Dense Pellet Comments FDA3 1.0% bound 1.7% bound functionality functionality *polymers recited in this table supplied by KRATON ® 1ASTM method D412-tensile tester grip separation speed 10 in./min. 2Typical values on polymer compression molded at 177° C.

In one embodiment the elastomeric binder comprises triblock copolymers of styrene and ethylene/butylene with a polystyrene content of: about 8% to about 14%, about 12% to about 20%, about 18% to about 28%, about 22% to about 32%, about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36% or mixtures of any two or more, three or more, or four or more of such triblock copolymers. Any one or more of such triblock copolymers may optionally comprise 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% of bound maleic anhydride (maleated copolymers) and may be linear triblock copolymers. In one such embodiment the binder comprises two different maleated triblock copolymers of styrene and ethylene/butylene with a polystyrene: a first triblock copolymer of styrene and ethylene/butylene with a polystyrene having 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4,% or 0.7% to 1.3%) substitution by maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% maleic anhydride free); and a second triblock copolymer of styrene and ethylene/butylene with a polystyrene having 1.1% to 2.5% (e.g., 1.3 to 2.3 or 1.4 to 2.4%) substitution by maleic anhydride by weight of the second triblock copolymer. In such an embodiment the first and/or second triblock copolymers may be linear or branched copolymers (e.g., arborols or dendrimers), and the second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is about 4:1 to about 5.5:1, about 5:1 to about 6:1, or about 5.5:1 to about 6.5:1).

Persons skilled in the art will also recognize other elastomeric binders that may be used in place of or in addition to the elastomeric binders described in this disclosure.

In addition to comprising elastomeric polymers (e.g., SBCs), first particles and solvents, elastomeric binder systems that serve as first components optionally comprise a tackifier. Tackifiers may be present in any suitable amount, including in a range selected from about or from about 0.5% to about 30%; 1% to about 5%, from about 2% to about 8%, from about 3% to about 7%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, or from about 25% to about 30%. Some suitable tackifiers, including totally synthetic (e.g., members of the Regalrez® family from Eastman Chemical) or modified resins or rosins are set forth in the section describing primers that follows.

First components, and primers discussed below, may further comprise light stabilizers and UV absorbers (UV stabilizers), fire retardants, and/or antioxidants. For example, Tinuvin® light stabilizing products (e.g., Tinuvin 328 and/or Tinuvin 770DF) produced by BASF®, and/or IRGANOX® antioxidant products (e.g., phenolic or hindered phenolic antioxidants such as IRGANOX® 1520 or IRGANOX® 150L) produced by BASF® may be included in the first component binder composition used to set down the base coat or in a primer. Where light/UV stabilizers, UV absorbers, fire retardants, and/or antioxidants are added to either or both of the first component or the primer, they are generally added in an amount less than 2% by weight (e.g., about 1%, 0.75%, 0.5%, 0.4%, 0.3%, 0.2% 0.1%, 0.075%, 0.06%, or 0.05%, or in a range selected from about 0.01% to about 2%, from about 0.05% to about 1.0%, or from about 0.75% to about 0.5% by weight), and take the place of a corresponding weight of any solvents that may be present.

In addition to the ease of application, elastomer based coatings that do not contain a colorant or significant amounts of opaque particles are nearly transparent to visible light. Typical light transmission (Total Luminous Transmittance or “TLT”) of an elastomeric binder coating prepared using SBCs having 15 micron thickness is approximately 90% (about 85% to about 92%) with a haze of about 61% (about 55% to about 65%). HP/OP coatings without added colorants that are about 25 microns thick prepared with clear first particles (e.g., EXPANCEL particles or other plastic or glass particles or hollow spheres) and fumed silica second particles treated with a silane (silanizing agent) can be nearly transparent. Such HP/OP coatings typically have a TLT of about 80% (about 75% to about 85%) with a haze of about 90% (about 85% to about 90%) as measure by ASTM D1003-11. For the measurements the instrument was calibrated against air and glass sample blanks and given a TLT of about 90% to about 91% and a haze of about 0.2%. Excluding or removing fine particulate materials such as talc used to increase the properties of commercially available elastomer compositions (e.g., flowability of bulk particulates) may increase TLT and haze values. Such fine particulates used in bulk elastomers may be removed by washing with a suitable solvent or by omitting the material from the elastomer compositions when they are prepared.

A variety of solvents may be employed to dissolve elastomeric binders for the preparation of coating compositions used to prepare the base coat of HP/OP coatings described herein. In some embodiments, the copolymers are dissolved in solvents selected from: methyl ethyl ketone (MEK), ethyl acetate, toluene, 1-chloro-4-(trifluoromethyl)-benzene, xylene or mixed xylenes (including technical grade xylenes), isopropyl acetate, 1,1,1,-trichloroethane, methyl isobutyl ketone (MIBK), tertbutyl acetate (t-butyl acetate), cyclohexane, methyl-cyclohexane, or mixtures comprising any two, three, four or more thereof. In one embodiment the solvent(s) are selected from those found in the solubility chart shown in FIG. 3, or mixtures of any two, three, four or more thereof. In another embodiment, the solvent comprises greater than 50%, 60%, 70%, 80%, 90%, 95%, 98% or 99% of a xylene (1,2-xylene, 1,3-xylene, or 1,4-xylene) or a mixture of any two or all three xylenes and optionally ethyl benzene (e.g., a technical grade of xylene comprising 34%-47% 1,3-xylene, 9%-21% 1,4-xylene, 4%-16% 1,2-xylene, 9%-10% ethylbenzene, 0%-1% toluene, and 0%-1% benzene).

In any of the foregoing embodiments, particularly where coatings are to be nearly transparent, the elastomeric binder components comprise at most insubstantial amounts (e.g., less than about 0.5% by weight of the polymers present in the binder) of colorants or particulates that are insoluble in solvents that dissolve the elastomeric polymers and/or that would block the transmission of visible light. One source of such particulates is materials added for the flowability of bulk polymers in the form of powders, pellets, or flakes (e.g., talc added to bulk SBCs).

3.0 Particles Employed In Hp/Op Oleophobic Coatings

3.1 First Particles

Embodiments of the coatings disclosed herein may comprise particles that are added to the binder compositions to improve the mechanical properties of the coating, e.g., the durability of the HP/OP coatings. A wide variety of such particles, which are also known as extenders or fillers, may be added to the binders. Those particles are denoted herein as “first particles” because the coatings described herein may have one or more additional types of particles. Such first particles that can be employed in the HP/OP coatings described herein include, but are not limited to, particles comprising: wood (e.g., wood dust), glass, metals (e.g., iron, titanium, nickel, zinc, tin), alloys of metals, metal oxides, metalloid oxides (e.g., silica), plastics (e.g., thermoplastics), carbides, nitrides, borides, spinels, diamonds, and fibers (e.g., glass fibers).

Numerous variables may be considered in the selection of first particles. These variables include, but are not limited to, the effect the first particles have on the resulting coatings, their size, their hardness, their compatibility with the binder, the resistance of the first particles to the environment in which the coatings will be employed, and the environment the first particles must endure in the coating and/or curing process, including resistance to temperature and solvent conditions. In addition, if light is used for curing the coatings or they are intended for extended exposure to sunlight, the particles must be resistant to the required light exposure conditions (e.g., resistant to UV light employed in curing or sunlight).

In embodiments described herein, first particles have an average size in a range selected from about 1 micron (μm) to about 300 μm or from about 30 μm to about 225 μm. Within the broader ranges, embodiments include ranges of first particles having an average size of from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 μm to about 25 μm, from about 5 μm to about 25 μm, from about 25 μm to about 50 μm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, and from about 225 μm to about 250 μm. Also included within this broad range are embodiments employing particles in ranges from about 10 μm to about 100 μm, from about 10 μm to about 200 μm, from about 20 μm to about 200 μm, from about 30 μm to about 50 μm, from about 30 μm to about 100 μm, from about 30 μm to about 200 μm, from about 30 μm to about 225 μm, from about 50 μm to about 100 μm, from about 50 μm to about 200 μm, from about 75 μm to about 150 μm, from about 75 μm to about 200 μm, from about 100 μm to about 225 μm, from about 100 μm to about 250 μm, from about 125 μm to about 225 μm, from about 125 μm to about 250 μm, from about 150 μm to about 200 μm, from about 150 μm to about 250 μm, from about 175 μm to about 250 μm, from about 200 μm to about 250 μm, from about 225 μm to about 275 μm, or from about 250 μm to about 300 μm.

First particles may be incorporated into the elastomer binders at various ratios depending on the binder composition and the first particle's properties. In some embodiments, the first particles may have a content range selected from about 0.01% to about 60% or more by weight. Included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 0.02% to about 0.2%, from about 0.05% to about 0.5%, from about 0.075% to about 0.75%, from about 0.1% to about 1%, from about 0.5% to about 2.5%, from about 2% to about 5%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, from about 25% to about 30%, from about 30% to about 35%, from about 35% to about 40%, from about 40% to about 45%, from about 45% to about 50%, from about 50% to about 55%, from about 55% to about 60%, and greater than 60%. Also included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 4% to about 30%, from about 5% to about 25%, from about 5% to about 35%, from about 10% to about 25%, from about 10% to about 30%, from about 10% to about 40%, from about 10% to about 45%, from about 15% to about 25%, from about 15% to about 35%, from about 15% to about 45%, from about 20% to about 30%, from about 20% to about 35%, from about 20% to about 40%, from about 20% to about 45%, from about 20% to about 55%, from about 25% to about 40%, from about 25% to about 45%, from about 25% to about 55%, from about 30% to about 40%, from about 30% to about 45%, from about 30% to about 55%, from about 30% to about 60%, from about 35% to about 45%, from about 35% to about 50%, from about 35% to about 60%, from about 40% to about 60%, from about 0.01% to about 5%, from about 0.03% to about 1%, from about 0.05% to about 0.15%, from about 0.1% to about 2.5%, from about 0.2% to about 5%, from about 0.05% to about 10%, from about 0.1% to about 10%, from about 0.05% to about 15%, or from about 0.05% to about 20%, on a weight basis.

In those embodiments where it is desirable to have coatings that are transparent, substantially transparent, or colored but transparent, it is generally desirable to employ particles that are transparent. In one set of embodiments, plastic (e.g., thermoplastic) microspheres are employed in the binder systems to develop surface texture. In another set of embodiments, glass microspheres are employed in the binder systems to develop surface texture.

In one embodiment, substantially spherical thermoplastic particles are added to the elastomeric binder composition to develop surface texture (e.g., EXPANCEL microspheres or EXPANCEL particles). Such microspheres consist of a polymer shell encapsulating a gas. The average diameter of these hollow spheres typically ranges from 6 to 45 μm and have a density of 1000 to 1300 kg/m3 (8.3-10.8 lbs/US Gallon). Upon heating, the microspheres expand and the volume of the microspheres can increase more than 40 times (with the diameter changing, for example, from 10 to 40 μm), resulting in a density below 30 kg/m3 (0.25 lbs/US Gallon). Typical expansion temperatures range from 80 to 190° C. (176-374° F.). When heating the microspheres the pressure of the gas inside the shell increases and the thermoplastic shell softens, resulting in a dramatic increase of the volume of the microspheres. Cooling the microspheres results in the shell stiffening again and produces lighter (lower density) expanded microspheres. Some thermoplastic microspheres produced under the EXPANCEL brand (AkzoNobel, distributed by Eka Chemicals, Inc., 2240 Northmont Parkway, Duluth, Ga. 30096, USA) are suitable for use in preparing HP/OP, particularly those that are substantially transparent. See Table 4.

TABLE 4 EXPANCEL particles and properties Density of Main Solid content EXPANCEL types Varieties Description [%] [kg/m3] Unex- EXPANCEL Wet. unexpanded 60-80 1000-1300 panded WU microspheres micro- EXPANCEL Wet. unexpended 60-80 1000-1300 spheres WUF microspheres EXPANCEL Dry, unexpanded >99 ~1000 DU microspheres EXPANCEL Dry, treated, >99 ~1000 OUT unexpanded microspheres EXPANCEL Wet, salted,  40 1200 SL unexpanded microspheres EXPANCEL Wet, unexpanded  44 1200 SLU microspheres EXPANCEL Dry, unexpanded 65 1000 MB microspheres (EXPANCEL) mixed with a matrix, e.g. EVA Ex- EXPANCEL Wet, expanded  15 ~30 panded WE microspheres micro- EXPANCEL Dry, expanded >89 25-70 spheres DE microspheres EXPANCEL Dry, treated, >99 25 DET expanded microspheres

Where HP/OP coatings capable of withstanding higher temperatures are desired, and particularly coatings that are substantially transparent, glass microspheres may be employed in place of thermoplastic microspheres. Such glass microspheres include those produced by 3M™ (St. Paul, Minn.) or Sphere One, Inc. (Chattanooga, Tenn.).

3.1.1 Exemplary Sources of First Particles

First particles may be prepared from the diverse materials described above. Alternatively, first particles may be purchased from a variety of suppliers. Some commercially available first particles that may be employed in the formation of the HP/OP coatings described herein include those in Table 5.

TABLE 5 First Particles Particle First First Particle First Size Crush particle (Filler) First Particle Particle Range Strength Source No. ID Type Details (g/cc) (μm) Color (psi) Location 1 K1 Glass Bubbles GPSa 0.125  30-120 White 250 3M ™j 2 K15 Glass Bubbles GPSa 0.15  30-115 White 300 3M ™j 3 S15 Glass Bubbles GPSa 0.15 25-95 White 300 3M ™j 4 S22 Glass Bubbles GPSa 0.22 20-75 White 400 3M ™j 5 K20 Glass Bubbles GPSa 0.2  20-125 White 500 3M ™j 6 K25 Glass Bubbles GPSa 0.25  25-105 White 750 3M ™j 7 S32 Glass Bubbles GPSa 0.32 20-80 White 2000 3M ™j 8 S35 Glass Bubbles GPSa 0.35 10-85 White 3000 3M ™j 9 K37 Glass Bubbles GPSa 0.37 20-85 White 3000 3M ™j 10 S38 Glass Bubbles GPSa 0.38 15-85 White 4000 3M ™j 11 S38HS Glass Bubbles GPSa 0.38 15-85 White 5500 3M ™j 12 K46 Glass Bubbles GPSa 0.46 15-80 White 6000 3M ™j 13 S60 Glass Bubbles GPSa 0.6 15-65 White 10000 3M ™j 14 S60/HS Glass Bubbles GPSa 0.6 11-60 White 18000 3M ™j 15 A16/ Glass Bubbles Floated 0.16  35-135 White 500 3M ™j 500 Series 16 A20/ Glass Bubbles Floated 0.2  30-120 White 1000 3M ™j 1000 Series 17 H20/ Glass Bubbles Floated 0.2  25-110 White 1000 3M ™j 1000 Series 18 D32/ Glass Bubbles Floated 0.32 20-85 White 4500 3M ™j 4500 Series 19 Expancel 551 Plastic Micro- Dry 0.042 ± 0.004 30-50 AkzoNobeli DE spheres Expanded 40 d42 20 Expancel 551 Plastic Micro- Dry 0.042 ± 0.002 30-50 AkzoNobeli DE 40 d42 ± 2 spheres Expanded 21 Expancel 461 Plastic Micro- Dry  0.07 ± 0.006 15-25 AkzoNobeli DE 20 d70 spheres Expanded 22 Expancel 461 Plastic Micro- Dry  0.06 ± 0.005 20-40 AkzoNobeli DE 40 d60 spheres Expanded 23 Expancel 461 Plastic Micro- Dry 0.025 ± 0.003 35-55 AkzoNobeli DET 40 d25 spheres Expanded 24 Expancel 461 Plastic Micro- Dry 0.025 ± 0.003 60-90 AkzoNobeli DET 80 d25 spheres Expanded 25 Expancel 920 Plastic Micro- Dry 0.030 ± 0.003 35-55 AkzoNobeli DE 40 d30 spheres Expanded 26 Expancel 920 Plastic Micro- Dry 0.025 ± 0.003 35-55 AkzoNobeli DET 40 d25 spheres Expanded 27 Expancel 920 Plastic Micro- Dry 0.030 ± 0.003 55-85 AkzoNobeli DE 80 d30 spheres Expanded 28 H50/10000 Glass Bubbles Floated 0.5 20-60 White 10000 3M ™j EPX Series 29 iMK Glass Bubbles Floated 0.6  8.6-26.7 White 28000 3M ™j Series 30 G-3125 Z-Light CMb 0.7  50-125 Gray 2000 3M ™j Spheres ™ 31 G-3150 Z-Light CMb 0.7  55-145 Gray 2000 3M ™j Spheres ™ 32 G-3500 Z-Light CMb 0.7  55-220 Gray 2000 3M ™j Spheres ™ 33 G-600 Zeeo- CMb 2.3  1-40 Gray >60000 3M ™j Spheres ™ 34 G-800 Zeeo- CMb 2.2  2-200 Gray >60000 3M ™j Spheres ™ 35 G-850 Zeeo- CMb 2.1  12-200 Gray >60000 3M ™j Spheres ™ 36 W-610 Zeeo- CMb 2.4  1-40 White >60000 3M ™j Spheres ™ 37 SG Extendo- HSc 0.72  30-140 Gray 2500 Sphere Onef sphere ™ 38 DSG Extendo- HSc 0.72  30-140 Gray 2500 Sphere Onef sphere ™ 39 SGT Extendo- HSc 0.72  30-160 Gray 2500 Sphere Onef sphere ™ 40 TG Extendo- HSc 0.72  8-75 Gray 2500 Sphere Onef sphere ™ 41 SLG Extendo- HSc 0.7  10-149 Off 3000 Sphere Onef sphere ™ White 42 SLT Extendo- HSc 0.4 10-90 Off 3000 Sphere Onef sphere ™ White 43 SL-150 Extendo- HSc 0.62 70 Cream 3000 Sphere Onef sphere ™ 44 SLW-150 Extendo- HSc 0.68  8-80 White 3000 Sphere Onef sphere ™ 45 HAT Extendo- HSc 0.68  10-165 Gray 2500 Sphere Onef sphere ™ 46 HT-150 Extendo- HSc 0.68  8-85 Gray 3000 Sphere Onef sphere ™ 47 KLS-90 Extendo- HSc 0.56  4-05 Light 1200 Sphere Onef sphere ™ Gray 48 KLS-125 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef sphere ™ Gray 49 KLS-150 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef sphere ™ Gray 50 KLS-300 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef sphere ™ Gray 51 HA-300 Extendo- HSc 0.68  10-146 Gray 2500 Sphere Onef sphere ™ 52 XI0M 512 Thermo- MPRd 0.96  10-100 White 508 XIOM plastic Corp.k 53 XIOM 512 Thermo- MPRd 0.96  10-100 Black 508 XIOM plastic Corp.k 54 CORVEL ™ Thermo- Nylon 1.09 44-74 Black ROHM & Black 78-7001 plastic Powder HASSg Coating 55 Micro-glass Fibers MMEGFe 1.05 16X120 White Fibertech 3082 56 Micro-glass Fibers MMEGFe 0.53 10X150 White Fibertech 9007D Silane- Treated 57 Tiger Drylac Polyester Tiger Series 49 crosslinked Drylac with TGIC USA, Inc.l (triglycidyl isocyanurate) 58 Soft- Rubber based 90, 180, or Various SoftPoint Sand ® 300 colors Indust. Copley, OH aGPS—general purpose series bceramic microspheres chollow spheres dmodified polyethylene resins emicroglass milled E-glass filaments fChattanooga, TN gPhiladelphia, PA hBridgewater, MA iDistributed by Eka Chem., Inc., Duluth, GA jSt. Paul, MN kWest Babylon, NY lSt. Charles, IL

3.2 Second Particles

The coatings disclosed herein employ second particles (e.g., nanoparticles), which are particles that bear, or are associated with, hydrophobic and/or oleophobic compounds or moieties (i.e., moieties that are covalently or non-covalently bound). The hydrophobic moieties can be introduced by treating the particles to include moieties such as siloxanes, fluorinated hydrocarbons (e.g., partly or fully fluorinated hydrocarbons) or nonfluorinated hydrocarbons. In an embodiment, second particles suitable for the preparation of elastomer-based HP/OP coatings have a size from about 1 nanometer (nm) to about 25 μm and are capable of binding covalently to one or more chemical moieties (groups or components) that provide the second particles, and the coatings into which they are incorporated, hydrophobicity, and when selected to include fluoroalkyl groups, hydrophobicity and oleophobicity.

In one embodiment the second particles have a surface area over 100, 150, 200, 250, or 300 square meters per gram (m2/g) of particulate. In another embodiment, where the particles are fumed silica, the surface area can be about or greater than 150, 175, 200, 225 or 250 m2/g.

Second particles having a wide variety of compositions may be employed in the durable HP/OP coatings described and employed herein. In some embodiments the second particles will be particles comprising metal oxides (e.g., aluminum oxides such as alumina, zinc oxides, nickel oxides, zirconium oxides, iron oxides, or titanium dioxides), or oxides of metalloids (e.g., metalloid oxides such as oxides of B, Si, Sb, Te and Ge) such as glass, silica (e.g., fumed silica), silicates, aluminosilicates, or particles comprising combinations thereof.

In some embodiments, the second particles may have an average size in a range selected from about 1 nm up to about 25 μm or more. Included within this broad range are embodiments in which the second particles have an average size in a range selected from: about 1 nm to about 10 nm, from about 10 nm to about 25 nm, from about 25 nm to about 50 nm, from about 50 nm to about 100 nm, from about 100 nm to about 250 nm, from about 250 nm to about 500 nm, from about 500 nm to about 750 nm, from about 750 nm to about 1 μm, from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 nm to about 100 nm, from about 2 nm to about 200 nm, from about 10 nm to about 200 nm, from about 20 nm to about 400 nm, from about 10 nm to about 500 nm; from about 40 nm to about 800 nm, from about 100 nm to about 1 μm, from about 200 nm to about 1.5 μm, from about 500 nm to about 2 μm, from about 500 nm to about 2.5 μm, from about 1 μm to about 10 μm, from about 2 μm to about 20 μm, from about 2.5 μm to about 25 μm, from about 500 nm to about 25 μm, from about 400 nm to about 20 μm, from about 100 nm to about 15 μm, from about 1 nm to about 50 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm; from about 5 nm to about 400 nm; from about 10 nm to about 300 nm; or from about 20 nm to about 400 nm.

In the above-mentioned embodiments, the lower size of second particles may be limited to particles greater than about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, or about 60 nm; and the upper size of second particles may be limited to particles less than about 20 μm, about 10 μm, about 5 μm, about 1 μm, about 0.8 μm, about 0.6 μm, about 0.5 μm, about 0.4 μm, about 0.3 μm, about 0.2 μm, or about 100 nm.

Any combination of particle size, particle composition, surface area, and/or percent composition in the coatings recited herein may be employed in preparing elastomer-based HP/OP coatings. Limitations on the upper and lower size of second particles may be used alone or in combination with any of the above-recited size limits on particle composition, surface area, percent composition in the coatings, and the like.

In some embodiments, the coatings may contain first particles in any of the above-mentioned ranges subject to either the proviso that the coatings do not contain only particles (e.g., first or second particles) with a size of 25 μm or less, or the proviso that the coatings do not contain more than an insubstantial amount of second particles with a size of 25 μm or less (recognizing that separation processes for particles greater than 25 μm may ultimately provide an unintended, insubstantial amount of particles that are 25 μm or less). An insubstantial amount of particles is less than 3% by weight or number of those particles, but it can also be less than 0.5%, 1%, or 2% wherever recited.

In other embodiments, second particles have an average size greater than 30 μm and less than 250 μm, and coatings comprising those particles do not contain more than insubstantial amounts of particles (e.g., first and second particles) with a size of 30 μm or less. In yet other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 40 μm or less, or particles with a size of 40 μm or less in substantial amounts. In addition, in still other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 50 μm or less, or particles with a size of 50 μm or less in substantial amounts.

In other embodiments, such as where the second particles are prepared by fuming (e.g., fumed silica or fumed zinc oxide), the second particles may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm, from about 25 nm to about 100 nm, from about 30 nm to about 200 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 400 nm.

As indicated above, second particles are treated to introduce one or more moieties (e.g., groups or components) that impart HP/OP properties to the particles, either prior to incorporation into the compositions that will be used to apply coatings or after incorporation into the coatings. In some embodiments, the second particles are treated with a silanizing agent, a silane, a siloxane or a silazane, to introduce hydrophobic/superhydrophobic and/or oleophobic/superoleophobic properties to the particles (in addition to any such properties already possessed by the particles).

In one embodiment, second particles are silica, silicates, alumina (e.g., Al2O3), titanium oxide, or zinc oxide that are treated with one or more silanizing agents, e.g., compounds of formula (I) (below). In other embodiments, second particles are comprised of silica, silicates, alumina (e.g., Al2O3), titanium oxide, or zinc oxide that are treated with a siloxane. In another embodiment, the second particles are silica, silicates, glass, alumina (e.g., Al2O3), titanium oxide, or zinc oxide, treated with a silanizing agent, a siloxane or a silazane. In another embodiment, the second particles may be a fumed metal or metalloid (e.g., particles of fumed silica or fumed zinc oxide).

In embodiments where a silanizing agent is employed, the silanizing agent may be a compound of the formula (I):
R4-nSi—Xn  (I)

where n is an integer from 1 to 3;

    • each R is independently selected from
      • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
      • (ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents,
      • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, and
      • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4;
    • each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
    • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
    • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.

In some embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms and n is 3.

In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms and n is 3.

In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms and n is 3.

In other embodiments, R has the form —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.

In any of the previously mentioned embodiments of compounds of formula (I), the value of n may be varied such that 1, 2 or 3 independently selected terminal functionalities are present. Thus, in some embodiments, n is 3. In other embodiments, n is 2. In still other embodiments, n is 1.

In any of the previously mentioned embodiments of compounds of formula (I), all halogen atoms present in any one or more R groups may be fluorine.

In any of the previously mentioned embodiments of compounds of formula (I), X may be independently selected from H, Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In other embodiments, X may be selected from Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In still other embodiments, X may be selected from —Cl, —NHR3, —N(R3)2 or combinations thereof.

Any coating described herein may be prepared with one, two, three, four or more compounds of formula (I) employed alone or in combination to modify the nano-particles, and/or other components of the coating including filler-particles. The use of silanizing agents of formula (I) to modify nano-particles, or any of the other components of the coatings, will introduce one or more R3-nXnSi—groups (e.g., R3Si—, R2X1Si-, or RX2Si—groups) where R and X are as defined for a compound of formula (I). The value of n is 0, 1, or 2, due to the displacement of at least one “X” substituent and formation of at least one bond between a nano-particle and the Si atom (the bond between the nano-particle and the silicon atom is indicated by a dash “-” (e.g., R3Si—, R2X1Si—, or RX2Si—groups).

In other embodiments, suitable silanizing agents for modifying the nano-particles used in the coating compositions generally comprise those with fluorinated or polyfluorinated alkyl groups (e.g., fluoroalkyl groups) or alkyl groups (hydrocarbon containing groups) including, but not limited to:

(tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0);

(heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5);

(heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7);

n-octadecyltrimethoxysilane (SIO6645.0); n-octyltriethoxysilane (SIO6715.0); and

3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4) where the designations given in parentheses are the product numbers from Gelest, Inc., Morrisville, Pa.

Another group of reagents that can be employed to prepare first or second particles with hydrophobic and/or oleophobic properties include

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane:

(tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane;

nonafluorohexyldimethylchlorosilane

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane;

3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)-silane:

nonafluorohexylmethyldichlorosilane;

nonafluorohexyltrichlorosilane;

nonafluorohexyltriethoxysilane; and

nonafluorohexyltrimethoxysilane.

In one embodiment, the coating compositions set forth herein comprise silica second particles treated with nonafluorohexyltrichlorosilane.

In addition to the silanizing agents recited above, a variety of other silanizing agents can be used to alter the properties of second particles and to provide hydrophobic and/or oleophobic properties. In some embodiments, second particles may be treated with an agent selected from dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane. In such embodiments, the second particles may be silica. Silica second particles treated with such agents may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 150 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 250 nm.

Other agents can be used to modify second particles, including, but not limited to, one or more of: polydimethylsiloxane, gamma-aminopropyltriethoxysilane, Dynasylan® A (tetraethylorthosilicate), hexamethyldisilazane, and Dynasylan® F 8263 (fluoroalkylsilane), any one or more of which may be used alone or in combination with the silanizing agents recited herein.

Two attributes of silanizing agents that may be considered for the purposes of their reaction with second particles and the introduction of hydrophobic or oleophobic moieties are the leaving group (e.g., X groups of compounds of the formula (I)) and the terminal functionality (e.g., R groups of compounds of the formula (I)). A silanizing agent's leaving group(s) can determine the reactivity of the agent with the first or second particle(s), or other components of the coating, if applied after a coating has been applied. Where the first or second particles are a silicate or silica (e.g., fumed silica) the leaving group can be displaced to form Si—O—Si bonds. Leaving group effectiveness is ranked in the decreasing order as chloro>methoxy>hydro (H)>ethoxy (measured as trichloro>trimethoxy>trihydro>triethoxy). This ranking of the leaving groups is consistent with their bond dissociation energy. The terminal functionality determines the level of hydrophobicity that results from application of the silane to the surface.

3.2.1 Some Sources of Second Particles

Second particles such as those comprising fumed silica may be purchased from a variety of suppliers including, but not limited to, Cabot Corp., Billerica, Mass. (e.g., Nanogel TLD201, CAB-O-SIL® TS-720 (silica, pretreated with polydimethylsiloxane), and M5 (untreated silica)) and Evonik Industries, Essen, Germany (e.g., ACEMATT® silica such as untreated HK400, AEROXIDE® silica, AEROXIDE® TiO2 titanium dioxide, and AEROXIDE® Alu alumina).

Some commercially available second particles are set forth in Table 6 along with their surface treatment by a silanizing agent or polydimethyl siloxane.

TABLE 6 Some commercially available second particles Nominal BET Product Surface Level of Surface Area of Base Particle Product Name Treatment Treatment Product (m2/g) Size (nm) Source M-5 None None 200 Cab-O-Sil Aerosil ® 200 None None 200 12 Evonik Aerosil ® 255 None None 255 Evonik Aerosil ® 300 None None 300  7 Evonik Aerosil ® 380 None None 380  7 Evonik HP-60 None None 200 Cab-O-Sil PTG None None 200 Cab-O-Sil H-5 None None 300 Cab-O-Sil HS-5 None None 325 Cab-O-Sil EH-5 None None 385 Cab-O-Sil TS-610 Dimethyldichlorosilane Intermediate 130 Cab-O-Sil TS-530 Hexamethyldisilazane High 320 Cab-O-Sil TS-382 Octyltrimethoxysilane High 200 Cab-O-Sil TS-720 Polydimethylsiloxane High 200 Cab-O-Sil Aerosil ® R202 Polydimethylsiloxane 100 14 Evonik Aerosil ® Hexamethyldisilazane 125-175 Evonik R504 (HMDS) and aminosilane Aerosil ® HMDS based on 220 Evonik R812S Aerosil ® 300 BET Surface Area is Brunauer, Emmett and Teller surface area

As purchased, the particles may be untreated (e.g., M5 silica) and may not possess any HP/OP properties. Such untreated particles can be treated to covalently attach one or more groups or moieties to the particles that give them HP/OP properties, for example, by treatment with the silanizing agents discussed above.

3.2.2 Dispersants for Second Particles

Second particles can be applied to a base coating of elastomeric binder after it has been applied to the surface of an object (or a part thereof) in the form of a second component having a composition comprising one or more independently selected second particles as described above (e.g., second particles having a size of about 1 nanometer (nm) to about 25 microns (μm) wherein said particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; wherein said second component optionally comprises one or more solvents (liquid dispersants).

If the elastomeric coating has not dried, or has been subjected to a solvent that dissolves at least the outermost portion of the binder (e.g., renders it sufficiently tacky), second particles may be applied directly to the elastomeric binder by contacting the second particles with the binder. Second particles may be contacted with the surface by any suitable means, including spraying them on the surface using a stream of gas (e.g., air, nitrogen, or an inert gas), exposing the binder coating to particles suspended in a gas, or contacting the base coat of elastomeric binder with a fluidized bed of second particles.

Second particles can also be applied to a base coating of elastomeric binder in a second coating component that, in addition to the second particles, contains a solvent (dispersant) that dissolves, expands or swells the outermost portion of the binder sufficiently (e.g., renders it tacky) to permit the second particles to become bound in at least the outermost portion of the binder base coat. Where second components of the coating composition comprise a solvent, the second particles are dispersed in the solvent for application. Second particles, and particularly smaller second particles (e.g., 1-50 nm or 1-100 nm), may form aggregates in solvents used as dispersants.

Suitable solvents include those with a surface energy lower than water including, but not limited to: alcohols, ketones, acetone, methyl ethyl ketone (MEK), ethyl acetate, toluene, xylene, isopropyl acetate, 1,1,1,-trichloroethane, methyl isobutyl ketone (MIBK), tertbutyl acetate (t-butyl acetate), cyclohexane, methyl-cyclohexane, or mixtures comprising any two, three, four or more thereof. In an embodiment, the solvents are non-aqueous (e.g., they contain less than 10%, 5%, 4%, 3%, 2%, 1%, or 0.5% of water by weight or they contain only insubstantial amounts of water). Solvents that are miscible with water are employed in the second coating component in another embodiment. In another embodiment, the solvent comprises a non-aqueous water miscible solvent. In one embodiment, the solvent employed in the second coating component is acetone or is comprised of acetone. In another embodiment the solvent employed in the second coating component is NMP (N-methylpyrrolidone) or is comprised of NMP. In other embodiments, the solvent employed in the second coating composition comprises a mixture of acetone or NMP with water, particularly a minor proportion of water (e.g., less than about 5%, less than about 4%, less than about 2%, less than about 1%, or less than about 0.5% water).

In one embodiment, the second component of the coating composition (i.e., the top coat) comprises:

i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; and

ii) optionally, one or more independently selected solvents, wherein when said one or more solvents are present, said second particles may be present in a weight percent range selected from (0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) based on the weight of the one or more solvents and second particles.

In another embodiment, the second component of the coating composition (i.e., the top coat) comprises:

(i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of second particles that comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with the second particles;

(ii) a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV); and/or a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and

(iii) a solvent for a the remainder of a total of 100 parts by weight.

In another embodiment, the fluorinated polyolefin (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV), if present, comprises from 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of the composition.

In another embodiment, the Fluoroethylene-Alkyl Vinyl Ether (e.g., the constituent polymer found in Lumiflon™), if present, comprises 0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of the composition. In such an embodiment the FEVE may have an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, about 1,500, about 2,000, about 2,500, or about 3,000 Dalton). Accordingly, one embodiment of the second component comprises per 100 parts by weight:

i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with said second particles;

ii) 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV); and/or

    • 0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, having an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, 1,500, 2,000, 2,500, or 3,000 Da); and

(iii) one or more solvent for a the remainder of a total of 100 parts by weight.

Where the solvent employed in second coating compositions dissolves or renders at least the outermost layer of the elastomeric binder “tacky,” second particles can be introduced into completely dried and cured base coats of elastomeric binder. That permits the repair of worn or abraded coatings that have lost HP/OP behavior over all or part of their surface.

4.0 Surface Preparation and Priming

To improve the adherence and performance of the coatings described herein the surface to be coated, in whole or in part, should be clean, free of contaminants and capable of supporting the coatings (e.g., not friable).

Performance of the coatings in terms of their durability can be significantly improved by the application of a primer. Any primer compatible with both the surface of the object and the elastomeric coating can be employed.

A variety of primer compositions may be employed. In one embodiment the primers comprise one or more polymers that are elastic (i.e., have viscoelasticity), such as those that comprise the binder used in the first component of the coating compositions described herein (e.g., SBCs). In one embodiment, the primer comprises one or more polymers that are elastic (i.e., have viscoelasticity, e.g., SBCs) and a tackifier. In one embodiment, the primer is a PLASTI DIP™ metal primer f938hp.

In one embodiment, when a tackifier is employed, it may be selected from resins (e.g. rosins and their derivates; terpenes and modified terpenes; aliphatic, cycloaliphatic and aromatic resins (C5 aliphatic resins, C9 aromatic resins, and C5/C9 aliphatic/aromatic resins); hydrogenated hydrocarbon resins (e.g., Regalrez™ 1094, Eastman Chemical Co., Kingsport Tenn.), and mixtures thereof and/or terpene-phenol resins). In one embodiment the tackifier is an ester of hydrogenated rosin (e.g., FORAL™ 105-E ester of hydrogenated rosin).

In other embodiments the primer is an elastomeric primer comprising triblock copolymers of styrene and ethylene/butylene and an ester of a hydrogenated thermoplastic rosin (e.g., FORAL™ 105-E, Eastman Chemical). The polystyrene content of the triblock copolymers will typically be from about 8% to about 14%, from about 12% to about 20%, from about 18% to about 28%, from about 22% to about 32%, from about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, or about 36%. Mixtures of any two or more, three or more, or four or more of such triblock copolymers may also be employed in the primer composition, and any one or more of such triblock copolymers may optionally comprise 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% bound maleic anhydride (maleated copolymers). Any of the foregoing triblock copolymers may be linear or branched (e.g., dendrimers or arborols).

In one embodiment wherein the elastomeric primer comprises triblock copolymers of styrene and ethylene/butylene and an ester of a hydrogenated thermoplastic rosin, the primer comprises two different maleated triblock copolymers of styrene and ethylene/butylene with a polystyrene: a first triblock copolymer of styrene and ethylene/butylene with a polystyrene having 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4,% or 0.7% to 1.3%) substitution of maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% free maleic anhydride); and a second triblock copolymer of styrene and ethylene/butylene with a polystyrene having 1.1% to 2.5% (e.g., 1.3 to 2.3 or 1.4 to 2.4%) substitution of maleic anhydride by weight of the second triblock copolymer. In such an embodiment the first and/or second triblock copolymers may be linear or branched copolymers (e.g., arborols or dendrimers), and the second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is about 4:1 to about 5.5:1, about 5:1 to about 6:1, or about 5.5:1 to about 6.5:1). The ratio of the total triblock copolymer (first and second) to the ester of a hydrogenated thermoplastic rosin is typically 1:5 to 2.5:5 (triblock copolymers: ester(s) of hydrogenated thermoplastic rosin). Ratios for all three components include 7:1:25, 7.2:1.3:25, 7.6:1.6:25, and 8:1.8:25 (first triblock copolymer: second triblock copolymer: ester of a hydrogenated thermoplastic rosin).

In any of the foregoing embodiments the primers may also comprise insubstantial amounts (e.g., less than about 2% by weight of the polymers present in the binder, such as less than 1.0%, 0.75%, 0.5%, 0.25%, or 0.1%) of colorants or particulates that are insoluble in the solvents that dissolve the elastomeric polymers and/or that would block the transmission of visible light in the dried cured coating (e.g., talc added for the flowability of particles of the polymers as produced).

In any of the foregoing embodiments the primers may also comprise first particles for texture development in the primer and/or the base coat (i.e., a base coat of elastomeric binder with or without first particles).

In another embodiment, when a tackifier is employed it may be a hydrocarbon resin. In one embodiment where hydrocarbon resins are employed, they may be selected from resins such as those prepared from petroleum based feedstocks (e.g., aliphatic (C5), aromatic (C9), DCPD (dicyclopentadiene) resins, or mixtures of these).

Elastomeric primers not only promote bonding to substrate surfaces such as metals, but also provide for improved adhesion to the base coat. In addition, such primers compensate for differences in the coefficient of thermal expansion between the HP/OP coating and the substrate.

In other embodiments, primers comprise polyurethane polymers. Such polyurethane containing primers (“polyurethane primers”) demonstrate excellent bonding to many substrates including metallic substrates. When employing a polyurethane primer, it is possible to incorporate first particles into the primer and/or the base coat (a base coat of elastomeric binder with or without first particles) for texture development. Thus, in addition to promoting adhesion, the primer can also serve to develop texture with increased surface area for improved adhesion of the base coat comprising an elastomeric binder, develop wear resistance, and develop hydrophobicity/oleophobicity. The HP/OP coatings applied over the elastomeric primers or two part polyurethane primers described herein display essentially equal resistance to the loss of hydrophobicity in Taber Abraser wear/abrasion resistance tests (as measured by Taber Abraser cycles) when abrasive (CS-10) and soft (CS-0) wheels are employed.

5.0 Coating Application Method:

The coatings described herein (including any underlying primer) can be applied to surfaces using any means known in the art including, but not limited to, brushing, painting, printing, stamping, rolling, dipping, spin-coating, spraying, or electrostatic spraying. In one embodiment, one or more of a primer, base coat and/or top coat are applied by spraying. In another embodiment, each of a primer (if present), base coat and top coat are applied by spraying.

In one embodiment the first and second coating compositions described herein are separately prepackaged in a delivery system/apparatus for spray applications, such as aerosol canisters (e.g., pre-pressurized aerosol cans). In such an embodiment, the first component and second component can be packaged in separate delivery systems/apparatus. A propellant is added to the system/apparatus that serves to drive the components out of their canisters for delivery. Propellants will typically be a gas at 25° C. and 1 atmosphere, but may be in a different phase (liquid) under pressure, such as in a pressurized aerosol delivery system. The propellant may be a gas (e.g., air or nitrogen) or a liquefiable gas having a vapor pressure sufficient to propel and aerosolize the first and/or second components as they exit their delivery system/apparatus). Some exemplary propellants include: liquefied petroleum gases, ethers (e.g., dimethyl ether (DME) and diethyl ether); C1-C4 saturated hydrocarbons (e.g., methane, ethane, propane, n-butane, and isobutene); hydrofluorocarbons (HFC) (e.g., 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227HFC), difluoromethane (HFC-32), 1,1,1-trifluoroethane (HFC-143a), 1,1,2,2-tetrafluoroethane (HFC-134), and 1,1-difluoroethane (HFC-152a)), and mixtures comprising any two, three or more of the foregoing. In another embodiment, the propellant is a blend of n-butane and propane.

Generally, the surfaces will be rigid or semi-rigid, but the surfaces can also be flexible, for example in the instance of wires, tapes, rubberized materials, gaskets, and ribbons.

The coatings described herein can be applied to virtually any substrate to provide HP/OP properties. The choice of coatings and coating processes that will be used may be affected by the compatibility of the substrate and its surface to the coating process and the component of the coating compositions. Among the considerations are the compatibility of the substrate and its surface with any solvents that may be employed in the application of the coatings and the ability of a desired coating to adhere to the substrate's surface.

Coatings may take any desired shape or form, limited only by the manner and patterns in which they can be applied. In some embodiments, the coating will completely cover a surface. In other embodiments the coating will cover only a portion of a surface, such as one or more of a top, side or bottom of an object. In one embodiment, a coating is applied as a line or strip on a substantially flat or planar surface. In such an embodiment the line or strip may form a spill-resistant border.

The shape, dimensions and placement of HP/OP coatings on surfaces can be controlled by a variety of means including the use of masks, which can control not only the portions of a surface that will receive a coating, but also the portions of a surface that may receive prior treatments such as the application of a primer layer or cleaning by abrasion or solvents. For example, where sandblasting or a chemical treatment is used to prepare a portion of a surface for coating, a mask resistant to those treatments would be selected (e.g., a mask such as a rigid or flexible plastic, resin, or rubber/rubberized material). Masking may be attached to the surface through the use of adhesives, which may be applied to the mask agent, the surface, or both.

In another embodiment HP/OP coatings are applied to a ribbon, tape or sheet that may then be applied to a substrate by any suitable means including adhesive applied to the substrate, the ribbon or tape, or both. Ribbons, tapes and sheets bearing a superhydrophobic coating may be employed in a variety of applications, including forming spill proof barriers on surfaces. Ribbons, tapes, and sheets are generally formed of a substantially flat (planar) flexible material where one side (the top) is made hydrophobic or superhydrophobic. This includes metal sheets, ribbons, and tapes such as aluminum tape or other tapes (e.g., metal adhesive tape, plastic adhesive tape, paper adhesive tape, fiberglass adhesive tape), wherein one side is coated with an HP/OP coating and adhesive is applied to the other side. Once such HP/OP ribbons, tapes, and sheets are prepared, they can be applied to any type of surface including metal, ceramic, glass, plastic, or wood surfaces, for a variety of purposes.

In one embodiment, HP/OP coatings are applied to the surface of an object by a method comprising:

(a) applying a first component to all or part of the surface of an object; followed by

(b) applying a second component to all or the part of the surface of said object to which said first component was applied.

In another embodiment, HP/OP coatings are applied by a coating method comprising:

(a) applying a first component of a two-component coating composition to all or part of the surface of an object; followed by

(b) applying a second component of the two-component coating composition to all or the part of the surface of said object to which said first component was applied.

In such an embodiment, the first component and second component may be applied using one or more methods selected independently from brushing, painting, printing, stamping, rolling, dipping, spin-coating, or spraying. Such a process is at least a two-step process, but may include additional steps, such as a second application of the second component making it a three or more step process.

In an embodiment, one or both of the first and second components are applied to a surface by spraying in a method comprising:

(a) spraying a first component of a two-component coating composition (e.g., an elastomeric binder and first particles) on all or part of the surface of an object; followed by

(b) spraying a second component of said two-component coating composition (e.g., second particles and optionally a solvent) on all or part of the surface of an object to which said first component was applied. In one embodiment, the spraying may be conducted using first, second, or both components packaged in aerosol spray canisters.

In an embodiment of the above-described coating process, a base coat of elastomeric polymer binder and first particles (e.g., EXPANCEL particles) is applied as the first component. Once the base coat loses sufficient solvent so that it: does not run when a second component is applied; is close to being dry to touch (e.g., is tacky); becomes dry to touch; or is dry, a second coating component (e.g., second particles and an optional dispersant such as acetone) is applied. The solvent in the dispersant helps attach the functional second particles to the binder of the base coat. Other than allowing any solvent used as a dispersant to evaporate no additional curing cycle is needed.

The coating obtained is durable and delivers HP/OP behavior and can be applied to a variety of substrates including metals, ceramics, polymerics and fabrics and in a number of specific applications as set forth below.

6.0 Applications:

The elastomeric coating described herein may be employed in a variety of applications including, but not limited to, coatings for all or part of:

  • 1) electronic equipment and their electronic components or subassemblies (e.g., circuit boards), including, but not limited to: cell phones, laptop computers, electronic tablets (e.g., iPads), cameras, video games, Global Positioning System (GPS) devices, radios, MP3 and electronic music players, watches, video equipment, security systems, satellite dishes and other portable electronics;
  • 2) shoes (e.g., athletic shoes, casual shoes, dress shoes) and apparel for medical and recreational use;
  • 3) toys such as toy vehicles (e.g., trucks, cars), bikes, scooters, playground equipment (e.g., swings, slides, teeter-totters), water toys, and toys for use in bathtubs;
  • 4) cleaning products—toilet brushes, toilet plungers, mops, dust mops and cloths;
  • 5) furniture and cooking preparation and serving surfaces including both indoor and outdoor furniture (e.g., lawn/patio furniture and park furniture such as tables, chairs and benches) or employed as spill resistant borders on surfaces that are substantially horizontal.
  • 6) pet products (e.g., litter boxes, litter scoopers, drinking and food bowls, collars, litter particles, animal beds);
  • 7) farm tools and home and garden tools including shovels, spades, and rakes;
  • 8) outdoor and exercise equipment (e.g., skis, snow boards), balls, in-line skates, roller skates);
  • 9) appliances—portions or entire refrigerator plates (e.g., spill proof borders), freezer liners, parts in washing machines, dishwashers, dehumidifiers, humidifiers, and dryers;
  • 11) baby/toddler products (e.g., car seats, potty seats, bibs, silverware (made from plastics), cups, plates and diapers (or parts thereof);
  • 12) food and beverage containers (e.g., bottles and containers for beverages, water, food);
  • 13) sports equipment including balls (e.g., baseballs, tennis balls, footballs, soccer balls), gloves, backpacks, and tents;
  • 14) bedding (sheets, mattresses, pillows, blankets);
  • 15) food processing equipment and kitchen equipment including coatings and/or spill resistant borders for counters, backsplashes, the walls behind counters where food is prepared, and abattoirs (e.g., wall coatings and/or curtains used to section off a slaughter floor);
  • 16) superhydrophobic body spray;
  • 17) automotive parts (e.g., bumpers, internal plastic parts, engine parts, structural parts, fender well (wheel well) liners, and car seats, particularly for convertibles);
  • 18) protective equipment (e.g., helmets, pads, and uniforms);
  • 19) building products (e.g., rain spouts, doors, counters (polymer), flooring, ceilings, screens, and roofing);
  • 20) laboratory equipment (e.g., trays, storage bins, tools, petri dishes, funnels, tubing and animal cages);
  • 21) electrical equipment (e.g., electrical housings, electrical wiring, motors, switches, insulators, and circuit boards);
  • 22) communications equipment (e.g., satellite dishes, antennas, and communications towers);
  • 23) plastic and/or metal tubing and piping (e.g., PVC piping, copper piping, plastic and steel piping);
  • 24) lavatory/bathroom equipment and fixtures (e.g., urinals, toilets, toilet seats, air and/or heat hand drying equipment, potty seat bowls, counters, sinks, and soap dispensers);
  • 25) medical products including: beds and bed parts, bed pans, tubing, tubular products, catheters, stents, surgical tools and operating room equipment (such as robotic surgical tools), operating room equipment (e.g., tables, light fixtures), walls, floors, sinks, imaging equipment/machinery, laboratory testing equipment/machinery, and medical instruments (e.g., medical instruments used in surgical and nonsurgical applications);
  • 26) wound care products, spray-on bandages, regular bandages, and body affecting products (e.g., skin and/or hair spray; and
  • 27) aviation and boating equipment (e.g., airplane fuselage, wings and instrumentation), and boat bottoms, decks, and other places throughout a boat.

Use of the coating can be facilitated by providing the first and second components for preparing the coatings described herein in a form that permits facile application. In one embodiment the first and/or second components are prepackaged in solvent or propellant delivery systems such as aerosol canisters (e.g., aerosol cans).

7.0 Coating Evaluation

Coatings prepared using the elastomeric binder first component and second coating composition described herein can be evaluated using one or more criteria including, but not limited to:

  • 1. transparency and appearance, which are evaluated both quantitatively and qualitatively;
  • 2. durability of the SH/OP behavior (wear resistance of the coating) to an applied force using:
    • 2a. semi-quantitative glove rub test in which the thumb of a latex rubber gloved hand is stroked by hand over the surface of the coating that has been applied to a substantially planar surface until the coating no longer shows superhydrophobic behavior. This test is a proxy for the ability of the surface to be handled and retain its HP/OP properties. During the test, the area of the surface contacted with the rubber glove is approximately 25 mm×25 mm and the force applied approximately 300 g (or about 0.5 g/square mm). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied (typically 20) to the tested surface to run (roll) off when the surface is inclined at 5 degrees from horizontal. FIG. 4 shows an exemplary testing apparatus used to determine the end of SH/OP,
    • 2b. loss of superhydrophobic behavior can also be judged after the surface is subject to the action of a cylindrical rubber finger moved across the surface. The finger is rubbed across the surface using a motorized American Association of Textile Chemists and Colorists (AATCC) CM-5 Crockmeter fitted with a 14/20 white rubber septum (outside diameter of 13 mm and inside diameter of 7 mm with a contact surface area of 94 mm2) to contact the coating with a force of 9N (Ace Glass, Inc., Vineland, N.J., Catalog No. 9096-244). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20 droplets) to run (roll) off when the surface is inclined at 5 degrees from horizontal,
    • 2c. loss of superhydrophobic behavior when the samples are subject to Taber Abraser testing using CS-10 (abrasive) and/or CS-0 (non-abrasive) wheels at the indicated loads and speeds to determine the point at which the surfaces lose superhydrophobicity. Unless indicated otherwise, a load of 1,000 g is employed. All Taber tests were conducted at a speed of 95 rpm unless stated otherwise. The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20) to run (roll) off when the surface is inclined at 5 degrees from horizontal,
    • 2d. time to the loss of superhydrophobicity under a shower of water. Water is applied from a showerhead placed 152.4 cm (60 inches) above a substantially planar test surface inclined at 5 degrees from the horizontal, the showerhead having 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on the circular showerhead. The apparatus delivers a shower of 6 liters of water per minute using about 137900 to about 310275 Pa (about 20 to about 45 psi) over an approximately circular area of about 150 cm in diameter at the level of the test surface. The time to loss of superhydrophobic behavior is determined to be the period of time after which water droplets from the shower begin to “stick” to the surface (no longer freely run off the surface) of a sample placed in the shower;
  • 3. coating thickness and/or surface roughness, expressed as the average roughness (Ra) unless stated otherwise. Surface roughness has been found to be an indicator that positively correlates with abrasion resistance (increasing abrasion resistance with increasing roughness);
  • 4. the ability of coated surfaces to resist ice formation in dynamic testing and the adherence of ice to surfaces;
  • 5. electrical properties including resistance and permittivity′
  • 6. oleophobicity, using either the contact angle of light mineral oil with the coating or by assessing the interaction of droplets of various liquid hydrocarbons having different surface tensions employed in the ATCC 118-1997 Oil Repellancy test with the coating surface. For testing, a coating is applied to a 4×4 inch substantially planar plate. After the plate has dried and cured it is placed on a 5±1 degree slope relative to the horizontal and five droplets of a test hydrocarbon are applied beginning with Kaydol™ (available from CBM Group of N.C. Inc., 1308 N. Ellis Ave., Dunn N.C. 28334). When droplets stick to the coating or wet the coating, the Score (Oil Repellency Grade Number) is assigned. Thus, Kaydol™ droplets rolling off earns a value of 1 or greater, 65:35 Kaydol™: n-hexadecane droplets rolling off earns a value of 2 or greater, and so on. All test are conducted at room temperature.

Score (Oil Repellency Grade Number) hydrocarbon 0 None (Fails Kaydol ™) 1 Kaydol ™ (mineral oil) 2 65:35 Kaydol ™:n-hexadecane 3 n-hexadecane 4 n-tetradecane 6 n-dodecane 6 n-decane 7 n-octane 8 n-heptane

The oleophobicity of first or second particles (e.g., fumed silica treated with a silane, silazane, silanol, siloxane, fluorinated versions thereof, etc.) can be tested in the same manner. In such tests the first and/or second particles are applied to a clean 4×4 inch aluminum plate by spraying a suspension containing 2% particles 98% acetone by weight to form a coating of particles that cover the aluminum plate. After the plate has dried, the above-listed hydrocarbon liquids are tested on the particle coatings in the same manner as they would be on an elastomeric coating, and the particles scored in the same manner.

8.0 Certain Embodiments

Embodiment 1, has is divided into two sub-embodiments, that are recited below as embodiments 1.1. and 1.2. In embodiment 1.1 the second component comprises second particles and one or more solvents, but does not require a fluoropolymer. In contrast, the second component of sub-embodiment 1.2 requires not only second particles, but also a fluorinated polyolefin and/or a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, and one or more solvents. In subsequent embodiments, any reference to embodiment 1 refers to either embodiment 1.1 and/or 1.2.

Embodiment 1.1 A combination of components for forming a coating comprising:

    • A) a first component which comprises:
      • i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight (e.g., about 1% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 25%, or about 25% to about 30% of said one or more styrenic block copolymers);
      • ii) optionally, one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein, when said first particles are present, the first component comprises from about 0.01% to about 5% of said first particles by weight (e.g., about 0.01% to about 5%, about 0.03% to about 1%, about 0.05% to about 0.15%, about 0.1% to about 2.5%, or about 0.2% to about 5% of said first particles by weight); and
      • iii) one or more independently selected solvents; and
    • B) a second component which comprises:
      • i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; and
      • ii) optionally, one or more independently selected solvents, wherein when said one or more solvents are present, said second particles may be present in a weight percent range selected from (0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) based on the weight of the one or more solvents and second particles.
        Embodiment 1.2 A combination of components for forming a coating comprising:
    • A) a first component which comprises:
      • i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight (e.g., about 1% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 25%, or about 25% to about 30% of said one or more styrenic block copolymers);
      • ii) optionally, one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein, when said first particles are present, the first component comprises from about 0.01% to about 5% of said first particles by weight (e.g., about 0.01% to about 5%, about 0.03% to about 1%, about 0.05% to about 0.15%, about 0.1% to about 2.5%, or about 0.2% to about 5% of said first particles by weight); and
      • iii) one or more independently selected solvents; and
    • B) a second component which comprises per 100 parts by weight:
      • i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with said second particles;
      • ii) 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV);
      • and/or
      •  0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, having an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, 1,500, 2,000, 2,500, or 3,000 Da);
      • and
      • iii) one or more independently selected solvents for a the remainder of a total of 100 parts by weight.
  • 2. The combination of embodiment 1, wherein one or more of the styrenic block copolymers has a rubber phase crosslinked to the polystyrene phase.
  • 3. The combination according to any of embodiments 1 to 2, wherein one or more of the styrenic block copolymers has a rubber phase comprising polybutadiene, polyisoprene, polyolefin or a mixture of any of those rubber phase components (e.g., linear triblock copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight (e.g., about 8% to about 12%, about 12% to about 18%, about 18% to about 24%, about 24% to about 30%, about 30% to about 36%, about 10% to about 20%, or about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 17%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36%) or mixtures of any two or more, three or more, or four or more of such triblock copolymers, any one or more of which may optionally comprise 1% to 3% or 1.4% to 2.0% maleic anhydride).
  • 4. The combination according to any of embodiments 2 to 3, wherein said rubber component comprises 60%-98%, 60%-70%, 70%-80%, 60%-90%, 80%-90%, 83%-93%, 85%-95%, or 89%-98%, of the elastomer by weight (based on the dry weight of the elastomer present in the first component not including any contribution by the first particles or other materials present in that component).
  • 5. The combination according to any of embodiments 1 to 4, wherein said first component further comprises one or more colorants, UV stabilizers, antioxidants, rheological agents, and/or fillers.
  • 6. The combination according to any of embodiments 1 to 5, wherein said first component further comprises up to 30% by weight of one or more tackifiers (e.g., 1%-5%, 2%-8%, 5%-10%, 10%-15%, 15%-20%, 20%-25%, or 25%-30%).
  • 7. The combination of embodiment 6, wherein said one or more styrenic block copolymers and said one or more tackifiers together comprise up to about 30% by weight of said first component (e.g., up to about 10, 15, 20, 25, or 30%).
  • 8. The combination according to any of embodiments 1 to 7, wherein said elastomeric binder comprises one, two, three, or more triblock copolymers.
  • 9. The combination according to any of embodiments 1 to 8, wherein said elastomeric binder comprises one or more styrenic block copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight (e.g., about 8% to about 14%, about 12% to about 20%, about 18% to about 28%, about 22% to about 32%, about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36%), or mixtures of any two or more, three or more, or four or more of such triblock copolymers.
  • 10. The combination according to any of embodiments 1 to 9, wherein one or more of said styrenic block copolymers present in the elastomeric binder comprise maleic anhydride (e.g., maleated copolymers having 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% maleic anhydride based on the weight of the copolymer).
  • 11. The combination according to any of embodiments 1 to 10, wherein at least one, or at least two, of said one or more styrenic block copolymers is a linear copolymer or a branched copolymer (e.g., a dendrimer or arborol).
  • 12. The combination according to any of embodiments 1 to 11, wherein the elastomeric binder comprises a first and a second maleated triblock copolymer of styrene and ethylene/butylene wherein:
    • said first maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content from about 8% to about 14%, with 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4%, or 0.7% to 1.3%) substitution (content by weight) of maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% maleic anhydride free); and
    • said second maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content of about 22% to about 32%, with 1.1% to 2.5% (e.g., 1.3% to 2.3% or 1.4% to 2.4%) substitution of maleic anhydride by weight of the second triblock copolymer.
  • 13. The combination of embodiment 12, wherein said first and/or second triblock copolymers are independently selected linear or branched (e.g., arborols or dendrimers) copolymers.
  • 14. The combination according to any of embodiments 12 to 13, wherein said first and second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is:about 4:1 to about 5.5:1; about 5:1 to about 6:1; or about 5.5:1 to about 6.5:1).
  • 15. The combination according to any of embodiments 1-14, wherein said first particles are selected from the group consisting of: glass, ceramic, rubber, plastic, thermoplastic, wood, cellulose, metal oxides, silicon dioxide, silicates, tectosilicates, germanium dioxide, plastic particles, carbide particles, nitride particles, boride particles (e.g., zirconium or titanium boride), spinel particles, diamond particles, fly ash particles, fibers and hollow glass spheres, hollow glass particles or hollow plastic particles (e.g., glass, polymer, plastic or thermoplastic particles, spheres, or microspheres), wherein said first particles optionally comprise a colorant (e.g., colored or pigmented glass particles, plastic particles, rubber particles, hollow glass or hollow plastic particles).
  • 16. The combination according to any of embodiments 1 to 15, wherein said first particles comprise hollow glass or plastic particles (e.g., glass, polymer, plastic or thermoplastic particles or microspheres), and wherein said first particles optionally comprise a colorant.
  • 17. The combination according to embodiment 16, wherein said hollow glass or hollow plastic particles have a size (average diameter) in a range selected from the group consisting of 5 to 50 microns, 6 to 45 microns, 5 to 20 microns, 20 to 35 microns, and 35 to 50 microns.
  • 18. The combination according to any of embodiments 15 to 17, wherein said hollow plastic particles have a density selected from the group consisting of less than 60 kg/m3, less than 50 kg/m3, less than 40 kg/m3, less than 30 kg/m3, or less than 25 kg/m3, and wherein said hollow glass particles have a density selected from the group consisting of less than 125 kg/m3, less than 150 kg/m3, less than 200 kg/m3, less than 250 kg/m3, less than 300 kg/m3, less than 350 kg/m3, less than 400 kg/m3, less than 450 kg/m3, less than 500 kg/m3, less than 550 kg/m3, less than 600 kg/m3, or 600 kg/m3.
  • 19. The combination according to any of embodiments 1 to 18, wherein the second particles have an average size in a range selected from the group consisting of from: about 1 nm to about 100 nm; about 10 nm to about 200 nm; about 20 nm to about 400 nm; about 10 nm to 500 nm; about 40 nm to about 800 nm; about 100 nm to about 1 micron; about 200 nm to about 1.5 microns; about 500 nm to about 2 microns; about 500 nm to about 2.5 microns; about 1 micron to about 10 microns; about 2 microns to about 20 microns; about 2.5 microns to about 25 microns; about 500 nm to about 25 microns; about 400 nm to about 20 microns; and about 100 nm to about 15 microns.
  • 20. The combination according to any of embodiments 1 to 19, wherein said second particles comprise a metal oxide, an oxide of a metalloid (e.g., silica), a silicate, or a glass.
  • 21. The combination according to any of embodiments 1 to 20, wherein said second particles are comprised of silica and have an average size in a range selected from: about 1 nm to about 50 nm; about 1 nm to about 100 nm; about 1 nm to about 400 nm; about 1 nm to about 500 nm; about 2 nm to about 120 nm; about 5 nm to about 150 nm; about 5 nm to about 400 nm; about 10 nm to about 300 nm; or about 20 nm to 400 nm.
  • 22. The combination according to any of embodiments 1 to 21, wherein said second particles have an average size in the range of from 1 nm to 100 nm or from 2 nm to 200 nm.
  • 23. The combination according to any of embodiments 1 to 22, wherein said second particles comprise one or more hydrophobic and/or oleophobic moieties.
  • 24. The combination according to any of embodiments 1 to 23, wherein said second particles comprise one or more alkyl, fluoroalkyl, and/or perfluoroalkyl moieties that are covalently bound to the second particles directly, or bound indirectly through one or more atoms bound to the second particles.
  • 25. The combination according to any of embodiments 1 to 24, wherein said one or more hydrophobic or oleophobic moieties result from contacting the second particles with one or more silanizing agents of formula (I):
    R4-nSi—Xn  (I)
    • where n is an integer from 1 to 3;
      • each R is independently selected from
        • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
        • (ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
        • (iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
        • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents,
        • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, and
        • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4;
      • each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
      • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
      • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.
  • 26. The combination according to embodiment 25, wherein each R is selected independently from:
    • (a) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms;
    • (b) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms;
    • (c) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms;
    • (d) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms when n is 2 or 3;
    • (e) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms when n is 2 or 3; and
    • (f) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms when n is 2 or 3.
  • 27. The combination according to any of embodiments 25 to 26, wherein R is —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.
  • 28. The combination according to any of embodiments 25 to 27, wherein n is 1, 2, or 3.
  • 29. The combination according to any of embodiments 25 to 28, wherein all halogen atoms present in any one or more R groups are fluorine atoms.
  • 30. The combination according to any of embodiments 25 to 29, wherein each X is independently selected from —H, —Cl, —OR2, —NHR3, and —N(R3)2.
  • 31. The combination according to any of embodiments 25 to 30, wherein each X is independently selected from —Cl, —OR2, —NHR3, and —N(R3)2.
  • 32. The combination according to any of embodiments 25 to 31, wherein each X is independently selected from —Cl, —NHR3, and —N(R3)2.
  • 33. The combination according to any of embodiments 1 to 32, wherein two, three, four, or more than four compounds of formula (I) are employed alone or in combination to modify at least one second particle; or wherein said second particles incorporated into said second component have an Oil Repellancy Grade Number greater than or equal to about 1, 2, 3, 4, 5, 6, 7, or 8 when measured as a coating applied to a metal plate in the absence of a binder.
  • 34. The combination according to any of embodiments 1 to 33, wherein said second particles are treated with a silanizing agent selected from the group consisting of: tridecafluoro-1,1,2,2-tetrahydrooctyl)silane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; and nonafluorohexyldimethyl(dimethylamino)silane.
  • 35. The combination according to any of embodiments 1 to 34, wherein said second particles are treated with a silanizing agent selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, polydimethylsiloxane, and (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane.
  • 36. The combination according to any of embodiments 1 to 35, wherein said first component and/or said second component further comprise an independently selected solvent and/or propellant.
  • 37. The combination of embodiment 36, wherein said solvent is an organic solvent or a mixture of two or more organic solvents, and wherein either said organic solvent or said mixture of two or more organic solvents comprises less than 10%, 5%, 2%, or 1% of water by weight.
  • 38. The combination of embodiment 36 or 37, wherein said solvent or propellant comprises greater than 1%, greater than 2%, greater than 5%, up to 10%, up to 20%, or greater than 20% by weight of any one, two, three or more of each of air, nitrogen, an inert gas, an alkane, a ketone, an ether, a halogenated alkane, a halogenated alkene, an aromatic hydrocarbon, an alcohol, methane, ethane, propane, butane, pentane, hexane, heptane, ethylene, propene, acetone, methyl isobutyl ketone (MIKB), methyl ethyl ketone (MEK), dimethylether (DME), diethylether, methyl ethyl ether, methyl tert-butyl ether, chloromethane, dichloromethane, carbontetrachloride, trichlorofluoromethane, dichlorodifluoromethane, methanol, ethanol, propanol, butanol, benzene, toluene, xylene, 1-chloro-4-(trifluoromethyl)-benzene, carbon disulfide, and isomers of any of the foregoing, based upon the total weight of solvent or propellant present in the composition.
  • 39. The combination according to any of embodiments 1 to 38, wherein either the first component and/or second component further comprise a colorant or pigment.
  • 40. The combination according to any of embodiments 1 to 39, wherein said elastomeric binder has an ultimate strength greater than about 20, 21, 22, 23, 24, 26, 28, 30, 32, or 34 Mega Pascals (MPa) (e.g., greater than about 2,500, 2,750, 2,800, 2,900, 3,000, 3,200, 3,500, 3,750, 4,000, 4,250, 4,500, 4,750, or 4,900 psi) according to ASTM D412.
  • 41. A method of forming a hydrophobic coating on a portion of a surface comprising the following steps:
    • (a) applying a first component according to any of embodiments 1 to 40 to at least a portion of the surface, wherein the portion of the surface has optionally been treated with a primer (e.g, an elastomeric primer) on all or part of the surface to which said first component is to be applied; and
    • (b) applying a second component according to any of embodiments 1 (i.e., 1.1 or 1.2) to 40 to all or a portion of the portion coated in step (a),
    • wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is also oleophobic or superoleophobic.
  • 42. The method of embodiment 41, wherein said steps of applying said first component and applying said second component are conducted by methods selected independently from painting, printing, stamping, rolling, dipping, spin-coating, spraying, and electrostatic spraying.
  • 43. A coating prepared by the method according to any of embodiments 41 to 42.
  • 44. The coating of embodiment 43, wherein said coating is superhydrophobic and/or superoleophobic.
  • 45. The coating according to any of embodiments 43 to 44, wherein said coating has an ultimate strength greater than about 20, 21, 22, 23, 24, or 26 mega Pascals (MPa) (e.g., greater than about 2,500, 2,750, 2,800, 2,900, 3,000, 3,200, 3,500, or 3,750 psi) according to ASTM D412.
  • 46. The coating according to any of embodiments 43 to 45, wherein said coating has a modulus at 100% elongation of greater than 10, 11, 12, or 13 mega Pascals (MPa) (e.g., greater than about 1,700, about 1,750, about 1,800, or about 1,850 psi) according to ASTM D412.
  • 47. The coating according to any of embodiments 43 to 46, having an elongation at break of greater than about 100%, 110%, 120%, 140%, 160%, 180%, 200%, 250%, 300%, 350%, 400%, or 420%.
  • 48. The coating according to any of embodiments 43 to 47, having a relative electrical permittivity at 100 MHz from about 0.2 to about 4 at about 22° C. (e.g., a relative electrical permittivity from about 0.2 to about 1, from about 1 to about 2, from about 2 to about 3, or from about 3 to about 4) as measured by ASTM D150 using a 0.11 mm thick film.
  • 49. The coating according to any of embodiments 43 to 48, having a Total Luminous Transmittance of about 75% to about 85% and a haze of about 85% to about 90% as measure by ASTM D1003-11 on a film about 25 microns thick.
  • 50. The coating according to any of embodiments 43-49, wherein said coating is superhydrophobic and retains its superhydrophobicity after being subjected to greater than 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 250 gram load at 95 rpm at room temperature, wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.
  • 51. The coating according to embodiment 50, wherein said coating retains its superhydrophobicity after being subjected to greater than 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 1,000 gram load at 95 rpm at 20° C.-25° C., wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.
  • 52. The coating according to any of embodiments 43 to 51, wherein said coating is superhydrophobic and when said coating is applied to a planar surface, it continues to display superhydrophobic behavior after being subjected to a continuous shower test of about six liters of water per minute at about 20° C.-25° C. for greater than 0.3, 0.5, 0.6, 1, 2, 3, or 3.5 hours, wherein the duration of superhydrophobic behavior is determined to be the time when more than half of the water droplets applied to a portion of the surface subject to said shower do not roll off the surface when it is inclined at a 5 degree angle at room temperature,
    • wherein the shower test is conducted using a showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on a circular showerhead, and wherein the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa (20-45 psi cycle over 5 minutes), and wherein the coating placed about 1.5 meters below the showerhead.
  • 53. The coating of embodiment 52, wherein, when said coating is subjected to said continuous shower test for a period of time sufficient to lose superhydrophobic behavior, the coating regains superhydrophobic behavior following drying at 20° C. to 25° C. and one atmosphere of pressure, said shower testing and drying collectively comprising a single test cycle.
  • 54. The coating of embodiment 53, wherein said coating regains superhydrophobic behavior following more than 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, or 200 of said test cycles.
  • 55. A method according to embodiment 41 or 42, wherein applying according to step (b) is repeated to at least a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of step (b), the coated portion regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
  • 56. A method according to embodiment 41 or 42, wherein both steps (a) and (b) are repeated on at least a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of steps (a) and (b), the coated portion regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
  • 57. A coated surface, or a portion thereof, resulting from the process of embodiment 55 or 56.
  • 58. A product comprising an aerosol spray container (e.g., a metal canister) containing a first component according to any of embodiments 1 to 40 and a propellant.
  • 59. The product of embodiment 58, wherein the aerosol spray container comprises a valve assembly, a dip tube, and an actuator.
  • 60. A product comprising an aerosol spray container (e.g., a metal canister) containing a second component according to any of embodiments 1 to 40 and a propellant.
  • 61. The product of embodiment 60, wherein the aerosol spray container comprises a valve assembly, a dip tube, and an actuator.
  • 62. A product comprising an aerosol spray container according to embodiment 58 or 59, and a second aerosol spray container according to embodiment 60 or 61.

9.0 EXAMPLES Example 1 An HP/OP Elastomeric Coating

One part by weight of elastomeric coating (24% by weight of solids) supplied as clear liquid from PLASTI DIP™ International, Inc. (Blaine, Minn.) is combined with two parts by weight of xylene and mixed. The mixture of elastomer and xylene is divided into six aliquots and the indicated amounts of EXPANCEL 461 DET d25 (0.01% to 0.5% by weight based on the total weight of the elastomer and xylene mixture) is added to separate aliquots. The aliquots are mixed to form first component compositions. The first component compositions are sprayed onto individual aluminum plates to form a base coat. The base coated aluminum plates are then top coated with a second component consisting of a 2% (w/w) dispersion in acetone of fumed silica particles modified to render them hydrophobic by reacting them with tridecafluoro tetrahydroctyl trichloro silane (fumed silica to silane ration is 2:1 by weight). Test data for plates is summarized in the table below and the data is plotted in FIG. 5. Coatings formed from PLASTI DIP™ elastomer have a tensile strength of 3,740 psi (ASTM D-638), salt spray resistance greater than 1,000 hours (ASTM B-117) and elongation at break of 430% (ASTM D-638) without added first or second particles.

Data on HP/OP Elastomeric Coatings from Example 1

Approximate Taber Abraser EXPANCEL Glove Cycles to loss of SH behavior Shower wt % Rubs CS-0 wheel CS-10 wheel ( ) (hr)* 0.01% 100 22 (13) 0.03% 325 72 (43) 1 0.06% 700 156 (93)  2 0.10% 750 167 (100) 3.5 0.30% 500 111 (67)  3.5 0.50% 400 89 (53) 3.5 Taber cycles estimated based upon a value of 4.5 glove rubs per Taber cycle using CS-0 wheels and 7.5 glove rubs per Taber cycle (sample rotation) using CS-10 wheels. The number in parentheses is for the CS-10 data estimate. Taber load was 250 g. *Shower test was terminated at 3.5 hours.

Data in the table above and FIG. 5 show that the abrasion resistance (glove rub performance and estimated Taber cycles) reaches a maximum when about 0.1% of EXPANCEL particles are incorporated into the base coat. Shower time to loss of superhydrophobicity also increases with increasing amounts of EXPANCEL particles incorporated in the base coat. Shower time to loss of superhydrophobic behavior saturates beyond 0.1% addition.

Example 2

Six first component mixtures are prepared as in Example 1 using 0.1% of five different types of EXPANCEL particles (duplicate samples containing EXPANCEL 031 DU 400), and the first components are each applied to a different aluminum plate by spraying to form a base coat. The base coating on each plate is then top coated with a second component comprising a 2% (w/w) dispersion of fumed silica particles treated with tridecafluoro tetrahydroctyl trichlorosilane suspended in acetone. For samples containing EXPANCEL 031 DU 400) the aluminum plates were heated to 80° C. for 2-3 minutes either before or after the application of the second component to expand the EXPANCEL particles. Test data for the plates are summarized in the table of performance data, below, and plotted in FIG. 6.

Performance Data by Using 0.1% by Weight of Different EXPANCEL Particles in Elastomeric Coating

EXPANCEL Glove Taber Abraser Cycles to Shower type Rubs loss of SH behavior (hr) 461 DET d25 800 178 (106) 4 461 DE 40 d25 500 111 (67)  2.5 461 DET 40 d25 650 144 (87)  4 920 DE 80 d30 400 89 (53) 2.5 031 DU 40 75 17 (10) 0.5 (heated before top coating) 031 DU 40 75 17 (10) 0.5 (heated after top coating) Taber cycles estimated based upon a value of 4.5 glove rubs per Taber cycle using a 250 g load, CS-0 wheels and 7.5 glove rubs per Taber cycle (sample rotation) using CS-10 wheels. The number in parentheses is for the CS-10 data estimate.

Data in the table above and FIG. 6 show that incorporation of EXPANCEL 461 DET d25 and EXPANCEL 461 DET 40 d25 produces a combination of resistance to the loss of HP/OP when being handled (“handleability” assessed by glove rubs and resistance to Taber abrasion testing), and shower time to loss of superhydrophobicity. Unexpanded EXPANCELs 031 DU 40 did not show good performance. The shower times track closely and positively correlate with glove rubs and Taber cycles (higher glove rubs correspond to higher shower time).

Example 3 Scaled Preparation of Fumed Silica Second Particles

A series of aluminum plates primed with PLASTI DIP™ primer for metals according to the manufacturer's instructions are base coated as in Example 1, with 0.1% EXPANCEL 461 DET d25 particles added to the first component, which is applied by spraying. After the base coat has dried at room temperature, one set of plates is treated with a second component as in Example 1. The second component comprises 20 g of 20-80 nm fumed silica particles having a surface area of about 200m2/g (Evonik Industries, Horsham PA), treated in an Osterizer kitchen blender for 10minutes at room temperature with 10 g of tridecafluoro tetrahydroctyl trichloro silane. A second set of plates is also treated with a second component as in Example 1, using silica from the same supplier prepared in a larger batch using 5,000 g of the silica reacted with tridecafluoro tetrahydroctyl trichloro silane 2,500 g in a 10 kg reactor system at room temperature for 2-3 hours. In this example, after top coats are applied the plates are dried for 15 minutes at 170° F. (77° C.). Two plates treated with fumed silica prepared in the blender and two plates treated with fumed silica prepared in the reactor are subjected to thickness and surface roughness measurements. The point at which the plates lose superhydrophobic behavior is also determined using Taber Abraser equipped with CS-0 wheels at a 1,000 g load and using glove rub testing. Loss of superhydrophobic behavior is deemed to be the point at which more than half of the water droplets applied to the tested portion of a substantially planar surface inclined at 5 degrees from the horizontal do not roll off the plate.

Data on plates coated with fumed silica particles prepared in the blender is summarized in Table 7, and data on plates treated with fumed silica prepared in the reactor is shown in Table 8.

TABLE 7 Blender Grade NPT 74 Coating Coating Thickness Thickness (mils) Ra (mils) Ra Sample #1 Sample #1 Sample #2 Sample #2 0.73 2.61 1.1 3.267 0.67 2.66 1.01 3.337 0.49 0.82 0.76 1.08 Avg 0.6625 2.635 1.0025 3.302 Glove Rubs 600 Taber Abraser 50 cycles to loss of SH

TABLE 8 Reactor Grade NPT 74 Coating Coating Thickness Thickness (mils) Ra (mils) Ra Sample #1 Sample #1 Sample #2 Sample #2 0.92 3.246 1.07 3.027 1.35 3.259 0.94 2.35 0.88 0.86 1.01 0.88 Avg 1.04 3.2525 0.9375 2.6885 Glove Rubs 900 Taber Abraser 30 cycles to loss of SH

The data in Tables 7 and 8 indicate that superhydrophobic coatings prepared with fumed silicas produced in reactors on different scales display similar properties.

Example 4 Transparency and Haze

Glass plates are coated with a near transparent coating based on elastomeric binder systems as in Example 1 with the exception that the plate marked P does not include first particles (EXPANCEL particles) in the base coat (first component). The plate marked SE-1 contains 0.1% of EXPANCEL particles in the first component. Samples are tested for Haze value and Total Luminous Transmittance (TLT) values using the method described in ASTM D1003. The instrument is calibrated without a sample present using air as a standard. Calibration values are TLT=100 and Haze=0. Clear, clean, uncoated glass plates have average readings of TLT=90.6 and a haze reading of 0.18. Plates lacking first particles (P-coat) have about the same transparency as clear clean glass. The presence of EXPANCEL particles in the base coat reduces the transparency by about 10%. The coating haze increases from about 0.18 for glass to about 61% for coatings without first particles and to about 90% for coatings including EXPANCEL particles in the base coating. See Table 9.

TABLE 9 Average Reading 1 Reading 2 Reading 3 Readings P-Coat Sample (no first particles) Transmittance 90.50 90.30 90.40 90.4 Haze 60.70 62.40 60.80 61.30 SE-1 Sample (first particles included in the base coat) Transmittance 80.00 79.10 80.10 79.73 Haze 88.60 90.80 89.30 89.57

Example 5 Effect of Coating Thickness

Six aluminum plates (10 cm×10 cm) are primed with PLASTI DIP™ primer for metal (product f938 hp). Pairs of the primed plates are spray coated with first component as in Example 1 (0.1% EXPANCELs) to achieve a base coat thicknesses of about 1, 1.5, or 2.6 ml respectively. One plate at each coating thickness is top coated with 2 ml of the second component as described in Example 1, and the second plate at each coating thickness is top coated with 4 ml of second component. Coating thicknesses, which include the primer thickness, and Taber Abraser data are summarized in Table 10A and data is plotted in FIG. 7.

TABLE 10A Data summary for plates made with varying coating thicknesses Volume of Passes of Final Tabers (CS-10) Topcoat Base Thickness to end of super- Sample (mL) Coat (mil) hydrophobicity Notes 1.1 2 1 0.55 35 some tearing 2.1 2 3 1.5 35 no tearing 3.1 2 5 2.6 35 no tearing 1.2 4 1 0.9 45 some tearing 2.2 4 3 2.2 50 no tearing 3.2 4 5 2.9 50 no tearing

Based on the data above, 2 ml of top coat (0.02 ml/cm2) produces no benefits in performance improvement at any thickness. However, when the top coat is increased to 4 ml (0.04 ml/cm2), it provides an adequate performance that increases with coating thickness. While not wishing to be bound by any theory, it appears that at the higher application rate the top coat penetrates to some depth into the base coat. When only 2 ml (0.02 ml/cm2) is applied the coating may be sufficient to just cover the base coat, but not enough to permit the second particles to penetrate at any significant level that will increase the durability of SH performance. In addition, when the base coat is very thin, tearing becomes the failure mode.

Example 6 Effect of Priming with Polyurethane Primer

Aluminum plates are primed with a two-part polyurethane coating (DESMOPHEN 670BA with DESMODUR N75 BA-XBMS, Bayer Material Science) prepared and applied per manufacturer's instructions. An elastomeric coating as described in Example 1 (0.1% of EXPANCEL 461 DET d25) is employed in the first component. Coated plates are measured for coating thickness (including primer thickness) and their ability to resist the loss of superhydrophobic behavior using a Taber Abraser fitted with CS-10 (abrasive) wheels and CS-0 (soft rubber) wheels at a 1,000 g load is recorded. All end points for loss for superhydrophobic behavior are measured for water droplet roll off with the plates inclined at 5 degrees from the horizontal (5 degree tilt angle). Test data is summarized in Table 10B.

TABLE 10B Summary of data on Al plates primed with two-part polyurethane as primer Sample 1 2 3 Total Coating Total Coating Total Coating and Primer and Primer and Primer Thickness Thickness Thickness (mils) (mils) (mils) 3.25 3.13 4.7 3.13 3.06 4.9 3 3.1 4.16 3.32 3.45 4.24 4.15 4.01 4.47 Avg Thickness 3.37 3.35 4.494 CS-10 Wheel CS-0 Wheel Glove Rubs Tabers CS-10 40 Tabers CS-0 40 Glove Rubs >1000

Example 7 Nearly Transparent HP/OP Elastomeric Coating with Various First Particles

Elastomeric coatings are prepared on aluminum test plates as described in Example 1, with the exception that the first component contains first particles as indicated in Table 11. The test plates are assessed for loss of superhydrophobic behavior using glove rubs as a rapid test for assessment of handleability and abrasion resistance/durability. Test data for all coated plates are summarized in Table 11.

TABLE 11 Summary of data for non near transparent elastomeric binder system based coatings Taber Abraser Particle Amount Glove Predicted Particle Particle Size weight Rubs cycles with Designation Type (micron) (%) (#s) CS-0 wheel* EXPANCEL Thermo- 10-40 0.01 100 22 DET plastic Encapsu- lated with gas EXPANCEL Thermo- 10-40 0.1 750 167 DET plastic Encapsu- lated with gas EXPANCEL Thermo- 10-40 0.5 400 89 DET plastic Encapsu- lated with gas Hollow Hollow 25-90 0.5 800 178 Glass glass Spheres spheres K25 Hollow Hollow 15-70 0.5 >400 >89 Glass glass Spheres spheres K46 *Projected based on GR/CS-0 = 4.5

Thermoplastic particles and hollow glass particles yield similar performance in increasing coating durability.

Example 8 Non-Transparent Elastomeric Coatings Prepared with Micronized Rubber First Particles

PLASTI DIP™ (24% solids by weight) elastomeric coating (5 parts by weight of the liquid as provided by the supplier) is combined with seven parts by weight of xylene and mixed. To the resulting mixture of elastomer and xylene, micronized rubber particles (Lehigh Technology, Tucker, Ga.) about 4% or about 7.7% by weight are added to separate aliquots (based on the weight of the elastomer and xylene combined). The particles are mixed into each aliquot to form first component compositions. The first component compositions are applied to separate aluminum plates to form base coats, and the base coats are top coated with a second component as described in Example 1.

Test data showing resistance to the loss of superhydrophobicity based on glove rub testing and Taber testing for the coatings incorporating rubber particles is provided in Table 12. That data shows the incorporation of elastomeric binder used in this example with micronized rubber particles produces highly durable surfaces that show increasing resistance to the loss of hydrophobicity with increasing amounts of rubber first particles incorporated into the binder up to at least 7.69%.

TABLE 12 Summary of data on non near transparent elastomeric binder based coatings Particle Amount Glove Taber Abraser Particle Particle Size weight Rubs cycles with Designation Type (μm) (%) (#s) CS-0* Micronized Ground 70 4 1450 191 Rubber Rubber particles Micronized Ground 70 7.69 1800 237 Rubber Rubber particles *Projected based on GR/CS-0 wheel ratio of 7.6 for a 250 g load at 95 rpm.

Example 9 Non-Transparent Elastomeric Coating with Micronized Rubber Particles with and without Primer

Elastomeric coatings are prepared as in Example 8 employing 7.69% of micronized rubber by weight in the first component. The coatings are applied to clean but unprimed aluminum plates or aluminum plates that have been treated with an elastomeric metal primer (PLASTI DIP™ metal primer) per the manufacturer's instructions. All plates are substantially planar. The top coating step is the same as in Example 8 and Example 1. The coated plates are assessed for resistance to the loss of SH behavior using a Taber Abraser fitted with CS-0 wheels or CS-10 wheels (as indicated) using 1,000 g loads at 95 rpm, resistance to the loss of SH behavior using glove rubs, and coating thickness, which is measured including primer where present. The appearance of coating failures is also recorded for each plate and the data set forth in Table 13.

TABLE 13 Observations from Taber Abraser Testing of Plates With and Without Primer Coating Without Primer Coating Thickness without primer (mil) Comments Taber CS-0  6 cycles 1.5 Rips and Tears Taber CS-10 10 cycles 1.5 Rips and Tears Glove Rubs 1200 1.5 No Rips or Tears With primer Coating With Elastomeric Primer with elastomeric Coating Thickness primer (mil) Comments Taber CS-0 50 cycles 1.75 No Rips or Tears Taber CS-10 40 cycles 1.65 No Rips or Tears Glove Rubs 1600 1.75 No Rips or Tears

The data indicates that samples with and without primer resist the loss of superhydrophobicity with a very large number of glove rubs. Taber Abraser testing results in a loss of that property due to ripping and/or tearing of the coating in the absence of primer. Loss of superhydrophobic behavior is assessed using the above-described droplet run off test with plates inclined at 5 degrees from the horizontal. Priming of the metal surfaces increases the number of Taber cycles the test samples can withstand without losing superhydrophobic behavior by about 4 to about 8 fold, regardless of whether non-abrasive rubber (CS-0) or abrasive (CS-10) wheels are employed.

Example 10 Thermal Stability of Elastomeric Coatings

Elastomeric coatings incorporating EXPANCELs as in Example 1, or micronized rubber as in Example 8, are scraped from their plates and used for thermogravimetric analysis (TGA). TGA data for the coatings is plotted in FIGS. 10 and 11, respectively. Details of the test conditions are listed inside each of the graphs. Data from these charts show the following:

1. The coating containing EXPANCEL is stable up to 241° C. (465° F.)

2. The coating containing micronized rubber is stable up to 261° C. (502° F.)

Based upon the data presented above the coatings may be used up to temperatures of 200° C. or 400° F.

Example 11 HP/OP Coatings Employing Varying Proportions of a Styrenic Block Copolymer and Tackifier

Three styrenic block copolymers (SBCs), FG 1901, FG 1924 and RP 6670, each obtained from KRATON®, are dissolved in xylene at 20% by weight. Regalrez™ 1094 tackifier, obtained from Eastman Chemical Company, is dissolved in xylene at 20% by weight. Varying ratios of SBCs and tackifier solutions are mixed and UV stabilizers and antioxidants, 0.1% Irganox® 1520L, 0.056% Tinuvin® 328, and 0.056% Tinuvin® 770DF (% by weight), are added.

Each of the mixtures of SBCs and tackifier formed is used as a first component and HP/OP coatings are prepared as in Example 1, using 0.1% EXPANCEL particles as first particles. The HP/OP coatings were tested for durability using a Taber Abraser equipped with CS-10 wheels and a 1,000 g load. The results are shown in Table 14.

TABLE 14 FG 1901/ FG 1924/ RP 6670/ Regalrez 1094 Regalrez 1094 Regalrez 1094 Glove Taber Glove Taber Glove Taber Ratio Rubs cycles Ratio Rubs cycles Ratio Rubs cycles 43/57 300 35 25/75 300 30 25/75 500 30 50/50 400 40 50/50 750 35 33/66 500 40 57/43 550 45  66/33* 800 20 50/50 750 45 66/33 1000 60 66/33 1500 50  75/25* 350 35  75/25* 1000 50  90/10* 600 25 100/0*  600 25 *Taber testing induced tearing.

Example 12 HP/OP Coatings Employing Maleated Styrene-Ethylene/Butylene-Styrene (SEBS) Block Copolymers

Coatings were prepared using first components comprising maleated SBCs (e.g., maleated SEBS block copolymers)

TABLE 15 Total Component Parts by Weight Exemplary Composition Base Coat (Total of 100 Components Component parts) (By weight where given) Maleated SBC 7 to 9 One or more maleated Styrene- Ethylene/Butylene-Styrene (SEBS) Block Copolymers (e.g., Kraton FG 1901, FG 1924 and/or RP 6670♦) Tackifier 3.5 to 7 Nonpolar hydrogenated hydrocarbon resin (e.g., produced by polymerization and hydrogenation of monomeric hydrocarbons) or esterified hydrogenated rosin. e.g., Eastman Regalrez ™ 1094 or Foral ™ 105E Antioxidant(s) 0.05 to 0.2 Antioxidant(s) (e.g., phenolic or hindered phenolic antioxidants e.g., Irganox 1520L First Particles 0.05 to 20 Expancel 461 DET 40 d25 (0.05-0.2%) SoftSand 5-15% Glass bubbles (e.g., K1, S22, or A16/500) 1%-10% UV 0.05 to 0.5 e.g., Tinuvin ® 328 and/or 770DF stabilizer(s) Solvent Bring to 100 xylene (or mixed xylenes), acetone, parts total n-hexane (or mixed hexanes), including all 1-chloro-4-(trifluoromethyl)- other components benzene or mixtures thereof Top Coat Component Parts by weight Source Reactor Grade 0.05 to 6.0 Ross Technology -- see Example 3 NPT 74 (e.g., 2%) Solvent Bring to 100 xylene (including mixed xylenes or parts by weight technical grade), acetone, n-hexane total including (or mixed hexanes), 1-chloro-4- all other (trifluoromethyl)-benzene or components mixtures thereof ♦RP 6670 is a maleated form of KRATON series A polymers, which are hydrogenated block copolymers having styrene copolymerized with ethylene/butylene in the midblock (S-(EB/S)-S). Styrenic block copolymers (SBCs FG 1901, FG 1924 and RP 6670, each obtained from KRATON ®), tackifier (Regalrez ™ 1094 or FORAL ™ 105E obtained from Eastman Chemical Company), UV stabilizers (e.g., Tinuvin ® 328 and/or 770DF from BASF), antioxidants (e.g., Irganox ® 1520L) and first particles are dissolved/suspended in solvent using solvent to adjust the total components by weight to 100 parts.

The HP/OP coatings were tested for durability using a Taber Abraser equipped with CS-10 wheels and a 1,000 g load. The results are shown in Table 14.

Claims

1. A system for forming a coating comprising:

A) a first component which comprises i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight; ii) one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein the first component comprises from about 0.01% to about 5% of said first particles by weight; and iii) one or more solvents; and
B) a second component which either comprises i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, and ii) optionally, one or more solvents;
or comprises per 100 parts by weight: i) 0.1 to 3.5 parts by weight of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles either comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound directly or indirectly to said second particles, or comprise one or more siloxanes or silazanes associated with said second particles; ii) 0.1 to 1.0 parts by weight of a fluorinated polyolefin; or  0.06 to 0.6 parts by weight of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and iii) one or more solvents for a total of 100 parts by weight;
wherein a coating formed by
(a) applying the first component to at least a portion of a surface, wherein the portion of the surface has optionally been treated with a primer on all or part of the surface to which said first component is to be applied; and
(b) applying the second component to all or a portion of the surface coated with the first component in step (a),
results in a coating that has an elongation at break greater than about 200%, an arithmetical mean roughness value from about 3 microns to about 20 microns, or a ten point mean roughness from about 7 microns to about 100 microns, and a total luminous transmittance of about 75% to about 85% as measured by ASTM D1003-11 for a coating about 25 microns thick without added colorants; and
wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is oleophobic or superoleophobic.

2. The system for forming a coating according to claim 1 comprising: an aerosol spray container containing the first component and a propellant and/or an aerosol spray containing the second component and a propellant.

3. A method of forming a hydrophobic coating on a portion of a surface comprising the steps:

(a) applying a first component to at least a portion of the surface, wherein the portion of the surface has optionally been treated with a primer on all or part of the surface to which said first component is to be applied; and
(b) applying a second component to all or a portion of the surface coated with the first component in step (a),
wherein the first component comprises i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight; ii) one or more independently selected first particles having a size of about 30 microns to about 225microns, wherein the first component comprises from about 0.2% to about 5% of said first particles by weight; and iii) one or more solvents;
wherein the second component either comprises: i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, and ii) one or more solvents;
or comprises per 100parts by weight: i) 0.1to 3.5parts by weight of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles either comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, directly or indirectly to said second particles, or comprise one or more siloxanes or silazanes associated with said second particles; ii) 0.1 to 1.0 parts by weight of a fluorinated polyolefin; or  0.06 to 0.6 parts by weight of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and iii) one or more solvents for a total of 100 parts by weight;
wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is oleophobic or superoleophobic; and
wherein the coating formed by said method has an elongation at break greater than about 200%, an arithmetical mean roughness value from about 3 microns to about 20 microns, or a ten point mean roughness from about 7 microns to about 100 microns, and a total luminous transmittance of about 75% to about 85% as measured by ASTM D1003-11for a coating about 25 microns thick without added colorants.

4. The method of claim 3, wherein one or more of the styrenic block copolymers has a rubber phase crosslinked to a polystyrene phase.

5. The method of claim 4, wherein said rubber phase comprises 60%-80% of the styrenic block copolymers in the elastomeric binder by weight, based on the dry weight of the styrenic block copolymers present in the first component not including any contribution by the first particles or other materials present in the first component.

6. The method of claim 3, wherein one or more of the styrenic block copolymers has a rubber phase comprising polybutadiene, polyisoprene, polyolefin or a mixture of any of those rubber phase components, any one or more of which may optionally comprise 1% to 3% of maleic anhydride.

7. The method of claim 3, wherein said first component further comprises one or more colorants, UV stabilizers, antioxidants, rheological agents, and/or fillers.

8. The method of claim 3, wherein said first component further comprises up to 30% by weight of one or more tackifiers, wherein said one or more styrenic block copolymers and said one or more tackifiers together comprise up to about 30% by weight of said first component.

9. The method of claim 3, wherein said elastomeric binder comprises one or more triblock copolymers.

10. The method of claim 3, wherein said elastomeric binder comprises one or more styrenic block copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight, or mixtures of any two or more of such triblock copolymers.

11. The method of claim 3, wherein one or more of said styrenic block copolymers present in the elastomeric binder comprise maleic anhydride or a first and a second maleated triblock copolymer of styrene and ethylene/butylene wherein:

said first maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content from about 8% to about 14%, with 0.4% to 1.6% substitution of maleic anhydride by weight of the first triblock copolymer; and
said second maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content of about 22% to about 32%, with 1.1% to 2.5% substitution of maleic anhydride by weight of the second triblock copolymer.

12. The method of claim 3, wherein said first particles are selected from the group consisting of: glass, ceramic, rubber, plastic, thermoplastic, wood, cellulose, metal oxides, silicon dioxide, silicates, tectosilicates, germanium dioxide, plastic particles, carbide particles, nitride particles, boride particles, spinel particles, diamond particles, fly ash particles, fibers, hollow glass spheres, hollow glass particles, and hollow plastic particles, wherein said first particles optionally comprise a colorant.

13. The method of claim 3, wherein said second particles comprise a metal oxide, an oxide of a metalloid, a silicate, or a glass, wherein said second particles have an average size in the range of from 1 nm to 100 nm or from 2 nm to 200 nm.

14. The method of claim 3, wherein said one or more moieties result from contacting the second particles with one or more silanizing agents of formula (I):

R4-nSi—Xn  (I)
where n is an integer from 1 to 3; each R is independently selected from (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms, (ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents, (iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents, (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo, alkoxy, and haloalkoxy substituents, (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, or (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4; each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group; each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.

15. The method of claim 14, wherein R is —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.

16. The method of claim 14, wherein n is 3.

17. The method of claim 3, wherein said second particles are treated with an agent selected from the group consisting of: (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; nonafluorohexyldimethyl(dimethylamino)silane; dimethyl dichlorosilane; hexamethyldisilazane; octyltrimethoxysilane, and polydimethylsiloxane.

18. The method of claim 3, wherein said first component and said second component each further comprises an independently selected solvent and/or propellant.

19. The method of claim 3, wherein said elastomeric binder has an ultimate strength greater than about 20 Mega Pascals (MPa) according to ASTM D412.

20. The method according to claim 3, wherein applying according to step (b) is repeated to a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of step (b), the coated surface regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.

21. The method according to claim 3, wherein both steps (a) and (b) are repeated on a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of steps (a) and (b), the coated surface regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.

22. A hydrophobic coating prepared by the method according to claim 3.

23. The hydrophobic coating of claim 22, wherein said coating is superhydrophobic or superhydrophobic and superoleophobic.

24. The hydrophobic coating according to claim 22, wherein said coating has an ultimate strength greater than about 20 mega Pascals (MPa) according to ASTM D412.

25. The hydrophobic coating according to claim 22, wherein said coating has a modulus at 100% elongation of greater than 10 mega Pascals (MPa) according to ASTM D412.

26. The hydrophobic coating according to claim 22, having an elongation at break of greater than about 300%.

27. The hydrophobic coating according to claim 22, having a total luminous transmittance of about 75% to about 85% and a haze of about 85% to about 90% as measured by ASTM D1003-11 for a coating about 25 microns thick without added colorants.

28. The hydrophobic coating according to claim 22, wherein said coating is superhydrophobic and retains its superhydrophobicity after being subjected to greater than 20 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 250 gram load at room temperature, wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.

29. The hydrophobic coating according to claim 22, wherein said coating is superhydrophobic and when said coating is applied to a planar surface, it continues to display superhydrophobic behavior after being subjected to a continuous shower test of about six liters of water per minute at about 20° C.-25° C. for greater than 0.3 hours, wherein the end of superhydrophobic behavior is determined to be the time when more than half of the water droplets applied to a portion of the surface subject to said shower do not roll off the surface when it is inclined at a 5 degree angle at room temperature,

wherein the shower test is conducted using a showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3nozzles about a central point on a circular showerhead, and wherein the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa, and wherein the coating is placed about 1.5 meters below the showerhead.
Referenced Cited
U.S. Patent Documents
870439 November 1907 Kade
2191701 February 1940 Wood
2976386 March 1961 Salton Lewis
3185426 May 1965 Bjerke
3212106 October 1965 Noel
3244541 April 1966 Fain et al.
3354022 November 1967 Dettre et al.
3579540 May 1971 Ohlhausen
3716502 February 1973 Loew
3931428 January 6, 1976 Reick
3950588 April 13, 1976 McDougal
3963349 June 15, 1976 Albright et al.
3967030 June 29, 1976 Johnson et al.
3975197 August 17, 1976 Mikelsons
3976572 August 24, 1976 Reick
3980153 September 14, 1976 Andrews
4142724 March 6, 1979 Reick
4151327 April 24, 1979 Lawton
4199142 April 22, 1980 Reick
4301197 November 17, 1981 Franz et al.
4301213 November 17, 1981 Davies
4308353 December 29, 1981 Saito et al.
4311755 January 19, 1982 Rummel
4377665 March 22, 1983 Shiraki et al.
4397988 August 9, 1983 Sherman
4415405 November 15, 1983 Ruddle et al.
4451619 May 29, 1984 Heilmann et al.
4453533 June 12, 1984 Scheidler et al.
4474852 October 2, 1984 Craig
4492217 January 8, 1985 Scheidler
4536454 August 20, 1985 Haasl
4581149 April 8, 1986 Horodysky et al.
4591530 May 27, 1986 Lui
4614464 September 30, 1986 Christensen
4624900 November 25, 1986 Fau
4646948 March 3, 1987 Jennings
4680173 July 14, 1987 Burger
4687707 August 18, 1987 Matsuo et al.
4716183 December 29, 1987 Gamarra et al.
4733843 March 29, 1988 Bessinger
4738426 April 19, 1988 Bessinger
D295950 May 31, 1988 Johnston
4745139 May 17, 1988 Haasl
4749110 June 7, 1988 Maeno et al.
4753977 June 28, 1988 Merrill
4782112 November 1, 1988 Kondo et al.
4835014 May 30, 1989 Roth et al.
4837260 June 6, 1989 Sato et al.
4855176 August 8, 1989 Ohwaki et al.
4870907 October 3, 1989 McKee
4923260 May 8, 1990 Poulsen
4971912 November 20, 1990 Buhl et al.
4983459 January 8, 1991 Franz et al.
5011727 April 30, 1991 Kido et al.
5011963 April 30, 1991 Ogawa et al.
5032641 July 16, 1991 Nanishi et al.
5041304 August 20, 1991 Kusano et al.
5057050 October 15, 1991 Hill
5084191 January 28, 1992 Nagase et al.
5104938 April 14, 1992 Toyama et al.
5112911 May 12, 1992 Mori et al.
5121134 June 9, 1992 Albinson et al.
5156611 October 20, 1992 Haynes et al.
5192603 March 9, 1993 Slater et al.
5202361 April 13, 1993 Zimmerman et al.
5212215 May 18, 1993 Nanri et al.
5225274 July 6, 1993 Ogawa et al.
5228764 July 20, 1993 Cherry et al.
5228905 July 20, 1993 Grunewalder et al.
5238746 August 24, 1993 Soga et al.
5240774 August 31, 1993 Ogawa et al.
5274159 December 28, 1993 Pellerite et al.
5284707 February 8, 1994 Ogawa et al.
5294252 March 15, 1994 Gun
5300239 April 5, 1994 Ozaki et al.
5308705 May 3, 1994 Franz et al.
5312573 May 17, 1994 Rosenbaum et al.
5314940 May 24, 1994 Stone
5316799 May 31, 1994 Brunken et al.
5317129 May 31, 1994 Taplan et al.
5324566 June 28, 1994 Ogawa et al.
5328768 July 12, 1994 Goodwin
5338345 August 16, 1994 Scarborough et al.
5348547 September 20, 1994 Payne et al.
5352733 October 4, 1994 Hart
5362145 November 8, 1994 Bird et al.
5364299 November 15, 1994 Hill et al.
5366810 November 22, 1994 Merrifield et al.
5368892 November 29, 1994 Berquier
5372888 December 13, 1994 Ogawa et al.
5380585 January 10, 1995 Ogawa et al.
5385966 January 31, 1995 Hermansen et al.
5395657 March 7, 1995 Strepparola et al.
5424130 June 13, 1995 Nakanishi et al.
5429433 July 4, 1995 Bird et al.
5435839 July 25, 1995 Ogawa
5437894 August 1, 1995 Ogawa et al.
5437900 August 1, 1995 Kuzowski
5441338 August 15, 1995 Kane et al.
5441809 August 15, 1995 Akhter
5458976 October 17, 1995 Horino et al.
5466770 November 14, 1995 Audenaert et al.
5489328 February 6, 1996 Ono et al.
5500216 March 19, 1996 Julian et al.
5527536 June 18, 1996 Merkle et al.
5534580 July 9, 1996 Mitsui et al.
5539054 July 23, 1996 LaFleur
5540493 July 30, 1996 Kane et al.
5556667 September 17, 1996 Teranishi et al.
5558940 September 24, 1996 Michels et al.
5564809 October 15, 1996 Kane et al.
5576096 November 19, 1996 Ono et al.
5578361 November 26, 1996 Tsujioka et al.
5584957 December 17, 1996 Schultheis et al.
5585896 December 17, 1996 Yamazaki et al.
5599893 February 4, 1997 Asai et al.
5612433 March 18, 1997 Ono et al.
5618627 April 8, 1997 Merrifield et al.
5618883 April 8, 1997 Plamthottam et al.
5651921 July 29, 1997 Kaijou
5658969 August 19, 1997 Gerace
5674967 October 7, 1997 Goodwin
5679460 October 21, 1997 Schakenraad et al.
5688864 November 18, 1997 Goodwin
5697991 December 16, 1997 Frazer
5707740 January 13, 1998 Goodwin
5719226 February 17, 1998 Kegley
5725789 March 10, 1998 Huber et al.
5735589 April 7, 1998 Herrmann et al.
5747561 May 5, 1998 Smirnov et al.
5753734 May 19, 1998 Maruyama
5777043 July 7, 1998 Shafer et al.
5798144 August 25, 1998 Varanasi et al.
5800918 September 1, 1998 Chartier et al.
5813741 September 29, 1998 Fish et al.
5814411 September 29, 1998 Merrifield et al.
5824421 October 20, 1998 Kobayashi et al.
5830529 November 3, 1998 Ross
5840201 November 24, 1998 Elledge
5843338 December 1, 1998 Inoue et al.
5853690 December 29, 1998 Hibino et al.
5853800 December 29, 1998 Dombrowski et al.
5856378 January 5, 1999 Ring et al.
5858551 January 12, 1999 Salsman
5876806 March 2, 1999 Ogawa
5890907 April 6, 1999 Minasian
5910557 June 8, 1999 Audenaert et al.
5921411 July 13, 1999 Merl
5924359 July 20, 1999 Watanabe
5945482 August 31, 1999 Fukuchi et al.
5947574 September 7, 1999 Avendano
5948685 September 7, 1999 Angros
5952053 September 14, 1999 Colby
5958601 September 28, 1999 Salsman
5980990 November 9, 1999 Goodwin
6013724 January 11, 2000 Mizutani et al.
6017609 January 25, 2000 Akamatsu et al.
6017831 January 25, 2000 Beardsley et al.
6017997 January 25, 2000 Snow et al.
6020419 February 1, 2000 Bock et al.
6024948 February 15, 2000 Samain et al.
6025025 February 15, 2000 Bartrug et al.
6033738 March 7, 2000 Teranishi et al.
6040382 March 21, 2000 Hanes
6045650 April 4, 2000 Mitchnick et al.
6068911 May 30, 2000 Shouji et al.
6090447 July 18, 2000 Suzuki et al.
6093559 July 25, 2000 Bookbinder et al.
6096380 August 1, 2000 Takebe et al.
6105233 August 22, 2000 Neal
6114446 September 5, 2000 Narisawa et al.
6117555 September 12, 2000 Fujimori et al.
6119626 September 19, 2000 Miyazawa et al.
6120720 September 19, 2000 Meier et al.
6136210 October 24, 2000 Biegelsen et al.
6153304 November 28, 2000 Smith et al.
6162870 December 19, 2000 Yamada et al.
6187143 February 13, 2001 Juppo et al.
6191122 February 20, 2001 Lux et al.
6201058 March 13, 2001 Mahr et al.
6207236 March 27, 2001 Araki et al.
6214278 April 10, 2001 Yamada et al.
6221434 April 24, 2001 Visca et al.
6224974 May 1, 2001 Wuu
6228435 May 8, 2001 Yoshikawa et al.
6228972 May 8, 2001 Hikita et al.
6235383 May 22, 2001 Hong et al.
6235833 May 22, 2001 Akamatsu et al.
6245387 June 12, 2001 Hayden
6248850 June 19, 2001 Arai
6264751 July 24, 2001 Kamura et al.
6280834 August 28, 2001 Veerasamy et al.
6288149 September 11, 2001 Kroll
6291054 September 18, 2001 Thomas et al.
6333074 December 25, 2001 Ogawa et al.
6333558 December 25, 2001 Hasegawa
6337133 January 8, 2002 Akamatsu et al.
6340502 January 22, 2002 Azzopardi et al.
6342268 January 29, 2002 Samain
6352758 March 5, 2002 Huang et al.
6358569 March 19, 2002 Badyal et al.
6361868 March 26, 2002 Bier et al.
6376592 April 23, 2002 Shimada et al.
6379751 April 30, 2002 Schaefer et al.
6383642 May 7, 2002 Le Bellac et al.
6403397 June 11, 2002 Katz
6410673 June 25, 2002 Arai et al.
6419985 July 16, 2002 Ishizuka
6423372 July 23, 2002 Genzer et al.
6423381 July 23, 2002 Colton et al.
6432181 August 13, 2002 Ludwig
6451432 September 17, 2002 Azzopardi et al.
6458420 October 1, 2002 Akamatsu et al.
6458467 October 1, 2002 Mizuno et al.
6461537 October 8, 2002 Turcotte et al.
6461670 October 8, 2002 Akamatsu et al.
6462115 October 8, 2002 Takahashi et al.
6471761 October 29, 2002 Fan et al.
6476095 November 5, 2002 Simendinger, III
6479612 November 12, 2002 Del Pesco et al.
6482524 November 19, 2002 Yamamoto et al.
6488347 December 3, 2002 Bienick
6559234 May 6, 2003 Arai et al.
6564935 May 20, 2003 Yamamoto et al.
6566453 May 20, 2003 Arai et al.
6579620 June 17, 2003 Mizunno et al.
6582825 June 24, 2003 Amarasekera et al.
6584744 July 1, 2003 Schultheis et al.
6589641 July 8, 2003 Stirniman et al.
6596060 July 22, 2003 Michaud
6610363 August 26, 2003 Arora et al.
6613860 September 2, 2003 Dams et al.
6623863 September 23, 2003 Kamitani et al.
6641654 November 4, 2003 Akamatsu et al.
6649222 November 18, 2003 D'Agostino et al.
6652640 November 25, 2003 Asai et al.
6660339 December 9, 2003 Datta et al.
6660363 December 9, 2003 Barthlott
6660686 December 9, 2003 Inagaki et al.
6683126 January 27, 2004 Keller et al.
6685992 February 3, 2004 Ogawa et al.
6689200 February 10, 2004 Scarborough et al.
6692565 February 17, 2004 Johansen, Jr. et al.
6706798 March 16, 2004 Kobayashi et al.
6720371 April 13, 2004 Furuta et al.
6729704 May 4, 2004 Ames
6733892 May 11, 2004 Yoneda et al.
6743467 June 1, 2004 Jones et al.
6767984 July 27, 2004 Toui et al.
6770323 August 3, 2004 Genzer et al.
6780497 August 24, 2004 Walter
6786562 September 7, 2004 Obrock et al.
6793821 September 21, 2004 Lee et al.
6800354 October 5, 2004 Baumann et al.
6806299 October 19, 2004 Baumann et al.
6808835 October 26, 2004 Green et al.
6811716 November 2, 2004 Stengaard et al.
6811844 November 2, 2004 Trouilhet
6811884 November 2, 2004 Goodwin
6835778 December 28, 2004 Swisher et al.
6845788 January 25, 2005 Extrand
6852389 February 8, 2005 Nun et al.
6852390 February 8, 2005 Extrand
6855375 February 15, 2005 Nakagawa et al.
6855759 February 15, 2005 Kudo et al.
6858284 February 22, 2005 Nun et al.
6871923 March 29, 2005 Dietz et al.
6872441 March 29, 2005 Baumann et al.
6890360 May 10, 2005 Cote et al.
6923216 August 2, 2005 Extrand et al.
6926946 August 9, 2005 Ogawa et al.
6931888 August 23, 2005 Shekunov et al.
6938774 September 6, 2005 Extrand
6942746 September 13, 2005 Niejelow et al.
6966990 November 22, 2005 Chattopadhyay et al.
6976585 December 20, 2005 Extrand
6976998 December 20, 2005 Rizzo et al.
6982242 January 3, 2006 Liss et al.
6994045 February 7, 2006 Paszkowski
6998051 February 14, 2006 Chattopadhyay et al.
7004184 February 28, 2006 Handique et al.
7019069 March 28, 2006 Kobayashi et al.
7022416 April 4, 2006 Teranishi
7026018 April 11, 2006 Kranovich
7037591 May 2, 2006 Henze et al.
7048889 May 23, 2006 Arney et al.
7052244 May 30, 2006 Fouillet et al.
7056409 June 6, 2006 Dubrow
7057832 June 6, 2006 Wu et al.
7057881 June 6, 2006 Chow et al.
7074273 July 11, 2006 Shimomura et al.
7074294 July 11, 2006 Dubrow
7083748 August 1, 2006 Chattopadhyay et al.
7083828 August 1, 2006 Muller et al.
7109256 September 19, 2006 Amano et al.
7112369 September 26, 2006 Wang et al.
7124450 October 24, 2006 Davidson
7141276 November 28, 2006 Lehmann et al.
7144947 December 5, 2006 Camus et al.
7148181 December 12, 2006 Tanaka et al.
7150904 December 19, 2006 D'Urso et al.
7153357 December 26, 2006 Baumgart et al.
7157018 January 2, 2007 Scheidler
7166235 January 23, 2007 Majeti et al.
7175723 February 13, 2007 Jones et al.
7179758 February 20, 2007 Chakrapani et al.
7179864 February 20, 2007 Wang
7188917 March 13, 2007 Bienick
7198855 April 3, 2007 Liebmann-Vinson et al.
7204298 April 17, 2007 Hodes et al.
7211223 May 1, 2007 Fouillet et al.
7211313 May 1, 2007 Nun et al.
7211329 May 1, 2007 Metz et al
7211605 May 1, 2007 Coronado et al.
7213309 May 8, 2007 Wang et al.
D547640 July 31, 2007 Remmers
7238751 July 3, 2007 Wang et al.
7253130 August 7, 2007 Chiang et al.
7258731 August 21, 2007 D'Urso et al.
7264845 September 4, 2007 Papadaki et al.
7265180 September 4, 2007 Chang et al.
7265468 September 4, 2007 Mancl et al.
7268179 September 11, 2007 Brown
7273658 September 25, 2007 Benayoun et al.
7285331 October 23, 2007 Reihs et al.
7288311 October 30, 2007 Kawashima et al.
7288592 October 30, 2007 Stark et al.
7291653 November 6, 2007 Baumann et al.
7306895 December 11, 2007 Kano et al.
7309278 December 18, 2007 Shibata
7312057 December 25, 2007 Bookbinder et al.
7323033 January 29, 2008 Kroupenkine et al.
7338835 March 4, 2008 Bao
7342551 March 11, 2008 King
7344619 March 18, 2008 Helmeke
7344758 March 18, 2008 Franchina et al.
7344783 March 18, 2008 Shea
7354328 April 8, 2008 Lee
7354624 April 8, 2008 Millero et al.
7354650 April 8, 2008 Nakajima et al.
D568344 May 6, 2008 Baacke et al.
7368510 May 6, 2008 Lee et al.
7393515 July 1, 2008 Hoshino et al.
7396395 July 8, 2008 Chen et al.
7419615 September 2, 2008 Strauss
7449233 November 11, 2008 Arora
7468333 December 23, 2008 Kimbrell, Jr. et al.
7524531 April 28, 2009 Axtell, III et al.
7527832 May 5, 2009 Sakoske et al.
7531598 May 12, 2009 Müller et al.
7544411 June 9, 2009 Baumann et al.
D596931 July 28, 2009 Fernandez
D596932 July 28, 2009 Kleinsasser
7563505 July 21, 2009 Reihs
7568583 August 4, 2009 Wing et al.
7607744 October 27, 2009 Casoli et al.
D607020 December 29, 2009 Baacke et al.
D612404 March 23, 2010 Picken et al.
D612405 March 23, 2010 Eicher
D613316 April 6, 2010 Schmidt
7726615 June 1, 2010 Rutz
7731316 June 8, 2010 Wing
7748806 July 6, 2010 Egan
7919180 April 5, 2011 Furukawa
7989619 August 2, 2011 Guire et al.
8258206 September 4, 2012 Kanagasabapathy et al.
8286561 October 16, 2012 Driver et al.
8580884 November 12, 2013 Ding
8596205 December 3, 2013 Driver et al.
8715906 May 6, 2014 Blanchet et al.
8779025 July 15, 2014 Stone
9067821 June 30, 2015 Bleecher et al.
9096786 August 4, 2015 Sikka et al.
9139744 September 22, 2015 Sikka et al.
20010018130 August 30, 2001 Hayden
20010019773 September 6, 2001 Akamatsu et al.
20010024728 September 27, 2001 Kamitani et al.
20010030808 October 18, 2001 Komatsu et al.
20010055677 December 27, 2001 Wuu
20020001676 January 3, 2002 Hayden
20020034627 March 21, 2002 Jacquiod et al.
20020045007 April 18, 2002 Arora et al.
20020049276 April 25, 2002 Zwick
20020077412 June 20, 2002 Kobayashi et al.
20020111402 August 15, 2002 Mizuno et al.
20020115736 August 22, 2002 Koshy
20020161130 October 31, 2002 Arai et al.
20020177655 November 28, 2002 Pratt et al.
20020192472 December 19, 2002 Metz et al.
20020197490 December 26, 2002 Amidaiji et al.
20030009049 January 9, 2003 Smith et al.
20030013795 January 16, 2003 Nun et al.
20030021902 January 30, 2003 Yamamoto et al.
20030026972 February 6, 2003 Reihs
20030040243 February 27, 2003 Ward
20030040568 February 27, 2003 Furuta et al.
20030065093 April 3, 2003 Custro et al.
20030070677 April 17, 2003 Handique et al.
20030072723 April 17, 2003 Gers-Barlag et al.
20030073067 April 17, 2003 Bookfinder et al.
20030077533 April 24, 2003 Murota et al.
20030091809 May 15, 2003 Scarborough et al.
20030110976 June 19, 2003 Abidh et al.
20030117051 June 26, 2003 Kweon
20030119684 June 26, 2003 Tsao
20030125656 July 3, 2003 Davankov et al.
20030143339 July 31, 2003 Kobayashi
20030149218 August 7, 2003 Cote' et al.
20030166840 September 4, 2003 Urry et al.
20030170401 September 11, 2003 Shimomura et al.
20030176572 September 18, 2003 Maekawa et al.
20030179494 September 25, 2003 Kaneko
20030194565 October 16, 2003 Schaefer
20030203771 October 30, 2003 Rosenberg et al.
20040005469 January 8, 2004 Metz et al.
20040020104 February 5, 2004 Feldhege et al.
20040025747 February 12, 2004 Kamitani et al.
20040039128 February 26, 2004 Sasagawa et al.
20040050297 March 18, 2004 Kobayashi et al.
20040053058 March 18, 2004 Kamitani et al.
20040056575 March 25, 2004 Dietz et al.
20040097616 May 20, 2004 Hoppler et al.
20040102124 May 27, 2004 Suzuki
20040102588 May 27, 2004 Arai et al.
20040121168 June 24, 2004 Goodwin et al.
20040137814 July 15, 2004 Kimbrell, Jr. et al.
20040138083 July 15, 2004 Kimbrell, Jr. et al.
20040142557 July 22, 2004 Levy et al.
20040154106 August 12, 2004 Oles et al.
20040192844 September 30, 2004 Ikematsu et al.
20040201048 October 14, 2004 Seki et al.
20040202872 October 14, 2004 Fang et al.
20040209203 October 21, 2004 Kano et al.
20040213904 October 28, 2004 Muller et al.
20040216227 November 4, 2004 Papadaki et al.
20050000463 January 6, 2005 Mochizuki
20050004264 January 6, 2005 Tanabe
20050008859 January 13, 2005 Forgacs
20050009953 January 13, 2005 Shea
20050020763 January 27, 2005 Milic
20050022313 February 3, 2005 Scheidler
20050053793 March 10, 2005 Benay-Oun et al.
20050075020 April 7, 2005 Benayoun et al.
20050075455 April 7, 2005 Chang et al.
20050106762 May 19, 2005 Chakrapani et al.
20050121782 June 9, 2005 Nakamura et al.
20050143547 June 30, 2005 Stark et al.
20050165194 July 28, 2005 Benayoun et al.
20050170098 August 4, 2005 Baumann et al.
20050197447 September 8, 2005 Gu et al.
20050221098 October 6, 2005 Azzopardi et al.
20050239211 October 27, 2005 Uchihara et al.
20050245395 November 3, 2005 Tanaka et al.
20060013983 January 19, 2006 Sebastian et al.
20060029808 February 9, 2006 Zhai et al.
20060040164 February 23, 2006 Vyas et al.
20060051561 March 9, 2006 Badyal
20060052556 March 9, 2006 Franchina et al.
20060057390 March 16, 2006 Kittle et al.
20060058458 March 16, 2006 Hasskerl et al.
20060062695 March 23, 2006 Haab et al.
20060062929 March 23, 2006 Kittle et al.
20060081394 April 20, 2006 Li et al.
20060089466 April 27, 2006 Shimomura et al.
20060110541 May 25, 2006 Russell et al.
20060110542 May 25, 2006 Dietz et al.
20060113443 June 1, 2006 Remmers
20060147634 July 6, 2006 Strauss
20060147705 July 6, 2006 Huang et al.
20060151739 July 13, 2006 Sandner et al.
20060154048 July 13, 2006 Teranishi et al.
20060162373 July 27, 2006 McMillin et al.
20060172641 August 3, 2006 Hennige et al.
20060185555 August 24, 2006 Giessler et al.
20060205874 September 14, 2006 Uzee et al.
20060207032 September 21, 2006 Reiners et al.
20060213791 September 28, 2006 Holden
20060213792 September 28, 2006 Nguyen et al.
20060213849 September 28, 2006 Bienick
20060222865 October 5, 2006 Hoshino et al.
20060240218 October 26, 2006 Parce
20060263516 November 23, 2006 Jones et al.
20060266258 November 30, 2006 Asakura et al.
20060269758 November 30, 2006 Helmeke
20060281889 December 14, 2006 Kobayashi et al.
20060286305 December 21, 2006 Thies et al.
20060292345 December 28, 2006 Dave et al.
20070003705 January 4, 2007 Strauss
20070005024 January 4, 2007 Weber et al.
20070009657 January 11, 2007 Zhang et al.
20070014970 January 18, 2007 Nun et al.
20070026193 February 1, 2007 Luzinov et al.
20070036906 February 15, 2007 Reeve
20070046160 March 1, 2007 Egan
20070065668 March 22, 2007 Idei
20070075199 April 5, 2007 Stewart et al.
20070141114 June 21, 2007 Muisener et al.
20070141306 June 21, 2007 Kasai et al.
20070148407 June 28, 2007 Chen et al.
20070166513 July 19, 2007 Sheng et al.
20070172650 July 26, 2007 O'Rear, III et al.
20070172658 July 26, 2007 Deruelle et al.
20070172661 July 26, 2007 Fechner et al.
20070176379 August 2, 2007 Sonnendorfer et al.
20070196656 August 23, 2007 Rowell
20070202342 August 30, 2007 Whiteford et al.
20070213230 September 13, 2007 Pfeiffer et al.
20070215004 September 20, 2007 Kuroda et al.
20070218265 September 20, 2007 Harris et al.
20070224898 September 27, 2007 Deangelis et al.
20070231517 October 4, 2007 Golownia
20070238807 October 11, 2007 Safir et al.
20070259156 November 8, 2007 Kempers et al.
20070274871 November 29, 2007 Jiang
20070275245 November 29, 2007 Persson et al.
20070298216 December 27, 2007 Jing et al.
20080008838 January 10, 2008 Arpac et al.
20080012459 January 17, 2008 Picken et al.
20080015306 January 17, 2008 Wright et al.
20080018709 January 24, 2008 Takenaka et al.
20080020127 January 24, 2008 Whiteford et al.
20080021212 January 24, 2008 Whiteford et al.
20080032403 February 7, 2008 Saito et al.
20080039558 February 14, 2008 Lazzari et al.
20080039576 February 14, 2008 Griswold et al.
20080044635 February 21, 2008 O'Neill et al.
20080050567 February 28, 2008 Kawashima et al.
20080063870 March 13, 2008 O'Rear et al.
20080066648 March 20, 2008 Asakura et al.
20080070146 March 20, 2008 Fomitchev et al.
20080081858 April 3, 2008 Okazaki
20080088192 April 17, 2008 Hsu
20080090004 April 17, 2008 Zhang et al.
20080101041 May 1, 2008 Chang et al.
20080102347 May 1, 2008 Blunk
20080107864 May 8, 2008 Zhang et al.
20080131653 June 5, 2008 Lyons et al.
20080160257 July 3, 2008 Takada et al.
20080166549 July 10, 2008 Shieh et al.
20080171805 July 17, 2008 Mingarelli
20080172937 July 24, 2008 Palmer et al.
20080176991 July 24, 2008 Osawa et al.
20080193740 August 14, 2008 Nesbitt
20080197760 August 21, 2008 Leconte et al.
20080199657 August 21, 2008 Capron et al.
20080199659 August 21, 2008 Zhao
20080205950 August 28, 2008 Moorlag et al.
20080206550 August 28, 2008 Borlner
20080207581 August 28, 2008 Whiteford et al.
20080213601 September 4, 2008 Yamamoto et al.
20080220170 September 11, 2008 Van Der Flaas
20080220676 September 11, 2008 Marin et al.
20080221009 September 11, 2008 Kanagasabapathy et al.
20080221263 September 11, 2008 Kanagasabapathy et al.
20080226694 September 18, 2008 Gelbert et al.
20080237126 October 2, 2008 Hoek et al.
20080241512 October 2, 2008 Boris et al.
20080241523 October 2, 2008 Huignard et al.
20080245273 October 9, 2008 Vyorkka et al.
20080246804 October 9, 2008 Kawase et al.
20080248263 October 9, 2008 Kobrin
20080250978 October 16, 2008 Baumgart et al.
20080261024 October 23, 2008 Xenopoulos et al.
20080268233 October 30, 2008 Lawin et al.
20080269358 October 30, 2008 Inoue et al.
20080280699 November 13, 2008 Jarvholm
20080286556 November 20, 2008 D'Urso et al.
20080295347 December 4, 2008 Braham
20080296252 December 4, 2008 D'Urso et al.
20080306202 December 11, 2008 Lin et al.
20080310660 December 18, 2008 Lin
20090010870 January 8, 2009 Greiner et al.
20090011222 January 8, 2009 Xiu et al.
20090011227 January 8, 2009 Furukawa
20090011960 January 8, 2009 Wu
20090018249 January 15, 2009 Kanagasabapathy et al.
20090025508 January 29, 2009 Liao et al.
20090025609 January 29, 2009 Egami et al.
20090032088 February 5, 2009 Rabinowitz
20090035519 February 5, 2009 Gaeta et al.
20090036978 February 5, 2009 Kleiner et al.
20090042469 February 12, 2009 Simpson
20090058247 March 5, 2009 Collins et al.
20090064894 March 12, 2009 Baumgart et al.
20090076430 March 19, 2009 Simpson et al.
20090084574 April 2, 2009 Balfour et al.
20090084914 April 2, 2009 Picken et al.
20090085453 April 2, 2009 Daley et al.
20090087670 April 2, 2009 Peng et al.
20090095941 April 16, 2009 Nakata et al.
20090099301 April 16, 2009 Naraghi et al.
20090105409 April 23, 2009 Munzmay et al.
20090105679 April 23, 2009 Joubert et al.
20090111344 April 30, 2009 Murphy et al.
20090115302 May 7, 2009 Benz et al.
20090123728 May 14, 2009 Cheung et al.
20090134758 May 28, 2009 Vardon
20090136737 May 28, 2009 Ring et al.
20090142604 June 4, 2009 Imai et al.
20090155566 June 18, 2009 Gentleman et al.
20090162592 June 25, 2009 Baikerikar et al.
20090163637 June 25, 2009 Li et al.
20090182085 July 16, 2009 Escobar Barrios et al.
20090186070 July 23, 2009 Guire et al.
20090188877 July 30, 2009 Stewart
20090193743 August 6, 2009 Wiercinski
20090195136 August 6, 2009 Wing et al.
20090208739 August 20, 2009 Husemann et al.
20090212505 August 27, 2009 McMillin et al.
20090240004 September 24, 2009 Maier et al.
20090263604 October 22, 2009 Arai et al.
20090286023 November 19, 2009 Dobreski et al.
20090298369 December 3, 2009 Koene et al.
20090324910 December 31, 2009 Gemici et al.
20100001625 January 7, 2010 Eckartsberg et al.
20100003493 January 7, 2010 Cheng et al.
20100004373 January 7, 2010 Zhu et al.
20100006223 January 14, 2010 Krawinkel et al.
20100026156 February 4, 2010 Leconte et al.
20100052491 March 4, 2010 Vardon
20100102693 April 29, 2010 Driver et al.
20100109498 May 6, 2010 Ramm et al.
20100117502 May 13, 2010 Kang et al.
20100133970 June 3, 2010 Shin et al.
20100176703 July 15, 2010 Kim
20100181884 July 22, 2010 De La Garza et al.
20100196702 August 5, 2010 Furukawa
20100213334 August 26, 2010 Davenport
20100272913 October 28, 2010 Russell et al.
20100314575 December 16, 2010 Gao et al.
20100330347 December 30, 2010 Badyal et al.
20110020637 January 27, 2011 Ikishima et al.
20110027531 February 3, 2011 Uchida et al.
20110033662 February 10, 2011 Ikishima et al.
20110111656 May 12, 2011 Gao et al.
20110184082 July 28, 2011 Wright et al.
20110217544 September 8, 2011 Young et al.
20110243985 October 6, 2011 Pagani et al.
20110251318 October 13, 2011 Ishizaki et al.
20110303156 December 15, 2011 Sikka et al.
20110313082 December 22, 2011 Popp
20120009396 January 12, 2012 Sikka et al.
20120040577 February 16, 2012 Kissel et al.
20120045954 February 23, 2012 Bleecher et al.
20130139309 June 6, 2013 Bleecher et al.
20130216820 August 22, 2013 Riddle et al.
20140087134 March 27, 2014 Gesford et al.
20140296409 October 2, 2014 Sikka et al.
20140349061 November 27, 2014 Sikka et al.
20150005424 January 1, 2015 Jones et al.
20150030779 January 29, 2015 Bleecher et al.
20150097475 April 9, 2015 Sikka et al.
Foreign Patent Documents
2175848 December 1996 CA
2796305 December 2011 CA
10306891 August 2004 DE
10 2010 022 265 May 2010 DE
0 166 363 January 1986 EP
0 207 282 July 1987 EP
0 307 915 March 1989 EP
0 317 057 May 1989 EP
0 332 141 September 1989 EP
0 399 568 November 1990 EP
0 446 391 September 1991 EP
0 452 723 October 1991 EP
0 472 215 February 1992 EP
0 476 510 March 1992 EP
0 493 270 July 1992 EP
0 545 201 June 1993 EP
0 623 656 November 1994 EP
0 649 887 April 1995 EP
0 657 393 June 1995 EP
0 714 870 June 1996 EP
0 714 921 June 1996 EP
0 719 743 July 1996 EP
0 719 821 July 1996 EP
0 739 714 October 1996 EP
0 745 567 December 1996 EP
0 745 568 December 1996 EP
0 752 459 January 1997 EP
0 770 706 May 1997 EP
0 904 343 May 1997 EP
0 799 791 October 1997 EP
0 811 430 December 1997 EP
0 863 191 September 1998 EP
0 969 718 September 1998 EP
0 903 389 March 1999 EP
0 914 873 May 1999 EP
0 915 103 May 1999 EP
0 930 351 July 1999 EP
1 047 735 November 2000 EP
1 048 696 November 2000 EP
1 097 979 May 2001 EP
1 108 735 June 2001 EP
1 113 064 July 2001 EP
1 136 539 September 2001 EP
1 180 533 February 2002 EP
1 187 872 March 2002 EP
1 193 289 April 2002 EP
1 215 252 June 2002 EP
1 401 903 September 2002 EP
1 261 559 December 2002 EP
1 392 619 December 2002 EP
1 392 772 December 2002 EP
1 429 919 February 2003 EP
1 492 837 October 2003 EP
1 360 253 November 2003 EP
1 362 904 November 2003 EP
1 503 813 November 2003 EP
1 387 011 February 2004 EP
1 387 169 February 2004 EP
1 407 792 April 2004 EP
1 433 821 June 2004 EP
1 583 615 July 2004 EP
1 473 355 November 2004 EP
1 475 234 November 2004 EP
1 479 738 November 2004 EP
1 524 290 April 2005 EP
1 875 279 November 2006 EP
1 883 669 November 2006 EP
1 902 091 January 2007 EP
1 752 284 February 2007 EP
1 857 497 November 2007 EP
1 873 218 January 2008 EP
1 908 804 April 2008 EP
1 988 129 November 2008 EP
1 997 619 December 2008 EP
2 346 678 July 2011 EP
2 678 400 August 2012 EP
2 547 832 AO January 2013 EP
1 902 091 May 2013 EP
2 791 255 June 2013 EP
2 864 430 AO April 2015 EP
1 341 605 December 1973 GB
2 484 751 April 2012 GB
62-246960 October 1987 JP
H05-186738 July 1993 JP
H07-090691 April 1995 JP
H10-309768 November 1998 JP
2002-020575 October 2002 JP
2004162133 June 2004 JP
2004-143352 November 2004 JP
2004308984 November 2004 JP
2005082616 March 2005 JP
2006131938 May 2006 JP
2006-176559 September 2006 JP
2007144917 June 2007 JP
2007182491 July 2007 JP
2008228958 October 2008 JP
2009071672 April 2009 JP
2009-120792 September 2009 JP
10-2003-052853 June 2003 KR
10-2009-90240 October 2010 KR
175646 August 1994 MX
183533 December 1996 MX
192053 May 1999 MX
195031 January 2000 MX
199899 November 2000 MX
201072 March 2001 MX
203880 August 2001 MX
205074 November 2001 MX
PA01011653 December 2002 MX
215752 August 2003 MX
PA02006399 September 2003 MX
PA04010165 February 2005 MX
PA05006898 August 2005 MX
PA02012841 January 2006 MX
234477 February 2006 MX
PA06003323 March 2006 MX
WO 91-04305 April 1991 WO
WO 93-16131 August 1993 WO
WO 94-13734 June 1994 WO
WO 96-04123 February 1996 WO
WO 96-07621 March 1996 WO
WO 97-07993 March 1997 WO
WO 98-20960 May 1998 WO
WO 99-23137 May 1999 WO
WO 99-23437 May 1999 WO
WO 99-40431 August 1999 WO
WO 99-47578 September 1999 WO
WO 99-48339 September 1999 WO
WO 99-57185 November 1999 WO
WO 99-64363 December 1999 WO
WO 00-05321 February 2000 WO
WO 00-14297 March 2000 WO
WO 00-25938 May 2000 WO
WO 00-34361 June 2000 WO
WO 00-39240 July 2000 WO
WO 00-46464 August 2000 WO
WO 00-66241 November 2000 WO
WO 01-19745 March 2001 WO
WO 01-62682 August 2001 WO
WO 01-74739 October 2001 WO
WO 01-79142 October 2001 WO
WO 01-79371 October 2001 WO
WO 01-98399 December 2001 WO
WO 02-14417 February 2002 WO
WO 02-28951 April 2002 WO
WO 02-062910 August 2002 WO
WO 02-074869 September 2002 WO
WO 02-098983 December 2002 WO
WO 03-010255 February 2003 WO
WO 03-012004 February 2003 WO
WO 03-030879 April 2003 WO
WO 03-037702 May 2003 WO
WO 03-045693 June 2003 WO
WO 03-063646 August 2003 WO
WO 03-080258 October 2003 WO
WO 03-082998 October 2003 WO
WO 03-093568 November 2003 WO
WO 2004-012625 February 2004 WO
WO 2004-043319 May 2004 WO
WO 2004-058418 July 2004 WO
WO 2004-104116 December 2004 WO
WO 2004-110132 December 2004 WO
WO 2005-021843 March 2005 WO
WO 2005-023935 March 2005 WO
WO 2005-028562 March 2005 WO
WO 2005-068399 July 2005 WO
WO 2005-077429 August 2005 WO
WO 2006/044641 April 2006 WO
WO 2006-044642 April 2006 WO
WO 2006-081891 August 2006 WO
WO 2006-083600 August 2006 WO
WO 2006-101934 September 2006 WO
WO 2006-135755 December 2006 WO
WO 2007-011731 January 2007 WO
WO 2007-027276 March 2007 WO
WO 2007-052260 May 2007 WO
WO 2007-053266 May 2007 WO
WO 2007-056427 May 2007 WO
WO 2007-070801 June 2007 WO
WO 2007-075407 July 2007 WO
WO 2007-092746 August 2007 WO
WO 2007-102960 September 2007 WO
WO 2007-104494 September 2007 WO
WO 2007-126432 November 2007 WO
WO 2007-126743 November 2007 WO
WO 2007-130294 November 2007 WO
WO 2007-149617 December 2007 WO
WO 2008-004827 January 2008 WO
WO 2008-004828 January 2008 WO
WO 2008-006078 January 2008 WO
WO 2008-021791 February 2008 WO
WO 2008-035347 March 2008 WO
WO 2008-035917 March 2008 WO
WO 2008-050895 May 2008 WO
WO 2008-051221 May 2008 WO
WO 2008-066828 June 2008 WO
WO 2008-078346 July 2008 WO
WO 2008-106494 September 2008 WO
WO 2008-112158 September 2008 WO
WO 2008-123650 October 2008 WO
WO 2008-123955 October 2008 WO
WO 2008-123961 October 2008 WO
WO 2008-134243 November 2008 WO
WO 2008-137973 November 2008 WO
WO 2008-151991 December 2008 WO
WO 2008-153687 December 2008 WO
WO 2009-003847 January 2009 WO
WO 2009-005465 January 2009 WO
WO 2009-012116 January 2009 WO
WO 2009-018327 February 2009 WO
WO 2009-032988 March 2009 WO
WO 2009-037717 March 2009 WO
WO 2009-041752 April 2009 WO
WO 2009-061199 May 2009 WO
WO 2009-148611 December 2009 WO
WO 2009-158567 December 2009 WO
WO 2010/033288 March 2010 WO
WO2010/042191 April 2010 WO
WO 2010/042191 April 2010 WO
WO 2010-042668 April 2010 WO
WO 2011-116005 September 2011 WO
WO 2011/116005 December 2011 WO
WO 2011-151151 December 2011 WO
WO 2012-115986 August 2012 WO
WO 2013-090939 June 2013 WO
WO 2014-003852 January 2014 WO
WO 2015-048539 April 2015 WO
Other references
  • EXPANCEL DE product list, Oct. 2010.
  • Yield strength, elastic limit, and ultimate strength NPL document, retrieved Mar. 20, 2015.
  • Machine translation of JP 2004-143352, retrieved Aug. 6, 2015.
  • Machine translation of DE 10306891, retrieved Aug. 6, 2015.
  • Machine translation of JP 2006-176559, retrieved Aug. 6, 2015.
  • Machine translation of JP 2009-120792, retrieved Aug. 6, 2015.
  • Machine translation of JP 2002-020575, retrieved Aug. 6, 2015.
  • Prosecution History U.S. Appl. No. 14/323,660 Aug. 2015.
  • Prosecution History EP Patent Application No. 13 809 987.4 Aug. 2015.
  • KratonI M FG1901 Data Document Jun. 17, 2014.
  • KratonI M Polymers for Modification of Thermoplastics—available on the world wide web at http://docs.kraton.com/kraton/attachments/downloads/81311AM.pdf, last accessed Aug. 3, 2015.
  • U.S. Appl. No. 60/699,200, filed Jul. 14, 2005, Guire et al. (Innovative Surface Technologies, Inc.).
  • U.S. Appl. No. 60/807,143, filed Jul. 12, 2006, Guire et al. (Innovative Surface Technologies, Inc.).
  • U.S. Appl. No. 60/891,876, filed Feb. 27, 2007, Lawin et al. (Innovative Surface Technology, Inc.).
  • U.S. Appl. No. 61/058,902, filed Jun. 4, 2008, Driver et al.
  • U.S. Appl. No. 61/090,002, filed Aug. 19, 2008, Driver et al.
  • U.S. Appl. No. 61/133,273, filed Jun. 27, 2008, Driver et al.
  • U.S. Appl. No. 61/198,414, filed Jun. 16, 2009, Gao.
  • U.S. Appl. No. 61/216,540, filed May 18, 2009, Driver et al.
  • U.S. Appl. No. 61/252,229, filed Oct. 16, 2009, Gao.
  • U.S. Appl. No. 12/037,520 file history, now U.S. Pat. No. 7,943,234, filed Feb. 26, 2008, Lawin et al.
  • “Composition,” in Collins English Dictionary, found at http://www.credoreference.com/entry/hcengdict/composition, 2000 (viewed Aug. 26, 2013).
  • “NeverWet—product characteristics,” found at http://www.neverwet.com/product-characteristics.php, NeverWet LLC (viewed Mar. 7, 2013).
  • “Yield strength, elastic limit, and ultimate strength,” found at http://inventor.grantadesign.com/en/notes/science/material/S04%20strength.htm, Granta Design Ltd. (viewed Feb. 10, 2015).
  • 2009 R&D 100 Award Entry Form (p. 5 excerpt from another document) showing Fig. 1 Schematic of NICE (“no ice nanocoating”) (2009).
  • Bae et al., “Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent,” J Colloid Interface Sci, abstract only (May 3, 2009; epublication ahead of print).
  • Bayer Materials Science product information on Bayhydrol® 110 polyurethane dispersion (two first pages of this brochure) (Aug. 2002).
  • Bayer Materials Science product information on Bayhydrol® 122 polyurethane dispersion (Jan. 2004).
  • Bayer Materials Science product information on Bayhydrol® 124 polyurethane dispersion (Jan. 2004).
  • Bayer Materials Science product information on Bayhydrol® 140AQ, polyurethane dispersion (Aug. 2002).
  • Bayer Materials Science product information on Bayhydrol® A145, aqueous hydroxyl-functional polyurethane dispersion (Jan. 2010).
  • Beyler et al, “Thermal Decomposition of Polymers,” Chapter 7 of The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 1-110-1-131 (2002).
  • Bliznakov et al., “Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper,” Langmuir, 25(8):4760-4766, abstract only (Apr. 21, 2009).
  • Boinovich et al., “Principles of design of superhydrophobic coatings by deposition from dispersions,” Langmuir, 25(5):2907-2912, abstract only (Mar. 3, 2009).
  • Boinovich et al., “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
  • Bravo et al., “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23(13):7293-7298, abstract only (Jun. 19, 2007; epublished May 25, 2007).
  • Choi et al., “Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface,” Phys Rev Lett, 96(6):066001, abstract only (Feb. 17, 2006; epublished Feb. 16, 2006).
  • Clark, M.D.T. et al. “Paints and Pigments” available at nzic.org.nz/ChemProcesses/polymers/10D.pdf (copyright 2005-2008 at http://nzic.org.nz/ChemProcesses/polymers/).
  • de Givenchy et al., “Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers,” Langmuir, 25(11):6448-6453, abstract only (Jun. 2, 2009).
  • Du, “Surfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries,” in Coatings Technology Handbook, Third Edition, Tracton (ed.), CRC Press (2005).
  • EPO Communication dated Dec. 5, 2011, regarding third-party observations filed in European Application No. 09771098.2.
  • Extended European search report for European Application No. 920119918, dated Jul. 22, 1997.
  • Extended European search report for European Application No. 09771098.2, dated Dec. 27, 2011.
  • Extended European search report for European Application No. 09819518, dated Jul. 22, 2014.
  • Fürstner et al., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces,” Langmuir, 21(3):956-961, abstract only (Feb. 1, 2005).
  • García et al., “Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces; preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica,” J Am Chem Soc, 129(16):5052-5060, abstract only (Apr. 25, 2007; epublished Mar. 31, 2007).
  • Gonçalves et al., “Superhydrophobic cellulose nanocomposites,” J. Colloid Interface Sci, 324(1-2):42-46, abstract only (Aug. 2008; epublished May 7, 2008).
  • Guo et al., “A novel approach to stable superhydrophobic surfaces,” Chemphyschem, 7(8):1674-1677, abstract only (Aug. 11, 2006; epublished Jul. 17, 2006).
  • International Preliminary Report on Patentability for International Application No. PCT/US2009/048775, dated Jan. 13, 2011.
  • International Preliminary Report on Patentability for International Application No. PCT/US2010/059909, dated Apr. 21, 2011.
  • International Search Report and Written Opinion for International Application No. PCT/US2009/005512, dated Dec. 8, 2009.
  • International Search Report and Written Opinion for International Application No. PCT/US2009/048775, dated Nov. 19, 2009.
  • International Search Report and Written Opinion for International Application No. PCT/US2009/059909, dated Dec. 4, 2009.
  • International Search Report and Written Opinion for International Application No. PCT/US2010/048711, dated Mar. 17, 2011.
  • International Search Report and Written Opinion for International Application No. PCT/US2010/054936, dated Feb. 16, 2011.
  • International Search Report and Written Opinion for International Application No. PCT/US2010/070200, dated Feb. 27, 2013.
  • International Search Report and Written Opinion for International Application No. PCT/US2012/025982, dated Jun. 13, 2012.
  • International Search Report and Written Opinion for International Application No. PCT/US2013/031751, dated Dec. 23, 2013.
  • International Search Report and Written Opinion for International Application No. PCT/US2014/057848, dated Dec. 29, 2014.
  • Jauregui-Beloqui et al., “Thermoplastic polyurethane-fumed silica composites: influence of the specific surface area of fumed silica on the viscoelastic and adhesion properties,” Journal of Adhesive Science and Technology, 13(6):695-711, abstract only (1999).
  • Kietzig et al., “Patterned superhydrophobic metallic surfaces,” Langmuir, 25(8):4821-4827, abstract only (Apr. 21, 2009).
  • Kim et al., “A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold,” Chem Commun (Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
  • Kraton® FG1924 G Polymer, Data Document, Identifier K123DDe09U, the KRATON Polymers Group of Companies (Aug. 10, 2009).
  • Le Marechal et al., “Textile Finishing Industry as an Important Source of Organic Pollutants,” in Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update, Puzyn (ed.), Chapter 2, pp. 29-54, InTech (2012).
  • Lee et al., “Impact of a superhydrophobic sphere onto water,” Langmuir, 24(1):142-145, abstract only (Jan. 1, 2008; epublished Nov. 14, 2007).
  • Li et al., “Conversion of a metastable superhydrophobic surface to an ultraphobic surface,” Langmuir, 24(15):8008-8012, abstract only (Aug. 5, 2008; epublished Jul. 8, 2008).
  • Ling et al., “Stable and transparent superhydrophobic nanoparticle films,” Langmuir, 25(5):3260-3263, abstract only (Mar. 3, 2009).
  • Litvinov et al., “Structure of a PDMS Layer Grafted onto a Silica Surface Studied by Means of DSC and Solid-State NMR,” Macromolecules, 35(11):4356-4364 (2002).
  • Manca et al., “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir, 25(11):6357-6362, abstract only (Jun. 2, 2009).
  • Marmur, “Super-hydrophobicity fundamentals: implications to biofouling prevention,” Biofouling, 22(1-2):107-115, abstract only (2006).
  • Ming et al., “Toward Superlyophobic Surfaces,” Contact Angle, Wettability and Adhesion (ed. Mittal), vol. 6, pp. 191-205, Koninklijke Brill NV, Leiden (2009).
  • Nosonovsky et al., “Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions,” Langmuir, 24(4):1525-1533, abstract only (Feb. 19, 2008; epublished Dec. 12, 2007).
  • Park et al., “Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials,” J. Colloid Interface Sci, 336(1):298-303, abstract only (Aug. 1, 2009; epublished Apr. 15, 2009).
  • Perez, Jr., et al., “Performance and Processing Enhancements of Aromatic Polyurea Elastomer Systems Prepared from High 2,4'-MDI Isocyanates,” in Polyurethanes Conference 2000: Defining the Future Through Technology, Boston, Massachusetts, pp. 219-232 (Oct. 8-11, 2000).
  • Piret et al., “Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces,” Langmuir, 24(5):1670-1672, abstract only (Mar. 4, 2008; epublished Feb. 6, 2008).
  • Puukilainen et al., “Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures,” Langmuir, 23(13):7263-7268, abstract only (Jun. 19, 2007; epublished May 23, 2007).
  • Sakai et al., “Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces,” Langmuir, 22(11):4906-4909, abstract only (May 23, 2006).
  • Sherwin Williams Chemical Coatings product information for CC-D14, POLANE® 2.8T, plus polyurethane enamel (Oct. 19, 2006).
  • Sherwin Williams Chemical Coatings product information for CC-D5, POLANE® T, polyurethane enamel (Sep. 2001).
  • Sherwin Williams Chemical Coatings product information for CC-E14, POLANE® 700T, water reducible enamel (May 2010).
  • Shirtcliffe et al., “Wetting and wetting transitions on copper-based super-hydrophobic surfaces,” Langmuir, 21(3):937-943, abstract only (Feb. 1, 2005).
  • Smith et al., “Modeling of PDMS—Silica Nanocomposites,” NSTI-Nanotech, 3:115-118 (2004).
  • SSW Holding Company, Inc. v. Schott Gemtron Corporation, Civil Docket, Civil Action No. 3:12-cv-00661-CRS (as of Dec. 6, 2013).
  • SSW Holding Company, Inc. v. Schott Gemtron Corporation, Complaint for Patent Infringement, Demand for Jury Trial, Civil Action No. 3:12-cv-00661-CRS (Oct. 16, 2012).
  • Su et al., “From Suerhydrophophilic to Superhydrophobic: Controlling Wettability of Hydroxide Zinc Carbonate Film on Zinc Plates,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
  • Synytska et al., “Wetting on Fractal Superhydrophobic Surfaces from ‘Core-Shell’ Particles: a Comparison of Theory and Experiment,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
  • Torró-Palau et al., “Characterization of polyurethanes containing different silicas,” International Journal of Adhesion and Adhesives, 21(1):1-9, abstract only (2001).
  • Two webpages re pigment particle size: http://www.specialchem4coatings.com/tc/color-handbook/index.aspx?id=size and http://www.specialchem4coatings.com/tc/tio2/index.aspx?id=whiteness, SpecialChem, S.A. (printed Jul. 19, 2013).
  • Venkateswara et al., “Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method,” J Colloid Interface Sci, 332(2):484-490, abstract only (Apr. 15, 2009; epublished Jan. 14, 2009).
  • Wang et al., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity,” Chem Commun (Camb),7:877-879, abstract only (Feb. 21, 2008; epublished Dec. 18, 2007).
  • Yang et al., “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, 97(11):116103, abstract only (Sep. 15, 2006; epublished Septenber 14, 2006).
  • Zhang et al., “Application of superhydrophobic edge effects in solving the liquid outflow phenomena,” Langmuir, 23(6):3230-3235, abstract only (Mar. 13, 2007; epublished Jan. 25, 2007).
  • Zhou et al., “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings,” Journal of Materials Science, 39:1593-1594, abstract only (2004).
  • Prosecution History of U.S. Appl. No. 13/082,327, “Highly Durable Superhydrophobic, Oleophobic and Anti-Icing Coatings and Methods and Compositions for Their Preparation,” filed Apr. 7, 2011.
  • Prosecution History of U.S. Appl. No. 14/320,358, “Highly Durable Superhydrophobic, Oleophobic and Anti-Icing Coatings and Methods and Compositions for Their Preparation,” filed Jun. 30, 2014.
  • Prosecution History of U.S. Appl. No. 14/323,660, “Elastomeric Coatings Having Hydrophobic and/or Oleophobic Properties,” filed Jul. 3, 2014.
  • “Surfactant,” found at https://en.wikipedia.org/wiki/Surrfactant, Wikipedia (viewed Dec. 28, 2015).
  • “Taber® Test Method Reference,” found at http://www.taberindustries.com/documents/Taber Test Reference by Method.pdf (Jun. 2014, viewed Oct. 6, 2015) (2 pages).
  • Courbin et al., “Your wetting day,” Physics Today, 60(2):84 (Feb. 2007).
  • Extended European search report for European Application No. 12749985.3, dated Apr. 7, 2015.
  • Extended European search report for European Application No. 12857248.4, dated Apr. 7, 2015.
  • Kim et al., “A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold,” Chem Commun(Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
  • Kobayashi et al., Surface Tension of Poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-methylsiloxane], Macromolecules, 23:4929-4933 (1990).
  • Kovalchuk et al., “Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?,” Advances in Colloid and Interface Science, 210:65-71 (available online Apr. 13, 2014).
  • Kraton® FG1901 G Polymer, Data Document, Identifier K127DDh14U, the Kraton Polymers Group of Companies (Jun. 17, 2014).
  • Mohammadi et al., “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces,” Langmuir, 20:9657-9662 (available online Oct. 2, 2004).
  • Prosecution History of U.S. Appl. No. 13/082,319, filed Apr. 7, 2011, as downloaded on Jan. 5, 2016.
  • Prosecution History of U.S. Appl. No. 13/618,779, filed Sep. 14, 2012, as downloaded on Jan. 5, 2016.
  • Prosecution History of U.S. Appl. No. 13/972,034, filed Aug. 21, 2013, as downloaded on Jan. 5, 2016.
  • Prosecution History of U.S. Appl. No. 14/305,425, filed Jun. 16, 2014, as downloaded on Jan. 5, 2016.
  • Prosecution History of U.S. Appl. No. 14/320,315, filed Jun. 30, 2014, as downloaded on Jan. 5, 2016.
  • International Search Report and Written Opinion for International Application No. PCT/US2011/028541 (published as WO Publication No. 2011/116005), dated May 17, 2011.
  • Prosecution History of U.S. Appl. No. 14/837,253, filed Aug. 27, 2015.
Patent History
Patent number: 9346973
Type: Grant
Filed: Mar 28, 2014
Date of Patent: May 24, 2016
Patent Publication Number: 20140205804
Assignee: Ross Technology Corporation (Leola, PA)
Inventors: Andrew K. Jones (Lancaster, PA), Zenas W. Lim (Lancaster, PA), Andrew McLean (Coatesville, PA), Vinod K. Sikka (Oak Ridge, TN), Michael Hurley (Lancaster, PA)
Primary Examiner: Callie Shosho
Assistant Examiner: Michael B Nelson
Application Number: 14/229,047
Classifications
Current U.S. Class: Mixture Contains Solid Polymer Derived From Reactant Containing Oxygen Heterocycle (525/74)
International Classification: C09D 153/00 (20060101); B65D 83/14 (20060101); C09D 153/02 (20060101); C09D 183/04 (20060101); C09D 183/16 (20060101); C08K 5/54 (20060101);