Medical tele-robotic system with a master remote station with an arbitrator

A robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
REFERENCE TO CROSS-RELATED APPLICATIONS

This application is a continuation of application Ser. No. 13/944,526, filed on Jul. 17, 2013, pending, which is a continuation of application Ser. No. 11/983,058, filed Nov. 5, 2007, now U.S. Pat. No. 8,515,577, which is a continuation of application Ser. No. 10/783,760, filed Feb. 2, 2004, abandoned, which is a continuation-in-part of application Ser. No. 10/206,457, filed on Jul. 25, 2002, now U.S. Pat. No. 6,925,357, and claims priority to Provisional Application No. 60/449,762, filed on Feb. 24, 2003.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The subject matter disclosed generally relates to the field of robotics.

2. Background Information

There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel. It would be desirable to provide a system that would allow a health care provider to remotely care for a patient without being physically present.

Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.

Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and monitor. The teleconferencing platform disclosed in the Canadian patent is stationary and cannot move about a building.

Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.

BRIEF SUMMARY OF THE INVENTION

A robotic system that includes a mobile robot coupled to a first remote station and a second remote station. The second remote station includes an arbitrator that controls access to the robot. The robot includes a camera and a monitor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a robotic system;

FIG. 2 is a schematic of an electrical system of a robot;

FIG. 3 is a further schematic of the electrical system of the robot;

FIG. 4 is side view of the robot;

FIG. 5 is a top perspective view of a holonomic platform of the robot;

FIG. 6 is a side perspective view of a roller assembly of the holonomic platform;

FIG. 7 is a bottom perspective view showing a pedestal assembly of the robot;

FIG. 8 is a sectional view showing an actuator of the pedestal assembly;

FIG. 9 is a schematic of a robotic system wherein multiple remote stations are coupled to the robot;

FIG. 10 is a flowchart showing an arbitration scheme for allowing access to the robot;

FIG. 11 is a side view of a robot head.

DETAILED DESCRIPTION

Disclosed is a robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.

Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10. The robotic system 10 includes a robot 12, a base station 14 and a plurality of remote control stations 16. Each remote control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.

Each remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. Each control station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 is shown, it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.

The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user. The robot 12 may further have a handle 48 that can be rotated to a down position which allows someone to manually push or pull the robot 12.

Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.

FIGS. 2 and 3 show an embodiment of the robot 12. The robot 12 may include a high level control system 50 and a low level control system 52. The high level control system 50 may include a processor 54 that is connected to a bus 56. The bus is coupled to the camera 38 by an input/output (I/O) port 58, and to the monitor 40 by a serial output port 60 and a VGA driver 62. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.

The speaker 44 is coupled to the bus 56 by a digital to analog converter 64. The microphone 42 is coupled to the bus 56 by an analog to digital converter 66. The high level controller 50 may also contain random access memory (RAM) device 68, a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62. The mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b.

The controller 54 may operate with a LINUX OS operating system. The controller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16.

The high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78. The low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86. The robot 12 contains a plurality of motors 88 and motor encoders 90. The encoders 90 provide feedback information regarding the output of the motors 88. The motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94. The encoders 90 can be coupled to the bus 86 by a decoder 96. The robot 12 also has a number of proximity sensors 98 (see also FIG. 1). The position sensors 98 can be coupled to the bus 86 by a signal conditioning circuit 100 and an analog to digital converter 102.

The low level controller 52 runs software routines that mechanically actuate the robot 12. For example, the low level controller 52 provides instructions to actuate the movement platform to move the robot 12. The low level controller 52 may receive movement instructions from the high level controller 50. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.

The various electrical devices of the robot 12 may be powered by a battery(ies) 104. The battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). The low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104. The low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50. The high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 106. Additionally, the battery 104 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).

FIG. 4 shows an embodiment of the robot 12. The robot 12 may include a holonomic platform 110 that is attached to a robot housing 112. The holonomic platform 110 provides three degrees of freedom to allow the robot 12 to move in any direction.

The robot 12 may have an pedestal assembly 114 that supports the camera 38 and the monitor 40. The pedestal assembly 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.

As shown in FIG. 5 the holonomic platform 110 may include three roller assemblies 120 that are mounted to a base plate 121. The roller assemblies 120 are typically equally spaced about the platform 110 and allow for movement in any direction, although it is to be understood that the assemblies may not be equally spaced.

The robot housing 112 may include a bumper 122. The bumper 122 may be coupled to optical position sensors 123 that detect when the bumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.

FIG. 6 shows an embodiment of a roller assembly 120. Each assembly 120 may include a drive ball 124 that is driven by a pair of transmission rollers 126. The assembly 120 may include a retainer ring 128 and a plurality of bushings 130 that captures and allows the ball 124 to rotate in an x and y direction but prevents movement in a z direction. The assembly also holds the ball under the transmission rollers 126.

The transmission rollers 126 are coupled to a motor assembly 132. The assembly 132 corresponds to the motor 88 shown in FIG. 3. The motor assembly 132 includes an output pulley 134 attached to a motor 136. The output pulley 134 is coupled to a pair of ball pulleys 138 by a drive belt 140. The ball pulleys 138 are each attached to a transmission bracket 142. The transmission rollers 126 are attached to the transmission brackets 142.

Rotation of the output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12. The transmission rollers 126 are constructed to always be in contact with the drive ball 124. The brackets 142 allow the transmission rollers 126 to freely spin and allow orthogonal directional passive movement of 124 when one of the other roller assemblies 120 is driving and moving the robot 12.

As shown in FIG. 7, the pedestal assembly 114 may include a motor 150 that is coupled to a gear 152 by a belt 154. The gear 152 is attached to a shaft 156. The shaft 156 is attached to an arm 158 that is coupled to the camera 38 and monitor 40 by a bracket 160. Activation of the motor 150 rotates the gear 152 and sleeve 156, and causes the camera 38 and monitor 40 to swivel (see also FIG. 4) as indicated by the arrows 4.

As shown in FIG. 8, the assembly 114 may further include a tilt motor 162 within the arm 158 that can cause the monitor 40 and camera 38 to pivot as indicated by the arrows 5. The tilt motor 162 may rotate a worm 164 that rotates a worm gear 166. The pin 168 is rigidly attached to both the worm gear 166 and the bracket 160 so that rotation of the gear 166 pivots the camera 38 and the monitor 40. The camera 38 may also include a zoom feature to provide yet another degree of freedom for the operator.

In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).

The robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at a remote station 16.

FIG. 9 shows a plurality of remote stations 16A-C that can access a robot 12 through a network 18. One of the remote stations 12B can be designated a master station which contains an arbitrator 250. The remote stations 16 may be configured so that all messages, commands, etc. provided to the robot 12 are initially routed to the master remote station 16B. Each message packet may include a priority field that contains the priority number of the station 16A, 16B or 16C sending the message. The arbitrator 250 determines which station has priority and then forwards the message from that station 16A, 16B or 16C to the robot 12. The arbitrator 250 may also send a call back message to the other remote station(s) stating that the station(s) with lower priority does not have access to the robot 12. The arbitrator 250 can cut-off access to the robot from one station and provide access to another station with a higher priority number.

Alternatively, a remote station may route a message, command, etc. to the robot 12 which then forwards a message, command, etc. to the arbitrator 250 to determine whether the station should have access. The arbitrator 250 can then provide a reply message either granting or denying access to the robot.

FIG. 10 shows a flowchart describing a process for access the robot 12. A remote station 16A, 16B or 16C may generate a request message to access the robot in block 300. The message may include the priority number of the remote station. The arbitrator 250 determines whether the request includes a priority number higher than any existing priority number in decision block 302. If a remote station has the same priority number the station first in time maintains access to the robot.

If the request included the highest priority number the arbitrator allows access to the robot in block 304. If the request does not contain the highest priority number, then arbitrator 250 sends a call-back message in block 306. To establish priority, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.

A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.

Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.

The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.

The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous teleconference with the patient.

The arbitrator may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.

TABLE I Access Medical Command Software/Debug Set User Control Record Override Access Priority Robot No No Yes (1) No No Local No No Yes (2) No No Caregiver Yes Yes Yes (3) No No Doctor No Yes No No No Family No No No No No Service Yes No Yes Yes Yes

TABLE II Requesting User Local Caregiver Doctor Family Service Current Local Not Warn current user Warn current user of Warn current user of Warn current user of User Allowed of pending user pending user pending user pending user Notify requesting Notify requesting user Notify requesting user Notify requesting user that system is that system is in use that system is in use user that system is in use in use Set timeout = 5 m Set timeout = 5 m No timeout Set timeout Call back Call back Caregiver Warn current user Not Allowed Warn current user of Warn current user of Warn current user of of pending user. pending user pending user pending user Notify requesting Notify requesting user Notify requesting user Notify requesting user that system is that system is in use that system is in use user that system is in use in use. Set timeout = 5 m Set timeout = 5 m No timeout Release control Queue or callback Callback Doctor Warn current user Warn current user Warn current user of Notify requesting user Warn current user of of pending user of pending user pending user that system is in use pending user Notify requesting Notify requesting Notify requesting user No timeout Notify requesting user user that system is user that system is that system is in use Queue or callback that system is in use in use in use No timeout No timeout Release control Set timeout = 5 m Callback Callback Family Warn current user Notify requesting Warn current user of Warn current user of Warn current user of of pending user user that system is pending user pending user pending user Notify requesting in use Notify requesting user Notify requesting user Notify requesting user user that system is No timeout that system is in use that system is in use that system is in use in use Put in queue or Set timeout = 1 m Set timeout = 5 m No timeout Release Control callback Queue or callback Callback Service Warn current user Notify requesting Warn current user of Warn current user of Not Allowed of pending user user that system is request pending user Notify requesting in use Notify requesting user Notify requesting user user that system is No timeout that system is in use that system is in use in use Callback No timeout No timeout No timeout Callback Queue or callback

The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.

FIG. 11 shows a robot head 350 that can both pivot and spin the camera 38 and the monitor 40. The robot head 350 can be similar to the robot 12 but without the platform 110. The robot head 350 may have the same mechanisms and parts to both pivot the camera 38 and monitor 40 about the pivot axis 4, and spin the camera 38 and monitor 40 about the spin axis 5. The pivot axis may intersect the spin axis. Having a robot head 350 that both pivots and spins provides a wide viewing area. The robot head 350 may be in the system either with or instead of the mobile robot 12.

While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

For example, although the arbitrator is described and shown as being in one of the remote stations, the arbitrator could be within a server, robot or any device, that is connected to the network and in communication with both the remote stations and the robot.

Claims

1. A robot system, comprising:

a first mobile robot and a second mobile robot that each have a camera that can generate an image, a monitor, a speaker and a microphone that can generate audio;
a first remote station that can access said first and second mobile robots, said first remote station including a camera, a monitor that can receive said image from said first or second mobile robots, a microphone and a speaker that can produce audio provided by said first or second mobile robots; and,
a second remote station that can access said first and second mobile robots, said second remote station including a camera, a monitor that can receive said image from said first and second mobile robots, a microphone and a speaker that can produce audio provided by said first and second mobile robots; and,
a server coupled to said first and second mobile robots and said first and second remote stations, said server allows exclusive access to said first mobile robot by said first remote station such that said image and audio from said first mobile robot is provided to said first remote station and said image and audio are not provided to said second remote station and even though said second remote station is prevented from accessing said first mobile robot said server allows said second remote station to access said second mobile robot.

2. The system of claim 1, wherein said server includes a notification mechanism.

3. The system of claim 1, wherein said arbitrator includes a timeout mechanism.

4. The system of claim 1, wherein said arbitrator includes a queue mechanism.

5. The system of claim 1, wherein said arbitrator includes a call back mechanism.

6. The system of claim 1, wherein said second remote station can access said mobile robot, and said first and second remote stations each have a priority and said arbitrator provides robot access to said remote station with a highest priority.

7. The system of claim 6, wherein said remote stations may be given priority as a local user, a doctor, a caregiver, a family member, a service user or another mobile robot.

8. A method for controlling access to a remote controlled robot, comprising:

providing a first mobile robot and a second mobile robot that each have a monitor, a camera that can generate an image, a speaker and a microphone that can generate audio;
providing a plurality of remote stations, including a first remote station and a second remote station, each remote station including a camera, a monitor that can receive the image from the first or second mobile robots, a microphone and a speaker that can produce audio provided by the first or second mobile robots;
transmitting a request to access the [a] first mobile robot from the [a] first remote station;
allowing exclusive access to the first mobile robot by the first remote station such that the image and audio from the first mobile robot is provided to the first remote station and the image and audio are not provided to the second remote station;
transmitting a request to access the second mobile robot from the second remote station; and,
accessing the second mobile robot by the second remote station.

9. The method of claim 8, further comprising requesting access to the first mobile robot from the second remote station and notifying the first remote station of the request.

10. The method of claim 9, wherein the second remote station creates a time interval in which the first remote station must relinquish access to the mobile robot.

11. The method of claim 9, wherein the request from the second remote station is placed in a waiting list queue.

12. The method of claim 8, further comprising transmitting a call back message from the second remote station to the first remote station to indicate the granting of access to the mobile robot.

13. The method of claim 12, wherein the mobile robot operates in either an exclusive mode or a sharing mode.

14. The method of claim 12, wherein the access request is initially transmitted to the second remote station.

15. The method of claim 12, wherein the access request is initially transmitted to the mobile robot.

16. The method of claim 8, wherein the access request includes a priority that is evaluated by the second remote station to determine access to the mobile robot.

17. The method of claim 16, wherein the remote stations may be given priority as a local user, a doctor, a caregiver, a family member, a service user or another mobile robot.

Referenced Cited
U.S. Patent Documents
3623013 November 1971 Perkins
3821995 July 1974 Aghnides
4107689 August 15, 1978 Jellinek
4213182 July 15, 1980 Eichelberger et al.
4413693 November 8, 1983 Derby
4471354 September 11, 1984 Smith
4519466 May 28, 1985 Shiraishi
4553309 November 19, 1985 Hess et al.
4572594 February 25, 1986 Schwartz
4625274 November 25, 1986 Schroeder
4638445 January 20, 1987 Mattaboni
4652204 March 24, 1987 Arnett
4669168 June 2, 1987 Tamura et al.
4679152 July 7, 1987 Perdue
4697278 September 29, 1987 Fleischer
4697472 October 6, 1987 Hiyane
4709265 November 24, 1987 Silverman et al.
4733737 March 29, 1988 Falamak
4751658 June 14, 1988 Kadonoff et al.
4766581 August 23, 1988 Korn
4777416 October 11, 1988 George, II et al.
4797557 January 10, 1989 Ohman
4803625 February 7, 1989 Fu et al.
4847764 July 11, 1989 Halvorson
4875172 October 17, 1989 Kanayama
4878501 November 7, 1989 Shue
4942512 July 17, 1990 Kohno
4942538 July 17, 1990 Yuan et al.
4953159 August 28, 1990 Hayden et al.
4974607 December 4, 1990 Miwa
4977971 December 18, 1990 Crane, III et al.
5006988 April 9, 1991 Borenstein et al.
5040116 August 13, 1991 Evans, Jr. et al.
5051906 September 24, 1991 Evans, Jr. et al.
5073749 December 17, 1991 Kanayama
5084828 January 28, 1992 Kaufman et al.
5130794 July 14, 1992 Ritchey
5148591 September 22, 1992 Pryor
5153833 October 6, 1992 Gordon et al.
5155684 October 13, 1992 Burke et al.
5157491 October 20, 1992 Kassatly
5182641 January 26, 1993 Diner et al.
5186270 February 16, 1993 West
5193143 March 9, 1993 Kaemmerer et al.
5217453 June 8, 1993 Wilk
5220263 June 15, 1993 Onishi et al.
5224157 June 29, 1993 Yamada et al.
5230023 July 20, 1993 Nakano
5231693 July 27, 1993 Backes et al.
5236432 August 17, 1993 Matsen, III et al.
5262944 November 16, 1993 Weisner et al.
5305427 April 19, 1994 Nagata
5315287 May 24, 1994 Sol
5319611 June 7, 1994 Korba
5341242 August 23, 1994 Gilboa et al.
5341459 August 23, 1994 Backes
5341854 August 30, 1994 Zezulka et al.
5347306 September 13, 1994 Nitta
5347457 September 13, 1994 Tanaka et al.
5350033 September 27, 1994 Kraft
5366896 November 22, 1994 Margrey et al.
5374879 December 20, 1994 Pin et al.
5375195 December 20, 1994 Johnston
5400068 March 21, 1995 Ishida et al.
5413693 May 9, 1995 Redepenning
5417210 May 23, 1995 Funda et al.
5419008 May 30, 1995 West
5436542 July 25, 1995 Petelin et al.
5441042 August 15, 1995 Putman
5441047 August 15, 1995 David et al.
5442728 August 15, 1995 Kaufman et al.
5462051 October 31, 1995 Oka et al.
5486853 January 23, 1996 Baxter et al.
5510832 April 23, 1996 Garcia
5511147 April 23, 1996 Abdel-Malek
5528289 June 18, 1996 Cortjens et al.
5532702 July 2, 1996 Mintz
5539741 July 23, 1996 Barraclough et al.
5544649 August 13, 1996 David et al.
5550577 August 27, 1996 Verbiest et al.
5553609 September 10, 1996 Chen et al.
5563998 October 8, 1996 Yaksich et al.
5572229 November 5, 1996 Fisher
5572999 November 12, 1996 Funda et al.
5594859 January 14, 1997 Palmer et al.
5600573 February 4, 1997 Hendricks et al.
5617539 April 1, 1997 Ludwig et al.
5619341 April 8, 1997 Auyeung et al.
5623679 April 22, 1997 Rivette et al.
5630566 May 20, 1997 Case
5636218 June 3, 1997 Ishikawa et al.
5652849 July 29, 1997 Conway et al.
5657246 August 12, 1997 Hogan et al.
5659779 August 19, 1997 Laird et al.
5673082 September 30, 1997 Wells et al.
5675229 October 7, 1997 Thorne
5682199 October 28, 1997 Lankford
5684695 November 4, 1997 Bauer
5701904 December 30, 1997 Simmons et al.
5734805 March 31, 1998 Isensee et al.
5739657 April 14, 1998 Takayama et al.
5748629 May 5, 1998 Caldara et al.
5749058 May 5, 1998 Hashimoto
5749362 May 12, 1998 Funda et al.
5754631 May 19, 1998 Cave
5758079 May 26, 1998 Ludwig et al.
5761736 June 2, 1998 Sharma
5762458 June 9, 1998 Wang et al.
5764731 June 9, 1998 Yablon
5767897 June 16, 1998 Howell
5786846 July 28, 1998 Hiroaki
5787545 August 4, 1998 Colens
5793365 August 11, 1998 Tang et al.
5801755 September 1, 1998 Echerer
5802494 September 1, 1998 Kuno
5836872 November 17, 1998 Kenet et al.
5838575 November 17, 1998 Lion
5844599 December 1, 1998 Hildin
5857534 January 12, 1999 DeVault et al.
5867494 February 2, 1999 Krishnaswamy et al.
5867653 February 2, 1999 Aras
5871451 February 16, 1999 Unger et al.
5872922 February 16, 1999 Hogan et al.
5876325 March 2, 1999 Mizuno et al.
5911036 June 8, 1999 Wright et al.
5917958 June 29, 1999 Nunally et al.
5927423 July 27, 1999 Wada et al.
5941363 August 24, 1999 Partyka
5949758 September 7, 1999 Kober
5954692 September 21, 1999 Smith et al.
5959423 September 28, 1999 Nakanishi et al.
5961446 October 5, 1999 Beller et al.
5966130 October 12, 1999 Benman, Jr.
5973724 October 26, 1999 Riddle
5974446 October 26, 1999 Sonnenreich et al.
5983263 November 9, 1999 Rothrock et al.
5995119 November 30, 1999 Cosatto et al.
5995884 November 30, 1999 Allen et al.
5999977 December 7, 1999 Riddle
6006946 December 28, 1999 Williams et al.
6031845 February 29, 2000 Walding
6036812 March 14, 2000 Williams et al.
6047259 April 4, 2000 Campbell et al.
6091219 July 18, 2000 Maruo et al.
6113343 September 5, 2000 Goldenberg et al.
6133944 October 17, 2000 Braun et al.
6135228 October 24, 2000 Asada et al.
6148100 November 14, 2000 Anderson et al.
6160582 December 12, 2000 Hill
6170929 January 9, 2001 Wilson et al.
6175779 January 16, 2001 Barrett
6189034 February 13, 2001 Riddle
6201984 March 13, 2001 Funda et al.
6211903 April 3, 2001 Bullister
6219587 April 17, 2001 Ahlin et al.
6232735 May 15, 2001 Baba et al.
6233504 May 15, 2001 Das et al.
6233735 May 15, 2001 Ebihara
6250928 June 26, 2001 Poggio et al.
6256556 July 3, 2001 Zenke
6259806 July 10, 2001 Green
6259956 July 10, 2001 Myers et al.
6266162 July 24, 2001 Okamura et al.
6266577 July 24, 2001 Popp et al.
6289263 September 11, 2001 Mukherjee
6292713 September 18, 2001 Jouppi
6292714 September 18, 2001 Okabayashi
6304050 October 16, 2001 Skaar et al.
6313853 November 6, 2001 Lamontagne
6314631 November 13, 2001 Pryor
6317652 November 13, 2001 Osada
6317953 November 20, 2001 Pryor
6321137 November 20, 2001 De Smet
6324184 November 27, 2001 Hou et al.
6324443 November 27, 2001 Kurakake et al.
6325756 December 4, 2001 Webb et al.
6327516 December 4, 2001 Zenke
6330486 December 11, 2001 Padula
6330493 December 11, 2001 Takahashi et al.
6346950 February 12, 2002 Jouppi
6346962 February 12, 2002 Goodridge
6369847 April 9, 2002 James
6373855 April 16, 2002 Downing et al.
6381515 April 30, 2002 Inoue et al.
6389329 May 14, 2002 Colens
6400378 June 4, 2002 Snook
6408230 June 18, 2002 Wada
6411055 June 25, 2002 Fujita et al.
6430471 August 6, 2002 Kintou
6430475 August 6, 2002 Okamoto et al.
6438457 August 20, 2002 Yokoo et al.
6445964 September 3, 2002 White et al.
6449762 September 10, 2002 McElvain
6452915 September 17, 2002 Jorgensen
6457043 September 24, 2002 Kwak et al.
6459955 October 1, 2002 Bartsch et al.
6463352 October 8, 2002 Tadokoro et al.
6463361 October 8, 2002 Wang et al.
6466844 October 15, 2002 Ikeda et al.
6468265 October 22, 2002 Evans et al.
6470235 October 22, 2002 Kasuga et al.
6474434 November 5, 2002 Bech
6480762 November 12, 2002 Uchikubo et al.
6491701 December 10, 2002 Tierney et al.
6496099 December 17, 2002 Wang
6496755 December 17, 2002 Wallach et al.
6501740 December 31, 2002 Sun et al.
6507773 January 14, 2003 Parker et al.
6522906 February 18, 2003 Salisbury, Jr. et al.
6523629 February 25, 2003 Buttz
6526332 February 25, 2003 Sakamoto et al.
6529620 March 4, 2003 Thompson
6529765 March 4, 2003 Franck et al.
6529802 March 4, 2003 Kawakita et al.
6532404 March 11, 2003 Colens
6535182 March 18, 2003 Stanton
6535793 March 18, 2003 Allard
6540039 April 1, 2003 Yu et al.
6543899 April 8, 2003 Covannon et al.
6549215 April 15, 2003 Jouppi
6563533 May 13, 2003 Colby
6567038 May 20, 2003 Granot et al.
6580246 June 17, 2003 Jacobs
6581798 June 24, 2003 Liff et al.
6584376 June 24, 2003 Van Kommer
6587750 July 1, 2003 Gerbi et al.
6590604 July 8, 2003 Tucker et al.
6594269 July 15, 2003 Polcyn
6594552 July 15, 2003 Nowlin et al.
6597392 July 22, 2003 Jenkins et al.
6602469 August 5, 2003 Maus et al.
6604019 August 5, 2003 Ahlin et al.
6604021 August 5, 2003 Imai et al.
6611120 August 26, 2003 Song et al.
6643496 November 4, 2003 Shimoyama et al.
6646677 November 11, 2003 Noro et al.
6650748 November 18, 2003 Edwards et al.
6666374 December 23, 2003 Green et al.
6667592 December 23, 2003 Jacobs et al.
6674259 January 6, 2004 Norman et al.
6684129 January 27, 2004 Salisbury, Jr. et al.
6691000 February 10, 2004 Nagai et al.
6693585 February 17, 2004 MacLeod
6710797 March 23, 2004 McNelley et al.
6724823 April 20, 2004 Rovati et al.
6728599 April 27, 2004 Wang et al.
6763282 July 13, 2004 Glenn et al.
6764373 July 20, 2004 Osawa et al.
6769771 August 3, 2004 Trumbull
6781606 August 24, 2004 Jouppi
6784916 August 31, 2004 Smith
6785589 August 31, 2004 Eggenberger et al.
6791550 September 14, 2004 Goldhor et al.
6798753 September 28, 2004 Doganata et al.
6799065 September 28, 2004 Niemeyer
6799088 September 28, 2004 Wang et al.
6804580 October 12, 2004 Stoddard et al.
6804656 October 12, 2004 Rosenfeld et al.
6810411 October 26, 2004 Coughlin et al.
6816192 November 9, 2004 Nishikawa
6816754 November 9, 2004 Mukai et al.
6836703 December 28, 2004 Wang et al.
6839612 January 4, 2005 Sanchez et al.
6840904 January 11, 2005 Goldberg
6845297 January 18, 2005 Allard
6852107 February 8, 2005 Wang
6853878 February 8, 2005 Hirayama et al.
6853880 February 8, 2005 Sakagami et al.
6871117 March 22, 2005 Wang et al.
6879879 April 12, 2005 Jouppi et al.
6888333 May 3, 2005 Laby
6892112 May 10, 2005 Wang et al.
6893267 May 17, 2005 Yueh
6895305 May 17, 2005 Lathan et al.
6898484 May 24, 2005 Lemelson et al.
6914622 July 5, 2005 Smith et al.
6925357 August 2, 2005 Wang
6951535 October 4, 2005 Ghodoussi et al.
6952470 October 4, 2005 Tioe et al.
6957712 October 25, 2005 Song et al.
6958706 October 25, 2005 Chaco et al.
6965394 November 15, 2005 Gutta et al.
6990112 January 24, 2006 Brent et al.
6995664 February 7, 2006 Darling
7007235 February 28, 2006 Hussein et al.
7011538 March 14, 2006 Chang
7015934 March 21, 2006 Toyama et al.
RE39080 April 25, 2006 Johnston
7030757 April 18, 2006 Matsuhira et al.
7053578 May 30, 2006 Diehl et al.
7055210 June 6, 2006 Keppler et al.
7058689 June 6, 2006 Parker et al.
7092001 August 15, 2006 Schulz
7096090 August 22, 2006 Zweig
7115102 October 3, 2006 Abbruscato
7117067 October 3, 2006 McLurkin et al.
7123285 October 17, 2006 Smith et al.
7123974 October 17, 2006 Hamilton
7123991 October 17, 2006 Graf et al.
7127325 October 24, 2006 Nagata et al.
7129970 October 31, 2006 James et al.
7133062 November 7, 2006 Castles et al.
7142945 November 28, 2006 Wang et al.
7142947 November 28, 2006 Wang et al.
7151982 December 19, 2006 Liff et al.
7154526 December 26, 2006 Foote et al.
7155306 December 26, 2006 Haitin et al.
7156809 January 2, 2007 Quy
7158859 January 2, 2007 Wang et al.
7158860 January 2, 2007 Wang et al.
7158861 January 2, 2007 Wang et al.
7161322 January 9, 2007 Wang et al.
7162338 January 9, 2007 Goncalves et al.
7164969 January 16, 2007 Wang et al.
7164970 January 16, 2007 Wang et al.
7167448 January 23, 2007 Wookey et al.
7171286 January 30, 2007 Wang et al.
7174238 February 6, 2007 Zweig
7181455 February 20, 2007 Wookey et al.
7184559 February 27, 2007 Jouppi
7188000 March 6, 2007 Chiappetta et al.
7199790 April 3, 2007 Rosenberg et al.
7202851 April 10, 2007 Cunningham et al.
7206627 April 17, 2007 Abovitz et al.
7215786 May 8, 2007 Nakadai et al.
7219364 May 15, 2007 Bolle et al.
7222000 May 22, 2007 Wang et al.
7227334 June 5, 2007 Yang et al.
7256708 August 14, 2007 Rosenfeld et al.
7262573 August 28, 2007 Wang et al.
7283153 October 16, 2007 Provost et al.
7289883 October 30, 2007 Wang et al.
7292257 November 6, 2007 Kang et al.
7292912 November 6, 2007 Wang et al.
7305114 December 4, 2007 Wolff et al.
7317685 January 8, 2008 Flott et al.
7321807 January 22, 2008 Laski
7332890 February 19, 2008 Cohen et al.
7333642 February 19, 2008 Green
7346429 March 18, 2008 Goldenberg
7352153 April 1, 2008 Yan
7363121 April 22, 2008 Chen et al.
7382399 June 3, 2008 McCall et al.
7386730 June 10, 2008 Uchikubo
7391432 June 24, 2008 Terada
7400578 July 15, 2008 Guthrie et al.
7404140 July 22, 2008 O'Rourke
7421470 September 2, 2008 Ludwig et al.
7430209 September 30, 2008 Porter
7432949 October 7, 2008 Remy et al.
7433921 October 7, 2008 Ludwig et al.
7441953 October 28, 2008 Banks
7467211 December 16, 2008 Herman et al.
7483867 January 27, 2009 Ansari et al.
7492731 February 17, 2009 Hagendorf
7510428 March 31, 2009 Obata et al.
7523069 April 21, 2009 Friedl et al.
7525281 April 28, 2009 Koyanagi et al.
7535486 May 19, 2009 Motomura et al.
7557758 July 7, 2009 Rofougaran
7587260 September 8, 2009 Bruemmer et al.
7587512 September 8, 2009 Ta et al.
7590060 September 15, 2009 Miceli
7593030 September 22, 2009 Wang et al.
7599290 October 6, 2009 Dos Remedios et al.
7624166 November 24, 2009 Foote et al.
7630314 December 8, 2009 Dos Remedios et al.
7631833 December 15, 2009 Ghaleb et al.
7643051 January 5, 2010 Sandberg et al.
7647320 January 12, 2010 Mok et al.
7657560 February 2, 2010 DiRienzo
7680038 March 16, 2010 Gourlay
7693757 April 6, 2010 Zimmerman
7698432 April 13, 2010 Short et al.
7703113 April 20, 2010 Dawson
7719229 May 18, 2010 Kaneko et al.
7737993 June 15, 2010 Kaasila et al.
7739383 June 15, 2010 Short et al.
7756614 July 13, 2010 Jouppi
7761185 July 20, 2010 Wang et al.
7769492 August 3, 2010 Wang et al.
7769705 August 3, 2010 Luechtefeld
7774158 August 10, 2010 Domingues et al.
7813836 October 12, 2010 Wang et al.
7831575 November 9, 2010 Trossell
7835775 November 16, 2010 Sawayama et al.
7860680 December 28, 2010 Arms et al.
7861366 January 4, 2011 Hahm et al.
7885822 February 8, 2011 Akers et al.
7890382 February 15, 2011 Robb et al.
7912583 March 22, 2011 Gutmann et al.
RE42288 April 12, 2011 Degioanni
7924323 April 12, 2011 Walker et al.
7949616 May 24, 2011 Levy et al.
7956894 June 7, 2011 Akers et al.
7957837 June 7, 2011 Ziegler et al.
7982763 July 19, 2011 King
7982769 July 19, 2011 Jenkins et al.
7987069 July 26, 2011 Rodgers et al.
8077963 December 13, 2011 Wang et al.
8116910 February 14, 2012 Walters et al.
8126960 February 28, 2012 Obradovich et al.
8170241 May 1, 2012 Roe et al.
8179418 May 15, 2012 Wright et al.
8180486 May 15, 2012 Saito et al.
8209051 June 26, 2012 Wang et al.
8212533 July 3, 2012 Ota
8265793 September 11, 2012 Cross et al.
8287522 October 16, 2012 Moses et al.
8292807 October 23, 2012 Perkins et al.
8320534 November 27, 2012 Kim et al.
8340654 December 25, 2012 Bratton et al.
8340819 December 25, 2012 Mangaser et al.
8348675 January 8, 2013 Dohrmann
8374171 February 12, 2013 Cho et al.
8400491 March 19, 2013 Panpaliya et al.
8401275 March 19, 2013 Wang et al.
8423284 April 16, 2013 O'Shea
8451731 May 28, 2013 Lee et al.
8463435 June 11, 2013 Herzog et al.
8503340 August 6, 2013 Xu
8515577 August 20, 2013 Wang et al.
8527094 September 3, 2013 Kumar et al.
8532860 September 10, 2013 Daly
8610786 December 17, 2013 Ortiz
8612051 December 17, 2013 Norman et al.
8639797 January 28, 2014 Pan et al.
8670017 March 11, 2014 Stuart et al.
8682486 March 25, 2014 Wang et al.
8726454 May 20, 2014 Gilbert, Jr. et al.
8836751 September 16, 2014 Ballantyne et al.
8849679 September 30, 2014 Wang et al.
8849680 September 30, 2014 Wright et al.
8861750 October 14, 2014 Roe et al.
8897920 November 25, 2014 Wang et al.
8902278 December 2, 2014 Pinter et al.
20010002448 May 31, 2001 Wilson et al.
20010010053 July 26, 2001 Ben-Shachar
20010020200 September 6, 2001 Das et al.
20010034475 October 25, 2001 Flach et al.
20010034544 October 25, 2001 Mo
20010037163 November 1, 2001 Allard
20010048464 December 6, 2001 Barnett
20010051881 December 13, 2001 Filler
20010054071 December 20, 2001 Loeb
20010055373 December 27, 2001 Yamashita
20020015296 February 7, 2002 Howell et al.
20020027597 March 7, 2002 Sachau
20020027652 March 7, 2002 Paromtchik et al.
20020033880 March 21, 2002 Sul et al.
20020038168 March 28, 2002 Kasuga et al.
20020044201 April 18, 2002 Alexander et al.
20020049517 April 25, 2002 Ruffner
20020055917 May 9, 2002 Muraca
20020057279 May 16, 2002 Jouppi
20020058929 May 16, 2002 Green
20020059587 May 16, 2002 Cofano et al.
20020062177 May 23, 2002 Hannaford
20020063726 May 30, 2002 Jouppi
20020073429 June 13, 2002 Beane et al.
20020082498 June 27, 2002 Wendt et al.
20020085030 July 4, 2002 Ghani
20020095238 July 18, 2002 Ahlin et al.
20020095239 July 18, 2002 Wallach et al.
20020098879 July 25, 2002 Rheey
20020104094 August 1, 2002 Alexander et al.
20020106998 August 8, 2002 Presley et al.
20020109770 August 15, 2002 Terada
20020109775 August 15, 2002 White et al.
20020111988 August 15, 2002 Sato
20020120362 August 29, 2002 Lathan
20020128985 September 12, 2002 Greenwald
20020130950 September 19, 2002 James et al.
20020133062 September 19, 2002 Arling et al.
20020143923 October 3, 2002 Alexander
20020177925 November 28, 2002 Onishi
20020183894 December 5, 2002 Wang et al.
20020184674 December 5, 2002 Xi et al.
20020186243 December 12, 2002 Ellis et al.
20020193908 December 19, 2002 Parker
20030021107 January 30, 2003 Howell et al.
20030030397 February 13, 2003 Simmons
20030048481 March 13, 2003 Kobayashi et al.
20030050733 March 13, 2003 Wang et al.
20030050734 March 13, 2003 Lapham
20030060808 March 27, 2003 Wilk
20030063600 April 3, 2003 Noma et al.
20030069752 April 10, 2003 Ledain et al.
20030069828 April 10, 2003 Blazey
20030080901 May 1, 2003 Piotrowski
20030100892 May 29, 2003 Morley et al.
20030104806 June 5, 2003 Ruef et al.
20030112823 June 19, 2003 Collins et al.
20030114962 June 19, 2003 Niemeyer et al.
20030120714 June 26, 2003 Wolff et al.
20030126361 July 3, 2003 Slater
20030135097 July 17, 2003 Wiederhold et al.
20030135203 July 17, 2003 Wang et al.
20030144579 July 31, 2003 Buss
20030144649 July 31, 2003 Ghodoussi et al.
20030151658 August 14, 2003 Smith
20030152145 August 14, 2003 Kawakita
20030171710 September 11, 2003 Bassuk et al.
20030174285 September 18, 2003 Trumbull
20030180697 September 25, 2003 Kim et al.
20030195662 October 16, 2003 Wang et al.
20030199000 October 23, 2003 Valkirs et al.
20030206242 November 6, 2003 Choi
20030212472 November 13, 2003 McKee
20030216833 November 20, 2003 Mukai et al.
20030216834 November 20, 2003 Allard
20030220541 November 27, 2003 Salisbury, Jr. et al.
20030220715 November 27, 2003 Kneifel, II et al.
20030231244 December 18, 2003 Bonilla et al.
20030232649 December 18, 2003 Gizis et al.
20030236590 December 25, 2003 Park et al.
20040001197 January 1, 2004 Ko et al.
20040001676 January 1, 2004 Colgan et al.
20040008138 January 15, 2004 Hockley, Jr. et al.
20040010344 January 15, 2004 Hiratsuka et al.
20040012362 January 22, 2004 Tsurumi
20040013295 January 22, 2004 Sabe et al.
20040017475 January 29, 2004 Akers et al.
20040019406 January 29, 2004 Wang et al.
20040024490 February 5, 2004 McLurkin et al.
20040041904 March 4, 2004 Lapalme et al.
20040065073 April 8, 2004 Nash
20040068657 April 8, 2004 Alexander et al.
20040078219 April 22, 2004 Kaylor et al.
20040080610 April 29, 2004 James et al.
20040088077 May 6, 2004 Jouppi et al.
20040088078 May 6, 2004 Jouppi et al.
20040093409 May 13, 2004 Thompson et al.
20040095516 May 20, 2004 Rohlicek
20040098167 May 20, 2004 Yi et al.
20040102167 May 27, 2004 Shim et al.
20040107254 June 3, 2004 Ludwig et al.
20040107255 June 3, 2004 Ludwig et al.
20040117065 June 17, 2004 Wang et al.
20040117067 June 17, 2004 Jouppi
20040123158 June 24, 2004 Roskind
20040135879 July 15, 2004 Stacy et al.
20040138547 July 15, 2004 Wang et al.
20040143421 July 22, 2004 Wang et al.
20040148638 July 29, 2004 Weisman et al.
20040150725 August 5, 2004 Taguchi
20040153211 August 5, 2004 Kamoto et al.
20040157612 August 12, 2004 Kim
20040162637 August 19, 2004 Wang et al.
20040167666 August 26, 2004 Wang et al.
20040167668 August 26, 2004 Wang et al.
20040168148 August 26, 2004 Goncalves et al.
20040170300 September 2, 2004 Jouppi
20040172301 September 2, 2004 Mihai et al.
20040172306 September 2, 2004 Wohl et al.
20040174129 September 9, 2004 Wang et al.
20040175684 September 9, 2004 Kaasa et al.
20040179714 September 16, 2004 Jouppi
20040186623 September 23, 2004 Dooley et al.
20040189700 September 30, 2004 Mandavilli et al.
20040201602 October 14, 2004 Mody et al.
20040205664 October 14, 2004 Prendergast
20040215490 October 28, 2004 Duchon et al.
20040218099 November 4, 2004 Washington
20040222638 November 11, 2004 Bednyak
20040224676 November 11, 2004 Iseki
20040230340 November 18, 2004 Fukuchi et al.
20040240981 December 2, 2004 Dothan
20040241981 December 2, 2004 Doris et al.
20040260790 December 23, 2004 Balloni et al.
20050003330 January 6, 2005 Asgarinejad et al.
20050004708 January 6, 2005 Goldenberg et al.
20050007445 January 13, 2005 Foote et al.
20050013149 January 20, 2005 Trossell
20050021182 January 27, 2005 Wang et al.
20050021183 January 27, 2005 Wang et al.
20050021187 January 27, 2005 Wang et al.
20050021309 January 27, 2005 Alexander et al.
20050024485 February 3, 2005 Castles et al.
20050027567 February 3, 2005 Taha
20050027794 February 3, 2005 Decker
20050028221 February 3, 2005 Liu et al.
20050035862 February 17, 2005 Wildman et al.
20050038416 February 17, 2005 Wang et al.
20050038564 February 17, 2005 Burick
20050049898 March 3, 2005 Hirakawa
20050052527 March 10, 2005 Remy et al.
20050060211 March 17, 2005 Xiao et al.
20050065435 March 24, 2005 Rauch et al.
20050065438 March 24, 2005 Miller
20050065659 March 24, 2005 Tanaka et al.
20050065813 March 24, 2005 Mishelevich et al.
20050071046 March 31, 2005 Miyazaki et al.
20050073575 April 7, 2005 Thacher et al.
20050078816 April 14, 2005 Sekiguchi et al.
20050083011 April 21, 2005 Yang et al.
20050099493 May 12, 2005 Chew
20050104964 May 19, 2005 Bovyrin et al.
20050110867 May 26, 2005 Schulz
20050122390 June 9, 2005 Wang et al.
20050125083 June 9, 2005 Kiko
20050125098 June 9, 2005 Wang et al.
20050149364 July 7, 2005 Ombrellaro
20050152447 July 14, 2005 Jouppi et al.
20050152565 July 14, 2005 Jouppi et al.
20050154265 July 14, 2005 Miro et al.
20050168568 August 4, 2005 Jouppi
20050182322 August 18, 2005 Grispo
20050192721 September 1, 2005 Jouppi
20050204438 September 15, 2005 Wang et al.
20050212478 September 29, 2005 Takenaka
20050219356 October 6, 2005 Smith et al.
20050225634 October 13, 2005 Brunetti et al.
20050231156 October 20, 2005 Yan
20050231586 October 20, 2005 Rodman et al.
20050232647 October 20, 2005 Takenaka
20050234592 October 20, 2005 McGee et al.
20050264649 December 1, 2005 Chang et al.
20050267826 December 1, 2005 Levy et al.
20050283414 December 22, 2005 Fernandes et al.
20050286759 December 29, 2005 Zitnick et al.
20060007943 January 12, 2006 Fellman
20060010028 January 12, 2006 Sorensen
20060013263 January 19, 2006 Fellman
20060013469 January 19, 2006 Wang et al.
20060013488 January 19, 2006 Inoue
20060014388 January 19, 2006 Lur et al.
20060020694 January 26, 2006 Nag et al.
20060029065 February 9, 2006 Fellman
20060047365 March 2, 2006 Ghodoussi et al.
20060048286 March 9, 2006 Donato
20060052676 March 9, 2006 Wang et al.
20060052684 March 9, 2006 Takahashi et al.
20060056655 March 16, 2006 Wen et al.
20060056837 March 16, 2006 Vapaakoski
20060064212 March 23, 2006 Thorne
20060066609 March 30, 2006 Iodice et al.
20060071797 April 6, 2006 Rosenfeld et al.
20060074525 April 6, 2006 Close et al.
20060074719 April 6, 2006 Horner
20060082642 April 20, 2006 Wang et al.
20060087746 April 27, 2006 Lipow
20060095158 May 4, 2006 Lee
20060095170 May 4, 2006 Yang et al.
20060098573 May 11, 2006 Beer et al.
20060103659 May 18, 2006 Karandikar et al.
20060104279 May 18, 2006 Fellman et al.
20060106493 May 18, 2006 Niemeyer et al.
20060122482 June 8, 2006 Mariotti et al.
20060125356 June 15, 2006 Meek, Jr. et al.
20060142983 June 29, 2006 Sorensen et al.
20060149418 July 6, 2006 Anvari
20060161136 July 20, 2006 Anderson et al.
20060161303 July 20, 2006 Wang et al.
20060164546 July 27, 2006 Adachi
20060171515 August 3, 2006 Hintermeister et al.
20060173708 August 3, 2006 Vining et al.
20060173712 August 3, 2006 Joubert
20060178559 August 10, 2006 Kumar et al.
20060178776 August 10, 2006 Feingold et al.
20060178777 August 10, 2006 Park
20060189393 August 24, 2006 Edery
20060195569 August 31, 2006 Barker
20060224781 October 5, 2006 Tsao et al.
20060247045 November 2, 2006 Jeong et al.
20060259193 November 16, 2006 Wang et al.
20060268704 November 30, 2006 Ansari et al.
20060271238 November 30, 2006 Choi
20060271400 November 30, 2006 Clements et al.
20060293788 December 28, 2006 Pogodin
20070021871 January 25, 2007 Wang et al.
20070025711 February 1, 2007 Marcus
20070046237 March 1, 2007 Lakshmanan et al.
20070050937 March 8, 2007 Song et al.
20070061041 March 15, 2007 Zweig
20070064092 March 22, 2007 Sandbeg et al.
20070078566 April 5, 2007 Wang et al.
20070093279 April 26, 2007 Janik
20070112700 May 17, 2007 Den et al.
20070116152 May 24, 2007 Thesling
20070117516 May 24, 2007 Saidi et al.
20070120965 May 31, 2007 Sandberg et al.
20070122783 May 31, 2007 Habashi
20070133407 June 14, 2007 Choi et al.
20070135967 June 14, 2007 Jung et al.
20070142964 June 21, 2007 Abramson
20070170886 July 26, 2007 Plishner
20070176060 August 2, 2007 White et al.
20070192910 August 16, 2007 Vu et al.
20070197896 August 23, 2007 Moll et al.
20070198128 August 23, 2007 Ziegler et al.
20070198130 August 23, 2007 Wang et al.
20070199108 August 23, 2007 Angle et al.
20070216347 September 20, 2007 Kaneko et al.
20070226949 October 4, 2007 Hahm et al.
20070250212 October 25, 2007 Halloran et al.
20070255706 November 1, 2007 Iketani et al.
20070262884 November 15, 2007 Goncalves et al.
20070273751 November 29, 2007 Sachau
20070290040 December 20, 2007 Wurman et al.
20070291109 December 20, 2007 Wang et al.
20070291128 December 20, 2007 Wang et al.
20080009969 January 10, 2008 Bruemmer et al.
20080011904 January 17, 2008 Cepollina et al.
20080027591 January 31, 2008 Lenser et al.
20080033641 February 7, 2008 Medalia
20080045804 February 21, 2008 Williams
20080051985 February 28, 2008 D'Andrea et al.
20080065268 March 13, 2008 Wang et al.
20080082211 April 3, 2008 Wang et al.
20080086241 April 10, 2008 Phillips et al.
20080091340 April 17, 2008 Milstein et al.
20080126132 May 29, 2008 Warner et al.
20080133052 June 5, 2008 Jones et al.
20080161969 July 3, 2008 Lee et al.
20080174570 July 24, 2008 Jobs et al.
20080201016 August 21, 2008 Finlay
20080201017 August 21, 2008 Wang et al.
20080215987 September 4, 2008 Alexander et al.
20080229531 September 25, 2008 Takida
20080232763 September 25, 2008 Brady
20080255703 October 16, 2008 Wang et al.
20080263451 October 23, 2008 Portele et al.
20080263628 October 23, 2008 Norman et al.
20080267069 October 30, 2008 Thielman et al.
20080269949 October 30, 2008 Norman
20080281467 November 13, 2008 Pinter
20080306375 December 11, 2008 Sayler et al.
20090030552 January 29, 2009 Nakadai et al.
20090044334 February 19, 2009 Parsell et al.
20090049640 February 26, 2009 Lee et al.
20090055023 February 26, 2009 Walters et al.
20090070135 March 12, 2009 Parida et al.
20090086013 April 2, 2009 Thapa
20090102919 April 23, 2009 Zamierowski et al.
20090105882 April 23, 2009 Wang et al.
20090106679 April 23, 2009 Anzures et al.
20090122699 May 14, 2009 Alperovitch et al.
20090125147 May 14, 2009 Wang et al.
20090144425 June 4, 2009 Marr et al.
20090164255 June 25, 2009 Menschik et al.
20090164657 June 25, 2009 Li et al.
20090171170 July 2, 2009 Li et al.
20090177323 July 9, 2009 Ziegler et al.
20090177641 July 9, 2009 Raghavan
20090237317 September 24, 2009 Rofougaran
20090240371 September 24, 2009 Wang et al.
20090248200 October 1, 2009 Root
20090259339 October 15, 2009 Wright et al.
20100010672 January 14, 2010 Wang et al.
20100010673 January 14, 2010 Wang et al.
20100017046 January 21, 2010 Cheung et al.
20100019715 January 28, 2010 Roe et al.
20100026239 February 4, 2010 Li et al.
20100030578 February 4, 2010 Siddique et al.
20100051596 March 4, 2010 Diedrick et al.
20100063848 March 11, 2010 Kremer et al.
20100066804 March 18, 2010 Shoemake et al.
20100070079 March 18, 2010 Mangaser et al.
20100073490 March 25, 2010 Wang et al.
20100076600 March 25, 2010 Cross
20100085874 April 8, 2010 Noy et al.
20100088232 April 8, 2010 Gale
20100115418 May 6, 2010 Wang et al.
20100116566 May 13, 2010 Ohm et al.
20100131103 May 27, 2010 Herzog et al.
20100145479 June 10, 2010 Griffiths
20100157825 June 24, 2010 Anderlind et al.
20100171826 July 8, 2010 Hamilton et al.
20100191375 July 29, 2010 Wright et al.
20100228249 September 9, 2010 Mohr et al.
20100268383 October 21, 2010 Wang et al.
20100278086 November 4, 2010 Pochiraju et al.
20100286905 November 11, 2010 Goncalves et al.
20100301679 December 2, 2010 Murray et al.
20100323783 December 23, 2010 Nonaka et al.
20110022705 January 27, 2011 Yellamraju et al.
20110050841 March 3, 2011 Wang et al.
20110071675 March 24, 2011 Wells et al.
20110071702 March 24, 2011 Wang et al.
20110072114 March 24, 2011 Hoffert et al.
20110153198 June 23, 2011 Kokkas et al.
20110172822 July 14, 2011 Ziegler et al.
20110187875 August 4, 2011 Sanchez et al.
20110190930 August 4, 2011 Hanrahan et al.
20110193949 August 11, 2011 Nambakam et al.
20110195701 August 11, 2011 Cook et al.
20110213210 September 1, 2011 Temby et al.
20110218674 September 8, 2011 Stuart et al.
20110245973 October 6, 2011 Wang et al.
20110280551 November 17, 2011 Sammon
20110292193 December 1, 2011 Wang et al.
20110301759 December 8, 2011 Wang et al.
20110306400 December 15, 2011 Nguyen
20120023506 January 26, 2012 Maeckel et al.
20120036484 February 9, 2012 Zhang et al.
20120059946 March 8, 2012 Wang
20120072023 March 22, 2012 Ota
20120072024 March 22, 2012 Wang et al.
20120092157 April 19, 2012 Tran
20120095352 April 19, 2012 Tran
20120113856 May 10, 2012 Krishnaswamy
20120191246 July 26, 2012 Roe et al.
20120191464 July 26, 2012 Stuart et al.
20120203731 August 9, 2012 Nelson et al.
20120291809 November 22, 2012 Kuhe et al.
20130250938 September 26, 2013 Anandakumar et al.
20140015914 January 16, 2014 Delaunay
20140047022 February 13, 2014 Chan et al.
20140085543 March 27, 2014 Hartley et al.
20140135990 May 15, 2014 Stuart et al.
20140139616 May 22, 2014 Pinter et al.
20140155755 June 5, 2014 Pinter et al.
Foreign Patent Documents
1216200 May 2000 AU
2289697 November 1998 CA
1404695 March 2003 CN
1554193 December 2004 CN
1554985 December 2004 CN
1561923 January 2005 CN
1743144 March 2006 CN
101049017 October 2007 CN
101106939 January 2008 CN
101151614 March 2008 CN
100407729 July 2008 CN
101390098 March 2009 CN
101507260 August 2009 CN
101730894 June 2010 CN
101866396 October 2010 CN
101978365 February 2011 CN
102203759 September 2011 CN
101106939 November 2011 CN
466492 January 1992 EP
488673 June 1992 EP
981905 January 2002 EP
0981905 January 2002 EP
1262142 December 2002 EP
1304872 April 2003 EP
1536660 June 2005 EP
1573406 September 2005 EP
1594660 November 2005 EP
1763243 March 2007 EP
1791464 June 2007 EP
1800476 June 2007 EP
1819108 August 2007 EP
1856644 November 2007 EP
1536660 April 2008 EP
1928310 June 2008 EP
1232610 January 2009 EP
2027716 February 2009 EP
2145274 January 2010 EP
2214111 August 2010 EP
2263158 December 2010 EP
2300930 March 2011 EP
2342651 July 2011 EP
2431261 April 2007 GB
07-194609 August 1995 JP
7-213753 August 1995 JP
7-248823 September 1995 JP
7-257422 October 1995 JP
8-84328 March 1996 JP
8-320727 December 1996 JP
9-267276 October 1997 JP
10-79097 March 1998 JP
10-288689 October 1998 JP
11-220706 August 1999 JP
11220706 August 1999 JP
2000-32319 January 2000 JP
2000-49800 February 2000 JP
2000-79587 March 2000 JP
2000-196876 July 2000 JP
2001-125641 May 2001 JP
2001-147718 May 2001 JP
2001-179663 July 2001 JP
2001-188124 July 2001 JP
2001-198865 July 2001 JP
2001-198868 July 2001 JP
2001-199356 July 2001 JP
2002-000574 January 2002 JP
2002-46088 February 2002 JP
2002-101333 April 2002 JP
2002-112970 April 2002 JP
2002-235423 August 2002 JP
2002-305743 October 2002 JP
2002-321180 November 2002 JP
2002-355779 December 2002 JP
2004-181229 July 2004 JP
2004-524824 August 2004 JP
2004-261941 September 2004 JP
2004-289379 October 2004 JP
2005-028066 February 2005 JP
2005-059170 March 2005 JP
2005-111083 April 2005 JP
2006-508806 March 2006 JP
2006-109094 April 2006 JP
2006-224294 August 2006 JP
2006-246438 September 2006 JP
2007-7040 January 2007 JP
2007-81646 March 2007 JP
2007-232208 September 2007 JP
2007-316966 December 2007 JP
2009-125133 June 2009 JP
2010-064154 March 2010 JP
2010-532109 September 2010 JP
2010-246954 November 2010 JP
10-2006-0037979 May 2006 KR
10-2009-0012542 February 2009 KR
10-2010-0019479 February 2010 KR
10-2010-0139037 December 2010 KR
93/06690 April 1993 WO
97/42761 November 1997 WO
98/51078 November 1998 WO
99/67067 December 1999 WO
00/25516 May 2000 WO
00/33726 June 2000 WO
01/31861 May 2001 WO
03/077745 September 2003 WO
2004/008738 January 2004 WO
2004/012018 February 2004 WO
2004/075456 September 2004 WO
2006/012797 February 2006 WO
2006/044847 April 2006 WO
2006/078611 July 2006 WO
2007/041295 April 2007 WO
2007/041038 June 2007 WO
2008/100272 August 2008 WO
2008/100272 October 2008 WO
2009/117274 September 2009 WO
2009/128997 October 2009 WO
2009/145958 December 2009 WO
2010/006205 January 2010 WO
2010/006211 January 2010 WO
2010/033666 March 2010 WO
2010/047881 April 2010 WO
2010/062798 June 2010 WO
2010/065257 June 2010 WO
2010/120407 October 2010 WO
2011/028589 March 2011 WO
2011/028589 April 2011 WO
2011/097130 August 2011 WO
2011/097132 August 2011 WO
2011/109336 September 2011 WO
2011/097132 December 2011 WO
2011/149902 December 2011 WO
Other references
  • Nomadic Technologies, Inc., “Nomad Scout User's Manual”, Software Version 2.7, Part No. DOC00004, Jul. 12, 1999, pp. 1-59.
  • ACM Digital Library Record, Autonomous Robots, vol. 11, No. 1, Table of Content, available at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages.
  • Brenner, Pablo, “A Technical Tutorial on the IEEE 802.11 Protocol”, BreezeCOM Wireless Communications, Jul. 18, 1996, pp. 1-24.
  • Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available at <http://www.loc.gov/marc/classification/cd008.html>, retrieved on Jul. 22, 2014, pp. 1-14.
  • Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg et al., Ed., “Beyond Webcams”, MIT Press, Jan. 4, 2002, pp. 155-167.
  • Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, No. 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95.
  • Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and Cover Pages from 2001 Dissertation Including Contents table, together with E-mails Relating thereto from UC Berkeley Libraties, as Shelved at UC Berkeley Engineering Library (Northern Regional Library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails).
  • Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, Results page and MARC Display, retrieved on Jun. 14, 2014, 3 Pages.
  • Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, pp. 1-6.
  • Ojha, Anand K., “An application of Virtual Reality in Rehabilitation”, Proceedings of the 1994 IEEE Southeastcon Creative Technology Transfer, A Global Affair, Apr. 1994, pp. 4-6.
  • Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, available online at <http://www.w3.org/Conferences/WWW4/Papers/326/>, retrieved on Nov. 23, 2010, 1995, 15 pages.
  • Paulos et al., “Designing Personal Tele-Embodiment”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, May 16-20, 1998, pp. 3173-3178.
  • Paulos et al., “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI, 1998, 8 pages.
  • Paulos et al., “Ubiquitous Tele-Embodiment: Applications and Implications”, International Journal of Human Computer Studies, vol. 46, No. 6, Jun. 1997, pp. 861-877.
  • Paulos et al., “Video of PRoP 2 at Richmond Field Station”, www.prop.org, Printout of Home Page of Website and Two-page Transcript of the Audio Portion of said PRoP Video, May 2001, 2 pages.
  • Paulos, Eric J., “Personal Tele-Embodiment”, Dissertation, Doctor of Philosophy in Computer Science in the Graduate Division of the University of California at Berkeley, 2001, 282 pages.
  • Picturetel Corporation, “Introducing PictureTel Live200 for Windows NT”, 1997, 63 pages.
  • Pin et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE Transactions on Robotics and Automation, vol. 10, No. 4, Aug. 1994, pp. 480-489.
  • Piquepaille, Roland, “How New Technologies are Modifying Our Way of Life”, Roland Piquepaille's Technology Trends, This Blog and its RSS Feed Are Moving, Oct. 31, 2004, 2 pages.
  • Radvision, “Making Sense of Bandwidth the NetSense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques, Radvision's Netsense Technology, 2010, 7 pages.
  • Roach, Adam, “Automatic Call Back Service in SIP”, Internet Engineering Task Force, Internet Draft, Category: Informational, Mar. 2000, 8 pages.
  • Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and Optical Fiber Networks for Data Exchange”, International Journal of Robotics Research, vol .15, No. 3, Jun. 1, 1996, pp. 267-279.
  • Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), vol. 25, Apr. 30-May 1, 2000, 7 page.
  • Salemi et al., “MILO: Personal Robot Platform”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 4089-4094.
  • Sandt et al., “Perceptions for a Transport Robot in Public Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Sep. 7-11, 1997, pp. 360-365.
  • Sawyer, Robert J., “Inventing the Future: 2000 Years of Discovery”, Available online at <http://www.sfwriter.com/pritf.htm>, retrived on May 25, 2008, Jan. 2, 2000, 2 pages.
  • Schaeffer et al., “Care-O-Bot™: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 4, 1998, pp. 2476-2481.
  • Schultz et al., “Web Interfaces for Mobile Robots in Public Places”, IEEE Robotics and Automation Magazine, vol. 7, No. 1, Mar. 2000, pp. 48-56.
  • Shimoga et al., “Touch and Force Reflection for Telepresence Surgery”, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1994, pp. 1049-1050.
  • Siegwart et al., “Interacting Mobile Robots on the Web”, Proceedings of the IEEE International Conference on Robotics and Automation, May 1999, pp. 10-15.
  • Simmons et al., “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48.
  • Stephenson, Gary, “Dr. Robot Tested at Hopkins”, Johns Hopkins Medical institutions, available online at <http://www.hopkinsmedicine.org/press/2003/august/030805.htm>, Aug. 5, 2003, 2 pages.
  • Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Complications of Urologic Laparoscopic Surgery: Recognition, Management and Prevention, Dec. 2002, 17 pages.
  • Suplee, Carl, “Mastering the Robot”, available online at <http://www.cs.cmu.edu-nursebotlweb/press/wash/index.html>, retrieved on Nov. 23, 2010, Sep. 17, 2000, 5 pages.
  • Tahboub et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continously Variable Transmission”, Journal of Dynamic Systems, Measurement and Control ASME, vol. 124, Mar. 2002, pp. 118-126.
  • Telepresence Research, Inc., “Telepresence Mobile Robot System”, available online at <http://www.telepresence.com/telepresence-research/TELEROBOT/>, retrieved on Nov. 23, 2010, Feb. 20, 1995, 3 pages.
  • Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, Oct. 30-Nov. 2, 1997, pp. 2771-2776.
  • Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks-ICANN, Sep. 14-17, 2009, pp. 913-922.
  • Thrun et al., “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, Journal of Robotics Research, vol. 19, 2000, pp. 1-35.
  • Time, Lists, “Office Coworker Robot”, Best Inventions of 2001, Available online at <http://content.time.com/time/specials/packages/article/0,28804,193616513 19362551936640,00.html>, Nov. 19, 2001, 2 pages.
  • Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, British Geriatrics Society, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195.
  • Tzafestas et al., “VR-based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Technical Report DEMO 2000/13, Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Athens, Greece, Nov. 2000, pp. 1-23.
  • Urquhart, Kim, “InTouch's Robotic Companion ‘Beams Up’ Healthcare Experts”, Medical Device Daily, The Daily Medical Technology Newspaper, vol. 7, No. 39, Feb. 27, 2003, pp. 1-4.
  • Weaver et al., “Monitoring and Controling Using the Internet and Java”, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, 1999, pp. 1152-1158.
  • Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, Available online at <http://www.telbotics.com/research3.htm>, retrieved on Nov. 23, 2010, 1999, 3 pages.
  • Weiss, et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing, vol. 5, No. 3, Aug. 2001, pp. 157-168.
  • West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, ASME, vol. 119, Jun. 1997, pp. 153-161.
  • Yamasaki et al., “Applying Personal Robots and Active Interface to Video Conference Systems”, 6th International Conference on Human Computer Interaction, vol. B, 1995, pp. 243-248.
  • Yamauchi, Brian, “PackBot: A Versatile Platform for Military Robotics”, Proceedings of SPIE for Military Robotics, 2004, pp. 228-237.
  • Yong et al., “Robot Task Execution with Telepresence Using Virtual Reality Technology”, International Conference on Mechatronic Technology, Nov. 30-Dec. 2, 1998, pp. 1-8.
  • Zambroski, James, “CMU, Pitt Developing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html>, retrieved on Jun. 26, 2012, Oct. 27, 2000, 3 pages.
  • Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, Focus Report, House Research Organization, Texas House of Representatives, No. 76-22, May 5, 2000, pp. 1-16.
  • Zipperer, Lorri, “Robotic Dispensing System”, ISMP Medication Safety Alert, vol. 4, No. 17, Aug. 25, 1999, pp. 1-2.
  • Zorn, Benjamin G., “Ubiquitous Telepresence”, Department of Computer Science, University of Colorado, Mar. 18, 1996, 13 pages.
  • “Defendant VGo Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, U.S. District Court for the Central District of California, in Case No. CV11-9185 PA, May 2, 2012, 143 pages.
  • “Magne Charge”, Smart Power for Electirc Vehicles, General Motors Corporation, Serial No. 75189637, Registration No. 2114006, Filing Date: Oct. 29, 1996, Aug. 26, 1997, 2 pages.
  • “More Online Robots: Robots that Manipulate”, available online at <http://ford.ieor.berkeley.edu/ir/robotsa2.html>, retrieved on Nov. 23, 2010, Aug. 2001, 2 pages.
  • “PictureTel Adds New Features and Functionality to its Award-Winning Live200 Desktop Videoconferencing System”, PR Newswire Association, LLC, Gale, Cengage Learning, Jun. 13, 1997, 4 pages.
  • Office Action received for Chinese Patent Application No. 200680044698.0 dated Nov. 4, 2010. (9 pages of Official Copy and 17 pages of English Translation).
  • Wang et al., “A Healthcare Tele-robotic System with a Master Remote Station with an Arbitrator”, U.S. Appl. No. 60/449,762, filed Feb. 24, 2003, 28 pages.
  • Activmedia Robotics LLC, “Pioneer 2/PeopleBot™”, Operations Manual, Version 9, Oct. 2001, 78 pages.
  • Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)—From Animals to Animats 7”, Mobile Robotics Research Group, The Seventh International Conference, available online at: <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, retrieved on Jan. 22, 2014, Aug. 4-11, 2002, 1 page.
  • Ando et al., “A Multimedia Self-Service Terminal with Conferencing Functions”, Proceedings of 4th IEEE International Workshop on Robot and Human Communication, RO-MAN'95, Jul. 5-7, 1995, pp. 357-362.
  • Android Amusement Corp., “Renting Robots from Android Amusement Corp!”, What Marketing Secret, (Advertisement), 1982, 1 page.
  • Applebome, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, available online at <http://www.theoldrobots.com/images17/dc17.JPG>, Mar. 4, 1982, 1 page.
  • Bar-Cohen et al., “Virtual Reality Robotic Telesurgery Simulations Using MEMICA Haptic System”, Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials, Mar. 5-8, 2001, 8 pages.
  • Barrett, Rick, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts are Permanent”, available online at <http://www.ivci.com/internationalvideoconferencingnewsvideoconferencingnews19.html>, May 13, 2002, 2 pages.
  • Bartholomew, “Pharmacy Apothecary of England”, BnF-Teaching Kit—Childhood in the Middle Ages, available online at <http://classes.bnf.fr/ema/grands/034.htm>, retrieved on Jul. 26, 2012, 2 pages.
  • Bauer et al., “Remote Telesurgical Mentoring: Feasibility and Efficacy”, IEEE, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp. 1-9.
  • Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, BonSecours Health System, Inc., Technology Ealy Warning System, Jun. 2003, pp. 1-10.
  • Bischoff, Rainer, “Design Concept and Realization of the Humanoid Service Robot HERMES”, In A. Zelinsky (ed.): Field and Service Robotics, Springer, London, 1998, pp. 485-492.
  • Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, Availabel online at <http://www.wi-fiplanet.com/columns/article.php/1010261/Video-A-Wireless-LAN-Killer>, retrieved on Nov. 22, 2010, Apr. 16, 2002, 4 pages.
  • Breslow et al., “Effect of a Multiple-Site Intensive Care Unit Telemedicine Program on Clinical and Economic Outcome an Alternative Paradigm for Intensivist Staffing”, Critical Care Med., vol. 32, No. 1, Jan. 2004, pp. 31-38.
  • Brooks, Rodney A., “A Robust Layered Control System for a Mobile Robot”, IEEE, Journal of Robotics and Automation, vol. 2, No. 1, Mar. 1986, pp. 14-23.
  • Brooks, Rodney Allen, “Flesh and Machines: How Robots Will Change Us”, available online at <http://dl.acm.org/citation.cfm?id=560264&preflayout=flat%25202%2520of>, retrieved on Nov. 23, 2010, Feb. 2002, 3 pages.
  • Celi et al., “The eICU: It's Not Just Telemedicine”, Critical Care Medicine, vol. 29, No. 8 (Supplement), Aug. 2001, pp. 183-189.
  • Cheetham et al., “Interface Development for a Child's Video Conferencing Robot”, Centre for Learning Technologies, Ryerson University, 2000, 4 pages.
  • Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, Computer Aided Surgery, Nov. 2001, pp. 1-26.
  • CNN, “Floating ‘Droids’ to Roam Space Corridors of the Future”, available online at <http://edition.cnn.com/2000/TECH/space/01/12/psa/> retrieved on Nov. 11, 2010., Jan. 12, 2000, 3 pages.
  • CNN.com, “Paging Dr. Robot: Machine Helps Doctors with Patients”, available online at <http://edition.cnn.com/2003/TECH/ptech/09/29/doctor.robot.ap/index.html>, retrieved on Sep. 30, 2003, 3 pages.
  • Crowley, Susan L., “Hello to Our Future”, AARP Bulletin, available online at <http://www.cs.cmu.ed/-nursebot/web/press/aarp 9914/millennium.html>, Jan. 2000, retrieved on Nov. 23, 2010, 12 pages.
  • Dalton, Barnaby, “Techniques for Web Telerobotics”, Ph. D Thesis for degree of Doctor of Philosophy, University of Western Australia, available online at <http://telerobot.mech.uwa.edu.au/information.html>, 2001, 243 pages.
  • Davies, Brian, “Robotics in Minimally Invasive Surgery”, Mechatronics in Medicine Lab, Dept. Mechanical Engineering, Imperial College, London SW7 2BX, The Institution of Electrical Engineers, IEE, Savoy Place, London WC2R OBL, UK, 1995, pp. 1-2.
  • Davis, Erik, “Telefriend, Meet iRobot, The Smartest Webcam on Wheels”, Wired Magazine, Issue 8.09, available online at <http://www.wired.com/wired/archive/8.09/irobot.html?pg=1&topic=&topicset=>, retrieved on Jul. 7, 2012, Sep. 2000, 3 pages.
  • Dean et al., “1992 AAAI Robot Exhibition and Competition”, Articles, AI Magazine, vol. 14, No. 1, 1993, 15 pages.
  • Digiorgio, James, “Is Your Emergency Department of the 'Leading Edge?”, Chicago Hospital News, vol. 2, No. 12, Feb. 2005, 3 pages.
  • Dudenhoeffer et al., “Command and Control Architectures for Autonomous Micro- Robotic Forces”, FY00 Project Report, Idaho National Engineering and Environmental Laboratory, Human Systems Engineering and Sciences Department, Idaho Falls, Apr. 2001, 43 pages.
  • Elhajj et al., “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, Jun. 2000, 10 pages.
  • Elhajj et al., “Supermedia in Internet-Based Telerobotic Operations”, Lecture Notes in Computer Science, vol. 2216, 2001, pp. 359-372.
  • Elhajj et al., “Synchronization and Control of Supermedia Transmission Via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing, Hong Kong, May 2-4, 2001, pp. 320-323.
  • Ellison et al., “Telerounding and Patient Satisfaction after Surgery”, American College of Surgeons, Elsevier, Inc., vol. 199, No. 4, Oct. 2004, pp. 523-530.
  • Evans et al., “HelpMate: The Trackless Robotic Courier”, PYXIS, available online at <http://www.pyxis.com/>, 3 pages.
  • Fels et al., “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999, 30 pages.
  • Fetterman, David M., “Videoconferencing Over the Internet”, Qualitative Health Journal, vol. 7, No. 1, May 1966. pp. 154-163.
  • Fiorini et al., “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, vol. 2, Apr. 20-25, 1997, pp. 1271-1276.
  • Fong, Terrence, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, The Robotics Institute Carnegie Mellon University, Nov. 2001, 197 pages.
  • Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, High-Performance Distributed Computing, Proceedings of the Ninth International Symposium, 2000, pp. 147-154.
  • Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187.
  • Ghiasi et al., “A Generic Web-based Teleoperations Architecture: Details and Experience”, Proceedings of SPIE, Telemanipulator and Telepresence Technologies VI, vol. 3840, No. 234, Sep. 19, 1999, 14 pages.
  • Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation (ICRA), vol. 2, San Francisco, California, 2000, pp. 2019-2024.
  • Goldberg et al., “Desktop Teleoperation via the World Wide Web”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, May 21-27, 1995, pp. 654-659.
  • Goldenberg et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23, No. 1, Jan. 2002, pp. 35-43.
  • Goldman, Lea, “Machine Dreams”, available online at <http://www.forbes.com/global/2002/0527/043.html>, retrieved on Nov. 23, 2010., May 27, 2002, 5 pages.
  • Gump, Michael D., “Robot Technology Improves VA Pharmacies”, U.S. Medicine Informational Central, Jul. 2001, 3 pages.
  • Hameed et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, pp. 103-106.
  • Han et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, Journal of Intelligent and Robotic Systems, Kluwer Acedemic Publishers, vol. 29, Nov. 2000, pp. 257-275.
  • Handley et al., “SDP: Session Description Protocol”, RFC 2327, available Online at <http://www.faqs.org/rfcs/rfc2327.html>, retrieved on Nov. 23, 2010, Apr. 1998, 22 pages.
  • Hanebeck et al., “Roman: A Mobile Robotic Assistant for Indoor Service Applications”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 1997, pp. 518-525.
  • Harmo et al., “Moving Eye—Interactive Telepresence over Internet with a Ball Shaped Mobile Robot”, Automation Technology Laboratory, Helsinki University of Technology, 2000, 6 pages.
  • Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, Communications, Computers and Signal Processing, Proceedings of IEEE Pacific Rim Conference, May 17-19, 1995, pp. 157-160.
  • Hees, William P., “Communications Design for a Remote Presence Robot”, CSCI E-131B, Final Project, Jan. 14, 2002, 12 pages.
  • Herias et al., “Flexible Virtual and Remote Laboratory for Teaching Robotics”, FORMATEX 2006, Proceedings of Advance in Control Education Madrid, Spain, Jun. 2006, pp. 1959-1963.
  • Holmberg et al., “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, FSR'99 International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999, 6 pages.
  • Ishiguro et al., “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence”, Intelligent Robots and Systems, Proceedings of 1999 IEEE/RSJ International Conference, vol. 2, 1999, pp. 1032-1038.
  • Ishihara et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, vol. 2, Nov. 3-5, 1991, pp. 1145-1150.
  • Itu, “Call Completion Supplementary Services for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.9, Series H: Audiovisual and Multimedia Systems, Nov. 2000, 63 pages.
  • Itu, “Call Intrusion Supplementary Service for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.11, Series H: Audiovisual and Multimedia Systems, Mar. 2001, 59 pages.
  • Itu, “Packet-Based Multimedia Communications Systems”, ITU-T, Telecommunication Standardization Sector of ITU, H.323, Series H: Audiovisual and Multimedia Systems, Feb. 1998, 128 pages.
  • Itu, “A Far End Camera Control Protocol for Videoconferences Using H.224”, Transmission of Non-Telephone Signals, ITU-T, Telecommunication Standardization Sector of ITU, H.281, Nov. 1994, 12 pages.
  • Ivanova, Natali, “Internet Based Interface for Control of a Mobile Robot”, First Degree Programme in Mathematics and Computer Science, Master•s thesis, Department of Numerical Analysis and Computer Science, 2003, 59 pages.
  • Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page.
  • Jenkins et al., “Telehealth Advancing Nursing Practice”, Nursing Outlook, vol. 49, No. 2, Mar. 2001, pp. 100-105.
  • Johanson, Mathias, “Supporting Video-Mediated Communication over the Internet”, Thesis for the degree of Doctor of Philosophy, Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003, 222 pages.
  • Jouppi et al., “BiReality: Mutually-Immersive Telepresence”, Multimedia '04, Proceedings of the 12th Annual ACM International Conference on Multimedia, Oct. 10-16, 2004, pp. 860-867.
  • Jouppi et al., “First Steps Towards Mutually-Immersive Mobile Telepresence”, CSCW '02, Proceedings of the ACM conference on Computer Supported Cooperative Work, Nov. 16-20, 2002, pp. 354-363.
  • Kanehiro et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Oct. 29-Nov. 3, 2001, pp. 1093-1099.
  • Kaplan et al., “An Internet Accessible Telepresence”, Multimedia Systems Journal, vol. 5, 1996, 7 pages.
  • Keller et al., “An Interface for Raven”, The National Aviary's Teleconferencing Robot, Interaction and Visual Interface Design, School of Design, Carnegie Mellon University, 2001, 8 pages.
  • Khatib et al., “Robots in Human Environments”, Robotics Laboratory, Department of Computer Science, Stanford University, 1999, 15 pages.
  • Knight et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, Robotics and Automation, Proceedings of ICRA '00, IEEE International Conference, vol. 4, Apr. 24-28, 2000, pp. 3203-3208.
  • Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, The Hartford Institute for Geriatric Nursing, Journal of Psychiatric Research, No. 3, Jan. 1999, 2 pages.
  • Kuzuoka et al., “Can the GestureCam be a Surrogate?”, Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, Sep. 10-14, 1995, pp. 181-196.
  • Lane, Earl, “Automated Aides”, available online at <http://www.cs.cum.edu/nursebot/web/press/nd4380.htm>, Reterieved on Nov. 23, 2010, Oct. 17, 2000, 4 pages.
  • Lee et al., “A Novel Method of Surgical Instruction: International Telementoring”, World Journal of Urology, vol. 16, No. 6, Dec. 1998, pp. 367-370.
  • Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services”, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Canada, Version 2.0, 1998-2001, 104 pages.
  • Lim et al., “Control to Realize Human-Like Walking of a Biped Humanoid Robot”, Systems, Man and Cybernetics, IEEE International Conference, vol. 5, 2000, pp. 3271-3276.
  • Linebarger et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Department of Computer Science and Engineering; Lehigh University, vol. 13, 2004, 40 pages.
  • Sachs et al., “Virtual Visit™: Improving Communication for Those Who Need it Most”, Studies in Health Technology and Informatics, vol. 94, Medicine Meets Virtual Reality 11, 2003, pp. 302-308.
  • Long, William F., “Robot Navigation Technology”, available online at <http://www.atp.nist.gov/eao/sp950-1/helpmate.htm>, retrieved on Nov. 23, 2010, Mar. 1999, 3 pages.
  • Luna, Nancy, “Robot a New Face on Geriatric Care”, ocregister.com, Aug. 6, 2003, 3 pages.
  • Mack, Michael J., “Minimally Invasive and Robotic Surgery”, The Journal of the American Medical Association, vol. 285, No. 5, Feb. 7, 2001, pp. 568-572.
  • Mair, G. M., “Telepresence—The Technology and its Economic and Social Implications”, Technology and Society, Technology and Society at a Time of Sweeping Change, Proceedings of International Symposium, Jun. 20-21, 1997, pp. 118-124.
  • Martin, Anya, “Brighter Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22.
  • McCardle et al., “The Challenge of Utilizing New Technology in Design Education”, Loughborough University, IDATER, 2000, pp. 122-127.
  • Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837.
  • Metz, Cade, “HP Labs”, available online at <http://www.pcmag.com/article2/0,2817,1130820,00.asp>, Jul. 1, 2003, 4 pages.
  • Michaud, Anne, “Introducing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/globe301/index.html>, retrieved on May 5, 2008, Sep. 11, 2001, 4 pages.
  • Microsoft Corporation, Inc., “Microsoft NetMeeting 3 Features”, available online at <http://technet.microsoft.com/en-us/library/cc723477.aspx>, retrieved on Jun. 26, 2012, 2012, 6 pages.
  • Montemerlo, Mike, “Telepresence: Experiments in Next Generation Internet”, available Online at <http://www.ri.cmu.edu/creative/archives.htm>, retrieved on May 25, 2008, Oct. 20, 1998, 3 pages.
  • Murphy, Robin R., “Introduction to A1 Robotics”, A Bradford Book, The Massachusetts Institute of Technology Press, 2000, 487 pages.
  • Nakajima et al., “A Multimedia Teleteaching System using an Electronic Whiteboard for Two-Way Communication of Motion Videos and Chalkboards”, Robot and Human Communication, Proceedings of 2nd IEEE International Workshop, 1993, pp. 436-441.
  • Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194.
  • Nakazato et al., “Group-Oriented User Interface for Digital Image Management”, Journal of Visual Languages and Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46.
  • Nersc, “Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Available online at <https://www.nersc.gov/news-publications/news/nersc-center-news/2002/berkeley-lab-s-rage-telepresence-robot-captures-r-and-d100-award/>, Retrieved on Jan. 22, 2014, Jul. 2, 2002, 2 pages.
  • “Nomad XR4000 Hardware Manual”, Release 1.0, Nomadic Technologies, Inc., Mar. 1999, 34 pages.
  • North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages.
  • Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2R- Experimental evaluation of the Emotional Communication between Robots and Humans”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2000, pp. 175-180.
  • Ogata et al., “Emotional Communication Robot: WAMOEBA-2R-Emotion Model and Evaluation Experiments”, Proceedings of the International Conference on Humanoid Robots, 2000, pp. 1-16.
  • “Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson”, May 9, 2014, pp. 1-48.
  • “Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001.
  • “MPEG File Format Summary”, downloaded from: <http://www.fileformat.info/format/mpeg/egff.htm>, Feb. 1, 2001, 8 pages.
  • “MPEG-4: a Powerful Standard for Use in Web and Television Environments”, by Rob Koenen (KPN Research), downloaded from <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages.
  • CMU Course 16X62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages.
  • Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309.
  • Schraft et al., “Care-O-botTM: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481.
  • “Robart I, II, III”, Spawar, Systems Center Pacific, Available online at <http://www.nosc.mil/robots/land/robart/robart.html>, retrieved on Nov. 22, 2010, 1998, 8 pages.
  • “Using your Infrared Cell Phone Camera”, Available on <http://www.catsdomain.com/xray/about.htm>, retrieved on Jan. 23, 2014, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages.
  • Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. I of IV, Jun. 24, 2013, pp. A1-A6357.
  • Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. II of IV, Jun. 24, 2013, pp. A6849-A10634.
  • Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. III of IV, Jun. 24, 2013, pp. A10654-A15517.
  • Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. IV of IV, Jun. 24, 2013, pp. A15677-A18127.
  • Reply Brief for Defendant-Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages.
  • Civil Minutes-General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGo Commons, Inc., U.S. District Court for the Central District of California, Judge Percy Anderson, Sep. 10, 2012, 7 pages.
  • Defendant-Counterclaimant VGo Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, U.S. District Court for the Central District of California, Case No. CV11-9185 PA, May 14, 2012, 228.
  • Opening Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages.
  • Reply Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages.
  • Active Media, Inc., “Saphira Software Manual”, Real World, Saphira Version 5.3, 1997, 105 pages.
  • Apple Inc., “I Phone”, iPhone Series, XP002696350, Sep. 21, 2012, pp. 1-29.
  • Blaer et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, IEEE, Proceedings of the 2003 International Conference on Robotics and Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587.
  • Bradner, S., “The Internet Standards Process—Revision 3”, Network Working Group, Request for Comments: 2026, BCP: 9, Obsoletes: 1602, Category: Best Current Practice, Oct. 1996, pp. 1-36.
  • Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc ., Sep. 26, 1997, 203 pages.
  • Chu et al., “Detection of Target Mobile Signal Strength”, Technical Development, Motorola Inc., Jan. 1999, pp. 205-206.
  • Dario et al., “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, Centro “E. Piaggio” University of Pisa, Italy, 1989, pp. 67-72.
  • Gostai “Gostai Jazz: Robotic Telepresence”, available online at <http://www.gostai.com>, 4 pages.
  • Leifer et al., “VIPRR: A Virtually in Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, Apr. 14-15, 1997, 4 pages.
  • Minsky, Marvin, “Telepresence”, OMNI Magazine, Jun. 1980, 6 pages.
  • Noritsugu et al., “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, Mechatronics, IEEE/ASME Transactions, vol. 2, No. 4, Dec. 1997, pp. 259-267.
  • Osborn et al., “Quality of Life Technology Center”, QoLT Research Overview: A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, 2 pages.
  • Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 page.
  • Tipsuwan et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, vol. 4, 28th Annual Conference of the Industrial Electronics Society, Nov. 5-8, 2002, pp. 3146-3151.
  • Tsui et al., “Exploring Use Cases for Telepresence Robots”, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar. 2011, 7 pages.
  • UMASS Lowell Robotics Lab, “Robotics Lab @ UMASS Lowell”, Department of Computer Science, Brochure, 2011, 2 pages.
  • Video Middleware Cookbook, “H.350 Directory Services for Multimedia”, 4 pages.
  • U.S. Appl. No. 10/783,760, filed Feb. 20, 2004, 48 pages.
  • International Search Report Received for International Patent Application No. PCT/US2005/037347, Apr. 17, 2006, 2 pages.
  • International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2005/037347, dated Apr. 17, 2006, 7 pages.
  • International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2006/037076, Apr. 1, 2008, 6 pages.
  • International Search Report and Written Opinion Received for International Application No. PCT/US2006/037076, dated May 11, 2007, 6 pages.
  • International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US/200714099, dated Dec. 16, 2008, 5 pages.
  • International Search Report Received for International Patent Application No. PCT/US2007/14099, dated Jul. 30, 2008, 1 page.
  • Screenshot Showing Google Date for Lemaire Telehealth Manual, Screenshot Retrieved on Dec. 18, 2014, 1 page.
  • Nomadic Technologies, Inc., “Nomad Scout Language Reference Manual”, Software Version: 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages.
  • Fulbright et al., “SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, vol. 2, 1995, pp. 225-235.
Patent History
Patent number: 9849593
Type: Grant
Filed: Feb 7, 2014
Date of Patent: Dec 26, 2017
Patent Publication Number: 20140156069
Assignee: INTOUCH TECHNOLOGIES, INC. (Goleta, CA)
Inventors: Yulun Wang (Goleta, CA), Charles S. Jordan (Santa Barbara, CA), Keith Phillip Laby (Santa Barbara, CA), Jonathan Southard (Santa Barbara, CA)
Primary Examiner: Khoi Tran
Assistant Examiner: Jorge Peche
Application Number: 14/175,988
Classifications
Current U.S. Class: Mode Selection (710/14)
International Classification: G05B 19/04 (20060101); G05B 19/418 (20060101); B25J 9/16 (20060101); B25J 19/02 (20060101); G06F 19/00 (20110101); G05D 1/00 (20060101);