Locally heated multi-zone substrate support
Embodiments of the present disclosure provide an electrostatic chuck (ESC) having azimuthal temperature control. In one embodiment, the electrostatic chuck includes an insulating base, an encapsulating member disposed on the insulating base, a first plurality of electrodes and a second plurality of electrodes disposed at a first elevation in the encapsulating member, the first plurality of electrodes intervening with the second plurality of electrodes, and a plurality of heating elements disposed at a second elevation in the encapsulating member, the heating elements being arranged in the form of discrete sections.
Latest Applied Materials, Inc. Patents:
This application is a continuation of application Ser. No. 15/295,375 (020953USC01), filed on Oct. 17, 2016, which is a continuation of application Ser. No. 14/452,801, filed on Aug. 6, 2014, now U.S. Pat. No. 9,472,434, which claims benefit of U.S. provisional patent application Ser. No. 61/862,866, filed Aug. 6, 2013, which are herein incorporated by reference.
BACKGROUND FieldEmbodiments of the disclosure generally relate to a substrate support assembly for use in a plasma processing chamber, more specifically, to an electrostatic chuck having distributed heating elements to provide independent temperature control across a substrate.
Description of the Related ArtIn the semiconductor and other industries, electrostatic chucks (ESC) are used to hold workpiece such as substrates on supports during processing of the substrate. A typical ESC may include a base, an electrically insulative layer disposed on the base, and one or more electrodes embedded in the electrically insulative layer. The ESC may be provided with an embedded electric heater, as well as be fluidly coupled to a source of heat transfer gas for controlling substrate temperature during processing. During use, the ESC is secured to the support in a process chamber. The electrode in the ESC is electrically biased with respect to a substrate disposed on the ESC by an electrical voltage source. Opposing electrostatic charges accumulate in the electrode of the ESC and on the surface of the substrate, the insulative layer precluding flow of charge therebetween. The electrostatic force resulting from the accumulation of electrostatic charge holds the substrate to the ESC during processing of the substrate.
ESCs have been developed with multiple concentric heating zones to improve processing results. The heating zones provide a means for edge to center temperature control ability to equalize reaction rates or other properties of the substrate or film because many chemical reactions performed on the workpiece, such as the etching of substrates, are highly dependent on temperature. Precisely etching a substrate within a plasma chamber can be challenging because the plasma within the chamber, pumping other chamber asymmetries may cause the temperature across the substrate to be azimuthally non-uniform. An azimuthal temperature gradient may exist asymmetrically across the substrate such that one region of the substrate is at a different temperature compared to another region of the substrate. When the temperature of the substrate is not uniform, features may not be uniformly etched into the various layers disposed on the substrate.
However, it has been difficult or prohibitively expensive for conventional ESCs to have more than a few concentric zones of temperature control across the diameter of the substrate. The inability to control substrate azimuthal temperature uniformity has an adverse effect on process uniformity both in a single substrate and between substrates.
Therefore, there is a need in the art for an improved ESC assembly that provides multiple zones of temperature control.
SUMMARY OF THE DISCLOSUREEmbodiments of the present disclosure provide an electrostatic chuck (ESC) having multiple zones of temperature control. In one embodiment, an ESC an insulating base, a dielectric layer disposed on the insulating base, the dielectric layer having a substrate supporting surface, a plurality of heating elements coupled to the insulating base, and a first set of electrodes and a second set of electrodes, wherein the plurality of heating elements are surrounded by the first set of electrodes and the second set of electrodes.
In another embodiment, the ESC includes an insulating base, a dielectric layer disposed on the insulating base, the dielectric layer having a substrate supporting surface, a plurality of heating elements coupled to the insulating base, and a first set of electrodes having a first polarity and a second set of electrodes having a second polarity opposite to the first polarity, wherein the first set of electrodes and the second set of electrodes are arranged in a pixel-like configuration such that any two electrode in a row or column have opposite polarities.
In yet another embodiment, an electrostatic chuck includes an insulating base, a dielectric layer disposed on the insulating base, the dielectric layer having a substrate supporting surface, a plurality of heating elements coupled to the insulating base, wherein one or more of the plurality of heating elements are coupled to a temperature controller, and a first set of electrodes and a second set of electrodes, wherein the plurality of heating elements are disposed along a space defined between the first set of electrodes and the second set of electrodes.
In one another embodiment, a method for fabricating an ESC includes forming an electrode assembly on an insulating base, wherein the electrode assembly includes a first electrode interleaved with a second electrode, forming a plurality of heating elements on the insulating base, the heating elements configured to azimuthally control a temperature profile across a substrate surface, and forming an encapsulating member on the electrode assembly.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments. To facilitate understanding, identical reference numerals have been used, wherever possible, to designate identical elements that are common to the figures. It is contemplated that elements of one embodiment may be advantageously utilized in other embodiments without further recitation.
DETAILED DESCRIPTIONEmbodiments of the present disclosure provide an electrostatic chuck (ESC) having azimuthal temperature control. The ESC includes a plurality of heating elements which is independently controllable and distributed across the ESC in a manner that enables azimuthal temperature control. In another embodiment, a plurality of heating elements is driven inductively, thereby minimizing the amount of holes required in the ESC to route power to the heating elements. In other embodiments, the heating elements may be resistive heaters.
The electrostatic chuck 100 generally includes an insulating base 104, an electrode assembly 106 disposed on a upper surface 107 of the insulating base 104, and an encapsulating member 102 disposed on the electrode assembly 106. The insulating base 104 may have any suitable shapes selected for handling a specific workpiece. In the illustrative example depicted in
The electrode assembly 106 disposed on the insulating base 104 includes at least two sets of distributed electrodes 108, 110. Each electrode 108, 110 may be charged with different polarities as needed when a voltage power is applied thereto, thus generating an electrostatic force. The electrodes 108, 110 may be configured to distribute the electrostatic force along a distance at least two times with width of the electrostatic chuck 100. Each electrode 108, 110 may each have a plurality of electrode fingers 120, 122 intervening with each other. It is believed that electrode interleaved fingers 120, 122 provides local electrostatic attraction distributed across a large area of the electrostatic chuck 100 in which the aggregation provides a high chucking force while using less chucking voltage. The electrode fingers 120, 122 may be formed to have different lengths and geometry. In one example, one or both of the electrode fingers 120, 122 may be formed from interconnected electrode islands 124. Interconnections 126 between electrode islands 124 may be in the plane of the electrodes 108, 110 as shown in
Between each of the electrode fingers 120 of the first electrode 108, spaces 133 are defined to receive electrode fingers 122 of the second electrode 110. The spaces 133 may be an air gap, filled with a dielectric spacer material, or filled with at least one of the insulating base 104 or encapsulating member 102.
It is contemplated that the configuration of the electrodes 108, 110 shown in
A power source 114 is coupled to the first and the second electrodes 108, 110 through a power switch 112. The power source 114 is configured to provide a voltage power to the first and the second electrode 108, 110 to generate charges with different polarities, either positive or negative charges. The positive or negative charges generated from the first and the second electrode 108, 110 provide an electrostatic force to attract a substrate disposed in the electrostatic chuck 100 in a secured position. In one embodiment, the power source 114 may be configured to provide a DC or AC power to the first and the second electrodes 108, 110. In another embodiment, the power source 114 may be configured to provide RF power which couples capacitively to the electrodes 108, 110 to apply RF bias to the substrate.
The encapsulating member 102 is disposed on the insulating base 104, sandwiching the electrode assembly 106, to form an electrostatic chuck 100 as a unitary structure. The encapsulating member 102 is positioned on the electrode assembly 106 to provide an insulating surface on which the substrate is chucked. The encapsulating member 102 may be fabricated by a material having thermal properties, e.g., coefficient of thermal expansion, substantially matching that of the underlying electrode assembly 106, and in some embodiments, also the insulating base 104.
After the encapsulating member 102, the electrode assembly 106 and the insulating base 104 are stacked in a predetermined order, a bonding process, such as an annealing process, is performed to fuse the encapsulating member 102, the electrode assembly 106 and the insulating base 104 together, forming a laminated structure of the electrostatic chuck 100 as an integral part. As the encapsulating member 102, the electrode assembly 106 and the insulating base 104 may be required to operate in a high temperature environment, e.g., greater than 300 degrees Celsius, the materials utilized to fabricate these three components may be selected from heat resistance materials, such as ceramic materials or glass materials, that can sustain high thermal treatment during the heat process.
In one embodiment, the encapsulating member 102 and the insulating base 104 may be fabricated from a ceramic material, a glass material, or a composite of ceramic and metal material, providing good strength and durability as well as heat transfer properties. The materials selected to fabricate the encapsulating member 102 and the insulating base 104 may have a coefficient of thermal expansion that is substantially matched or similar to the intermediate electrode assembly 106 to reduce thermal expansion mismatch, which may cause stress or failure under high thermal loads. In one embodiment, the coefficient of thermal expansion of the encapsulating member 102 may be between about 3 and about 8 um/(m*K). The ceramic material suitable for fabricating the encapsulating member 102 and the insulating base 104 may include, but not limited to, glass, silicon carbide, aluminum nitride, aluminum oxide, yttrium containing materials, yttrium oxide (Y2O3), yttrium-aluminum-garnet (YAG), titanium oxide (TiO), or titanium nitride (TiN). In another embodiment, the encapsulating member 102 and the insulating base 104 may be fabricated from a composite material including a different composition of a ceramic and metal, such as metal having dispersed ceramic particles.
In one embodiment, the electrode assembly 106 may be fabricated from a metallic material, for example molybdenum, which may have a coefficient of thermal expansion similar to the adjacent encapsulating member 102 and the insulating base 104. In one embodiment, the coefficient of thermal expansion of the electrode assembly 106 is between about 2 and about 8 um/(m*K), and is generally within 20 percent of the coefficient of thermal expansion of the encapsulating member 102.
During operation, a negative charge may be applied to the first electrode 108 and a positive charge may be applied to the second electrode 110, or vise versa, to generate an electrostatic force, when a power is supplied to the power source 114. During chucking, the electrostatic force generated from the electrodes 108, 110 chucks and holds the substrate disposed thereon in a secured position. As the power supplied from the power source 114 is turned off, the charges present in the interface 118 between the electrodes 108, 110 may be maintained over a long period of time. To release the substrate held on the electrostatic chuck 100, a short pulse of power in the opposite polarity may be provided to the electrodes 108, 110 to remove the charge present in the interface 118.
As depicted in the cross-sectional view of
By utilizing the intervening finger electrodes 120, 122 of the first and the second electrode 108, 110, an enhanced and localized electrostatic field may be created, which is distributed across a greater area of the electrostatic chuck 100 due to the long length of the interface 118 defined between the electrode fingers 120, 122, generating an electrostatic attraction to the substrate, helping to retain the substrate 204 on the substrate support assembly 200 with less chucking voltage compared to conventional electrostatic chucks.
In one embodiment of the disclosure shown in
In another embodiment of the disclosure, the heating elements 203 may be surrounded by the electrodes 108, 110 and arranged in a manner that the heating elements 203 are not in parallel with the electrodes 108, 110 to avoid diminishing the electrostatic coupling of the electrodes. For example, in one embodiment shown in
The first and second electrodes 108, 110 may be arranged in any configurations over the upper surface 107 of the insulating base 104 with alternating polarity, such as those shown in
Referring back to
In one example, each of the heating elements 203 is formed on the scale of about 0.1 mm to about 30 mm in width, for example about 0.5 mm, and about 0.1 mm to about 30 in length, for example about 10 mm. The heating elements 203 may have a thickness of about 0.01 mm to about 1 mm. While the heating elements 203 depicted here have about 80 heating elements, any number of heating elements is contemplated. In various examples, there may be about 10 to about 300 heating elements, such as about 100 to about 160 heating elements, arranged across the surface of the insulating base 104. The number of the heating elements 203 may vary depending upon the surface area of the electrostatic chuck 100. It should be appreciated that the only practical limitations to the number of zones of substrate heating are the amount of force needed to hold gas pressure exerted onto the backside of the substrate in the non-chucking areas (for heat exchange purposes), and the surface area that is occupied by the electrodes 108, 110 for achieving required electrostatic force in the chucking areas.
In the embodiment of
The heating elements 416 may use any suitable heating techniques, such as resistive heating or inductive heating.
Referring back to
In an alternative embodiment shown in
In one embodiment, the heating elements 516 are disposed in the same layer as the first and second electrodes 108, 110. Alternatively, the heating elements 516 may be formed in a different layer than the first and second electrodes 108, 110. For example, the heating elements 516 may be embedded in a first layer within the insulating base 504. The first layer is laminated to a second layer having first and second electrodes 108, 110 therein. The heating elements 516 may also be formed on the backside surface of the insulating base 504 (without interfering the inductive driver 520), in a similar way as discussed above with respect to
In operation, the inductive driver 520 is powered by an external power source 522 via a line 524, for example, an alternating current (AC) power source. When the alternating current flows through the inductive driver 520, the magnetic field 530 of the inductive driver 520 induces an eddy current in the corresponding heating element 516 which causes the heating element 516 to become hot, thereby heating a discrete area of the electrostatic chuck 502. As each group of one or more heating elements 516 are independently controlled, the temperature profile of the substrate 204 may be controlled and tuned azimuthally, radially or in any other manner. Heating the electrostatic chuck 502 with inductive heating technique offers advantages over the resistive heating technique since inductive heating avoids the complexity of wiring electrical interconnections through the insulating base 504 required to connect the heating elements 516 to the external power source. In some embodiments, the electrostatic chuck may be heated with resistive and inductive heating approaches to provide a synergic effect.
In the embodiments shown in
As discussed above, the insulating base 404 may be manufactured from an insulating material to support an electrode assembly 406 subsequently formed thereon. In one embodiment, the insulating base 404 is manufactured from glass, aluminum nitride, aluminum oxide, or ceramic. The insulating base 404 may have a plan area selected to accommodate the size and shape of a substrate to be disposed thereon. In one example, the insulating base 404 may be a circular shape having a diameter between about 4 inches and about 18 inches. Alternatively, the plan area may be polygonal, such as rectangular.
At step 604, an electrode assembly 406 is disposed on the top surface 407 of the insulating base 404. Similar to the electrode assembly 106 described above with referenced to
In one embodiment, the electrode assembly 406 may be formed by metallic bars, sheet, sticks, foil, and may be pre-molded, pre-casted and pre-manufactured and placed onto the top surface 407 of the insulating base 404 during fabrication of the electrostatic chuck. Alternatively, a metal deposition process may be performed to deposit and form the electrode assembly 406 directly on the top surface 407 of the insulating base 404. Suitable deposition process may include PVD, CVD, plating, ink jet printing, rubber stamping, screen printing or aerosol print process. Additionally, metal paste/metal lines may be formed on the top surface 407 of the insulating base 404. The metal paste/metal lines may initially be a liquid, paste or metal gel that may be patterned on to the object surface in a pattern, such as an array of adjacent rectangles, circles, hexagons, or other similarly shaped features to form electrode fingers with different configurations or dimensions on the top surface 407 of the insulating base 404. As discussed above, the first and the second electrodes 412, 414 may each have a plurality of electrode fingers.
At step 606, a plurality of heating elements 416 is disposed on the insulating base 404 to provide multiple small, independently controllable heating zones across the substrate support assembly 400. In one embodiment, the heating elements 416 are formed on the top surface 407 of the insulating base 404 and are coplanar with the first and second electrodes 412, 414. The heating elements 416 may be disposed in the same layer as the first and second electrodes 412, 414. Alternatively, the interleaved first and second electrodes 412, 414 may be formed in a first layer laminated to a second layer having the heating elements as shown in
The heating elements 416 may be in the form of discrete metal lines or spaces running along the top surface 407 of the insulating base 404 that is not occupied by the electrodes 412, 414. In one example, the heating elements 416 are formed within a space defined between the first and second electrodes 412, 414. In cases where the electrodes 412, 414 are formed in a pattern shown in
The heating elements 416 may be formed using a technique similar to those making the electrodes 412, 414 as discussed in step 604. For example, the heating elements 416 may be formed using a metal deposition process such as a screen printing process. The heating elements 416 may be connected to an external power source 211 through an electrical interconnection 418 that may be pre-formed in the insulating base 404. Alternatively, the electrical interconnection may not be required if inductive heating elements are used. In one example, the heating elements 416 is formed on the scale of about 0.1 mm to about 30 mm in width, and about 0.1 mm to about 30 in length. In one embodiment, there may be about 80 to about 200 heating elements on the top surface 407 of the insulating base 404. The number, size, and pattern of the heating elements 416 may vary depending upon the amount of force needed to hold gas pressure (about 1-20 Torr) exerted onto the backside of the substrate in the non-chucking areas (for heat exchange purposes), and the surface area that is occupied by the electrodes 412, 414 for achieving required electrostatic force in the chucking areas (when the heating elements and electrodes are in the same layer).
At step 608, an encapsulating member 408 is disposed on the electrode assembly 406 and the heating elements 416 present on the insulating base 404, as shown in
In one embodiment, the encapsulating member 408 may have a coefficient of thermal expansion between about 4 and about 8 um/(m*K). The encapsulating member 408 may have an enhanced heat resistance and a melting point greater than 1000 degrees Celsius. The encapsulating member 408 may have a hardness (Vickers 1 Kgf) between about 10 GPa and about 30 GPa, a surface roughness between about 6 μ-inch and 1 μ-inch, such as about 4 μ-inch, and water absorbency of about less than 1 percent or less
At step 610, a bonding process is performed to fuse both the encapsulating member 408 and the insulating base 404 together as a whole, with the electrode assembly 106 and heating elements 416 sandwiched therebetween, thereby forming an integral component, of the electrostatic chuck 402 as shown in
It is noted that different types of bonding processes may be utilized, such as, but not limited to annealing, sintering, adhering, slumping or diffusion bonding. In one example, the bonding process at step 610 is an annealing process. The annealing process may be performed by any suitable curing or annealing tool, such as oven, furnace, thermal plate, rapid thermal processing (RTP) chamber, spike anneal, or laser annealing chamber, and the like. The annealing process may be performed at a temperature between about 1200 degrees Celsius and about 2500 degree Celsius to assist the consolidation of the encapsulating member 408, the electrode assembly 406 and the insulating base 404 to form into an integral part.
Thus, a substrate support assembly with an electrostatic chuck having multiple zones of temperature control ability is provided. A plurality of heating elements may be formed on the insulating base and are coplanar with the chucking electrodes. Alternatively, the heating elements may be formed in a first layer laminated to a second layer having the chucking electrodes therein. The heating elements may be arranged in the form of discrete sections running along surface area that is not covered by the chucking electrodes to provide multiple heating zones across the surface of the electrostatic chuck. Having the heating elements and the chucking electrodes formed in the same layer (or two adjacent layers laminated together) is advantageous since the thickness of the electrostatic chuck can be reduced and formed as an integrated component with low mass. The low mass enables rapid heating and cooling of the substrate support assembly.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims
1. An electrostatic chuck, comprising:
- an insulating base;
- an encapsulating member disposed on the insulating base;
- a first plurality of electrodes and a second plurality of electrodes disposed at a first elevation within the encapsulating member, the first plurality of electrodes and the second plurality of electrodes are alternatingly arranged across a surface of the insulating base; and
- a plurality of heating elements disposed at a second elevation in the encapsulating member, the heating elements being arranged in the form of discrete sections.
2. The electrostatic chuck of claim 1, wherein each of the first and second plurality of electrodes has electrode islands connecting to each other through an interconnection.
3. The electrostatic chuck of claim 1, wherein the first plurality of electrodes and the second plurality of electrodes are coplanar.
4. The electrostatic chuck of claim 1, wherein the first plurality of electrodes is disposed at a first plane and the second plurality of electrodes is disposed at a second plane parallel to the first plane.
5. The electrostatic chuck of claim 1, wherein the first plurality of electrodes and the second plurality of electrodes are disposed in a pixel-like configuration.
6. The electrostatic chuck of claim 1, wherein the first plurality of electrodes and the second plurality of electrodes are alternatingly arranged in a polar array about a central axis.
7. The electrostatic chuck of claim 1, wherein the first plurality of electrodes and the second plurality of electrodes are arranged in a substantially concentric pattern.
8. The electrostatic chuck of claim 1, wherein the first elevation and the second elevation are different.
9. The electrostatic chuck of claim 1, wherein the first elevation and the second elevation are the same.
10. The electrostatic chuck of claim 1, wherein the plurality of heating elements are resistive heating elements.
11. The electrostatic chuck of claim 1, wherein the plurality of heating elements are inductive heating elements.
12. The electrostatic chuck of claim 1, wherein the plurality of heating elements are disposed along a space between the first plurality of electrodes and the second plurality of electrodes.
13. The electrostatic chuck of claim 1, wherein the first plurality of electrodes generates charges with a polarity that is different from the second plurality of electrodes.
14. The electrostatic chuck of claim 1, wherein the insulating base is formed from a ceramic material, a doped ceramic material, a dielectric material, a glass material, or a composite of ceramic and metal material.
15. The electrostatic chuck of claim 1, wherein the insulating base is formed from a metallic or semiconducting body.
16. The electrostatic chuck of claim 15, further comprising:
- a dielectric layer disposed on the insulating base.
17. The electrostatic chuck of claim 1, wherein the encapsulating member is formed from a ceramic material, a glass material, or a composite of ceramic and metal material.
18. The electrostatic chuck of claim 1, wherein the first plurality of electrodes and the second plurality of electrodes are each coupled to a DC power, an AC power, or a RF power.
19. The electrostatic chuck of claim 1, wherein one or more of the plurality of heating elements are coupled to a temperature controller to provide a plurality of independently controllable heating zones across a surface of the electrostatic chuck.
20. The electrostatic chuck of claim 1, further comprising:
- one or more grooves disposed near a top surface of the encapsulating member for circulating coolant.
4751609 | June 14, 1988 | Kasahara |
5595241 | January 21, 1997 | Jelinek |
5646814 | July 8, 1997 | Shamouilian et al. |
5671116 | September 23, 1997 | Husain |
5846375 | December 8, 1998 | Gilchrist et al. |
6055150 | April 25, 2000 | Clinton et al. |
6120661 | September 19, 2000 | Hirano et al. |
6678143 | January 13, 2004 | Masuda et al. |
6768627 | July 27, 2004 | Kitabayashi et al. |
6770852 | August 3, 2004 | Steger |
6780294 | August 24, 2004 | Hixson et al. |
6781812 | August 24, 2004 | Fuwa et al. |
7397648 | July 8, 2008 | Otaka |
7667944 | February 23, 2010 | Nairn |
7881036 | February 1, 2011 | Fujisawa et al. |
7916447 | March 29, 2011 | Kobayashi et al. |
8238072 | August 7, 2012 | Fujisawa et al. |
8320099 | November 27, 2012 | Hirahara et al. |
8325457 | December 4, 2012 | Park |
8335070 | December 18, 2012 | Poh |
8503156 | August 6, 2013 | Ray et al. |
8730644 | May 20, 2014 | Fujisawa et al. |
9287806 | March 15, 2016 | Park |
9472434 | October 18, 2016 | Cox |
9711386 | July 18, 2017 | Cox |
9735037 | August 15, 2017 | Cox |
20030047802 | March 13, 2003 | Hiramatsu et al. |
20060096946 | May 11, 2006 | Schaepkens |
20060291132 | December 28, 2006 | Kanno et al. |
20080024650 | January 31, 2008 | Nomura et al. |
20080037196 | February 14, 2008 | Yonekura et al. |
20080062609 | March 13, 2008 | Himori et al. |
20090284894 | November 19, 2009 | Cooke |
20120033340 | February 9, 2012 | Roy et al. |
20120115254 | May 10, 2012 | Singh |
20120227886 | September 13, 2012 | Hsiao et al. |
20120307412 | December 6, 2012 | Boyd, Jr. et al. |
20130001899 | January 3, 2013 | Hwang et al. |
20130086809 | April 11, 2013 | Parkhe et al. |
20150331337 | November 19, 2015 | Sundarrajan et al. |
20160064267 | March 3, 2016 | Toh et al. |
20170148657 | May 25, 2017 | Pape |
101283624 | October 2008 | CN |
101335186 | December 2008 | CN |
103201826 | July 2013 | CN |
H04237148 | August 1992 | JP |
H08315965 | November 1996 | JP |
H09167742 | June 1997 | JP |
10-012551 | January 1998 | JP |
2002-357838 | December 2002 | JP |
2003-179128 | June 2003 | JP |
2003-243493 | August 2003 | JP |
2003234262 | August 2003 | JP |
2003524885 | August 2003 | JP |
2003308772 | October 2003 | JP |
2004031630 | January 2004 | JP |
2005012144 | January 2005 | JP |
2005303014 | October 2005 | JP |
2007088411 | April 2007 | JP |
2007106317 | April 2007 | JP |
2008041993 | February 2008 | JP |
2008052246 | March 2008 | JP |
2008227001 | September 2008 | JP |
2008300491 | December 2008 | JP |
2009267256 | November 2009 | JP |
2010166033 | July 2010 | JP |
2011176275 | September 2011 | JP |
508716 | November 2002 | TW |
540583 | July 2003 | TW |
201225206 | June 2012 | TW |
- International Search Report and Written Opinion for International Application No. PCT/US2014/048182 dated Nov. 17, 2014.
- Japanese Office Action for Application No. 2016-533318 dated Jun. 13, 2017.
- Korean Office Action for Application No. 10-2016-7005977 dated May 22, 2017.
- Taiwan Office Action for Application No. 103126784 dated May 11, 2017.
- Korean Office Action for Application No. 10-2016-7005977 dated Nov. 29, 2017.
- Korea Office Action dated Feb. 1, 2018 for Application No. 10-2016-7005977.
- Japan Office Action dated Jan. 9, 2018 for Application No. 2016-533318.
- Chinese Search Report dated Jan. 19, 2018 for Application No. 201480040003.6.
Type: Grant
Filed: Aug 14, 2017
Date of Patent: May 29, 2018
Patent Publication Number: 20180019148
Assignee: Applied Materials, Inc. (Santa Clara, CA)
Inventor: Michael S. Cox (Gilroy, CA)
Primary Examiner: Stephen W Jackson
Application Number: 15/676,031
International Classification: H01T 23/00 (20060101); H01L 21/683 (20060101); H01L 21/67 (20060101);