Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing

- Medtronic, Inc.

A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application claims the benefit of U.S. Provisional Application No. 62/028,957, filed Jul. 25, 2014, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

The disclosure relates to cardiac pacing, and more particularly, to cardiac pacing using a leadless pacing device.

BACKGROUND

An implantable pacemaker may deliver pacing pulses to a patient's heart and monitor conditions of the patient's heart. In some examples, the implantable pacemaker comprises a pulse generator and one or more electrical leads. The pulse generator may, for example, be implanted in a small pocket in the patient's chest. The electrical leads may be coupled to the pulse generator, which may contain circuitry that generates pacing pulses and/or senses cardiac electrical activity. The electrical leads may extend from the pulse generator to a target site (e.g., an atrium and/or a ventricle) such that electrodes at the distal ends of the electrical leads are positioned at a target site. The pulse generator may provide electrical stimulation to the target site and/or monitor cardiac electrical activity at the target site via the electrodes.

A leadless pacing device has also been proposed for sensing electrical activity and/or delivering therapeutic electrical signals to the heart. The leadless pacing device may include one or more electrodes on its outer housing to deliver therapeutic electrical signals and/or sense intrinsic depolarizations of the heart. The leadless pacing device may be positioned within or outside of the heart and, in some examples, may be anchored to a wall of the heart via a fixation mechanism.

SUMMARY

The disclosure describes a leadless pacing device (hereinafter, “LPD”) that is configured for implantation in a ventricle of a heart of a patient, and is configured to deliver atrio-synchronous ventricular pacing based on detection of atrial contraction. More particularly, the LPD includes a motion sensor configured to generate a motion signal as a function of heart movement. The motion sensor may include one or more accelerometers, which may have a single axis, or multiple axes. The LPD is configured to analyze the motion signal within an atrial contraction detection window. The atrial contraction detection window begins upon completion of an atrial contraction detection delay period, which begins upon detection of activation of the ventricle. The LPD is configured to detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., within an atrioventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse. In some examples, the LPD is configured to deliver atrio-synchronous ventricular pacing using an electrical AV interval based on detection of atrial depolarizations via a plurality of electrodes of the LPD and, if the LPD is unable to detect atrial depolarizations, switch to delivering atrio-synchronous ventricular pacing using a mechanical AV interval, which may be shorter than the electrical AV interval, based on detection of atrial contractions.

In one example, a leadless pacing device is configured to provide atrio-synchronous ventricular pacing. The leadless pacing device comprises a plurality of electrodes, a motion sensor configured to generate a motion signal as a function of movement of a heart of a patient, a stimulation module coupled to the plurality of electrodes, wherein the stimulation module is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes, and an electrical sensing module coupled to the plurality of electrodes, wherein the electrical sensing module is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes. The leadless pacing device further comprises a mechanical sensing module coupled to the motion sensor. The mechanical sensing module is configured to receive the motion signal from the motion sensor, identify an activation of the ventricle and, upon identification of the activation of the ventricle, initiate an atrial contraction detection delay period. The mechanical sensing module is further configured to analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. The leadless pacing device further comprises a processing module configured to control the stimulation module to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module. The leadless pacing device further comprises a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module, the electrical sensing module, the mechanical sensing module, and the processing module.

In another example, a method for providing atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient comprises identifying an activation of the ventricle, upon identification of the activation of the ventricle, initiating an atrial contraction detection delay period, and analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart. The method further comprises detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and delivering a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.

In another example, a leadless pacing device is configured to provide atrio-synchronous ventricular pacing. The leadless pacing device comprises means for generating a motion signal as a function of movement of a heart of a patient, means for identifying an activation of a ventricle of the heart, means for initiating an atrial contraction detection delay period upon identification of the activation of the ventricle, and means for analyzing the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The leadless pacing device further comprises means for detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and means for delivering a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.

In another example, a computer-readable storage medium comprises instructions stored thereon that, when executed by one or more programmable processors of a leadless pacing device configured to provide atrio-synchronous ventricular pacing, cause the one or more processors to identify an activation of the ventricle, upon identification of the activation of the ventricle, initiate an atrial contraction detection delay period, and analyze a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart. The instructions further cause the one or more processors to detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and control delivery of a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.

The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a conceptual diagram illustrating an example leadless pacing system that comprises an example leadless pacing device configured to deliver atrio-synchronous ventricular pacing based on atrial contraction detection implanted within a patient.

FIG. 2 is a conceptual diagram further illustrating the example leadless pacing device of FIG. 1.

FIG. 3 is a conceptual diagram illustrating another example leadless pacing system that comprises another example leadless pacing device configured to deliver atrio-synchronous ventricular pacing based on atrial contraction detection implanted within a patient.

FIG. 4 is a functional block diagram illustrating an example configuration of a leadless pacing device configured to deliver atrio-synchronous ventricular pacing based on atrial contraction detection.

FIG. 5 is a graph illustrating a cardiac electrogram and a corresponding motion signal.

FIG. 6 is a timing diagram illustrating an example technique for delivering atrio-synchronous ventricular pacing based on atrial contraction detection.

FIG. 7 is a flow diagram of an example technique for delivering atrio-synchronous ventricular pacing based on atrial contraction detection that may be performed by a leadless pacing device implanted within a ventricle.

FIG. 8 is a flow diagram illustrating an example technique for detecting an atrial contraction based on analysis of a motion signal that may be performed by a leadless pacing device implanted within a ventricle.

FIG. 9 is a flow diagram illustrating an example technique for verifying efficacy of atrio-synchronous ventricular pacing based on atrial contraction detection that may be performed by a leadless pacing device implanted within a ventricle.

FIG. 10 is a flow diagram illustrating an example technique for switching between an atrio-synchronous ventricular pacing mode and an asynchronous pacing mode that may be performed by a leadless pacing device implanted within a ventricle.

FIG. 11 is a flow diagram illustrating an example technique for switching between atrio-synchronous ventricular pacing in response to atrial depolarizations and atrio-synchronous ventricular pacing in response to atrial contractions that may be performed by a leadless pacing device implanted within a ventricle.

DETAILED DESCRIPTION

Typically, dual-chamber implantable pacemakers are implanted within a pocket within the patient's chest, and coupled to a right-atrial lead and a right-ventricular lead. The right-atrial lead extends from the implantable pacemaker in the pocket to the right atrium of the patient's heart, and positions one or more electrodes within the right atrium. The right-ventricular lead extends from the implantable pacemaker in the pocket to the right ventricle of the patient's heart, and positions one or more electrodes within the right ventricle.

Such dual-chamber implantable pacemakers sense respective cardiac electrical activity, e.g., respective cardiac electrograms, via the one or more electrodes implanted within the right atrium and the one or more electrodes implanted within the right ventricle. In particular, such dual-chamber implantable pacemakers detect intrinsic atrial depolarizations via the one or more electrodes implanted within the right atrium, and intrinsic ventricular depolarizations via the one or more electrodes implanted within the right ventricle. The implantable pacemakers may also deliver pacing pulses to the right atrium and the right ventricle via the one or more electrodes in the right atrium and the right ventricle, respectively. Due to the ability to sense both atrial and ventricular electrical activity, such dual-chamber implantable pacemakers may be able to provide atrio-synchronous ventricular pacing. For patients with intermittent AV node conduction, it may be preferable to inhibit ventricular pacing and allow an intrinsic ventricular depolarization to occur for a time, referred to as the AV interval, after an intrinsic atrial depolarization or atrial pace. Such atrio-synchronous pacing in dual-chamber implantable pacemakers may be according to the VDD or DDD programming modes, which have been used to treat patients with various degrees of AV block.

Implantable cardiac leads and the pocket in which pacemakers are implanted may be associated with complications. To avoid such complications leadless pacing devices sized to be implanted entirely within one chamber, e.g., the right ventricle, of the heart have been proposed. Some proposed leadless pacemakers include a plurality of electrodes that are affixed to, or are a portion of, the housing of the leadless pacing device.

Some proposed leadless pacing devices are capable of sensing intrinsic depolarizations of, and delivering pacing pulses to, the chamber of the heart in which they are implanted via the plurality of electrodes. However, because they are not coupled to electrodes in any other chamber, some proposed leadless pacing devices are incapable of sensing intrinsic depolarizations of, and delivering pacing pulses to, another chamber of the heart. Consequently, when implanted in the right ventricle, for example, such proposed leadless pacing devices may be unable to sense intrinsic atrial depolarizations of the atria, and may be limited to delivery of ventricular pacing according to an asynchronous ventricular pacing, e.g., according to a VVI or VVIR mode.

FIG. 1 is a conceptual diagram illustrating an example leadless pacing system 10A that comprises an example leadless pacing device (LPD) 12A that is configured to deliver atrio-synchronous ventricular pacing based on atrial contraction detection. In the example of FIG. 1, LPD 12A is implanted within right ventricle 18 of heart 16 of patient 14. More particularly, LPD 12A is fixed or attached to the inner wall of the right ventricle 18 proximate to the apex of the right ventricle in the example of FIG. 1. In other examples, LPD 12A may be fixed to the inner wall of right ventricle 18 at another location, e.g., on the intraventricular septum or free-wall of the right ventricle, or may be fixed to the outside of heart 16, i.e., epicardially, proximate to right ventricle 18. In other examples, LPD may be fixed within, on, or near the left-ventricle of heart 16.

LPD 12A includes a plurality of electrodes that are affixed to, or are a portion of, the housing of LPD 12A. LPD 12A senses electrical signals associated with depolarization and repolarization of heart 16, i.e., a cardiac electrogram signal, via the electrodes. LPD 12A also delivers cardiac pacing pulses to right ventricle 18 via the electrodes.

LPD 12A detects depolarizations of right ventricle 18 within the cardiac electrogram. In some examples, LPD 12A is not configured to detect intrinsic depolarizations of an atrium, e.g., right atrium 20, or the atria of heart 16 generally, within the cardiac electrogram signal. In other examples, LPD 12A is configured to detect atrial depolarizations within the cardiac electrogram signal. In some examples, LDP 12A is configured to detect atrial depolarizations with the cardiac electrogram signal, but may, at times, be unable to reliably detect atrial depolarizations, e.g., due to the quality of the cardiac electrogram signal, or the relatively small magnitude of the atrial depolarizations within a cardiac electrogram signal sensed via electrodes disposed within right ventricle 18. LPD 12A is configured to detect mechanical contractions of an atrium, e.g., right atrium 20, or the atria of heart 16 generally, e.g., as an alternative to sensing electrical depolarizations of right atrium 20. In this manner, LPD 12A may be configured to deliver atrio-synchronous ventricular pacing to right ventricle 18 even when not configured, or unable, to detect atrial depolarizations.

As described in greater detail below, LPD 12A includes a motion sensor configured to generate a motion signal as a function of movement of a heart of a patient. LPD 12A is configured to identify an activation event of right ventricle 18, and analyze the motion signal within an atrial contraction detection window that begins upon completion of an atrial contraction detection delay period that is initiated upon detection of the activation of the ventricle. The activation of the ventricle may be an intrinsic depolarization of the ventricle or delivery of a pacing pulse to the ventricle. In some examples, LPD 12A may be configured to detect contraction of right ventricle 18 based on the motion signal, and identify activation of the ventricle based on the detected ventricular contraction.

LPD 12A is configured to detect an atrial contraction based on the analysis of the motion signal within the atrial contraction detection window. If a subsequent intrinsic depolarization of right ventricle 18 is not detected, e.g., within an AV interval beginning when the atrial contraction was detected, LPD 12A is further configured to deliver the pacing pulse to right ventricle 18. In this manner, LPD 12A is configured to deliver atrio-synchronous pacing to right ventricle 18 based on detection of atrial contractions.

In some examples, LPD 12A is configured to assess the efficacy of the delivery of atrio-synchronous pacing to right ventricle 18. For example, LPD 12A may detect a resulting contraction of right ventricle 18 based on the motion signal after delivery of a pacing pulse to the right ventricle, and determine whether the delivery of the pacing pulse to the right ventricle was effective based on the detection of the contraction of the right ventricle. In some examples, LPD 12A may determine one or more metrics of the ventricular contraction, such as a timing or amplitude of the ventricular contraction, and adjust the delivery of the ventricular pacing based on the one or more metrics. LPD 12A may adjust the AV interval, which begins upon detection of atrial contraction, based on the one or more metrics, as one example.

In addition to the motion of the heart, a motion signal generated by the motion sensor of LPD 12A may include more general motion of patient 14 due to patient activity or experienced by patient, e.g., driving in a car. Such motion of patient 14 may interfere with the ability of LPD 12A to detect atrial contractions. In some examples, LPD 12A is configured to determine an amount of motion of patient 14 based on the motion signal, and change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that the amount of patient motion exceeds a threshold. In some examples, LPD 12A is additionally or alternatively configured to change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that the heart rate is relatively high and/or irregular, e.g., based on intervals between successive intrinsic ventricular depolarizations and a stored threshold value, such as approximately 100 beats-per-minute (bpm). In some examples, LPD 12A is additionally or alternatively configured to change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that an atrial contraction was not detected during a predetermined number of cardiac cycles. According to an asynchronous ventricular pacing mode, e.g., VVI or VVIR, LPD 12A delivers a ventricular pacing pulse if an intrinsic ventricular depolarization is not detected within a VV interval that begins when a previous intrinsic ventricular depolarization was detected, or a previous ventricular pacing pulse was delivered.

As illustrated in FIG. 1, leadless pacing system 10A also includes a medical device programmer 22, which is configured to program LPD 12A and retrieve data from LPD 12A. Programmer 22 may be a handheld computing device, desktop computing device, a networked computing device, or any other type of computing device, as examples. Programmer 22 may include a computer-readable storage medium having instructions that cause a processor of programmer 22 to provide the functions attributed to programmer 22 in the present disclosure. LPD 12A may wirelessly communicate with programmer 22. For example, LPD 12A may transfer data to programmer 22 and may receive data from programmer 22. Programmer 22 may also wirelessly program and/or wirelessly charge LPD 12A.

Data retrieved from LPD 12A using programmer 22 may include cardiac electrograms and motion signals stored by LPD 12A that indicate the electrical and mechanical activity of heart 16, and marker channel data that indicates the occurrence and timing of sensing, diagnosis, and therapy events associated with LPD 12A, e.g., detection of atrial and ventricular depolarizations, atrial and ventricular contractions, and delivery of pacing pulses. Data transferred to LPD 12A using programmer 22 may include, for example, operational programs for LPD 12A that causes LPD 12A to operate as described herein. As examples, data transferred to LPD 12A using programmer 22 may include lengths of any AV intervals, atrial contraction detection delay periods, and atrial contraction detection windows described herein, any threshold values, such as for detecting atrial and/or ventricular contractions, or programming used by LPD 12A to determine such values based on determined parameters of heart 16, patient 14, or LPD 12A.

FIG. 2 is a conceptual diagram further illustrating LPD 12A. As illustrated in FIG. 2, LPD 12A includes an outer housing 30, fixation times 32A-32D (collectively “fixation tines 32”), and electrodes 34 and 36. Outer housing 30 is configured to allow, e.g., has a size and form factor that allows, LPD 12A to be entirely implanted within a chamber of heart 16, such as right ventricle 18. As illustrated in FIG. 2, housing 30 may have a cylindrical (e.g., pill-shaped) form factor in some examples. Housing 30 may be hermetically sealed to prevent ingress of fluids into the interior of housing 30.

Fixation tines 32 extend from outer housing 30, and are configured to engage with cardiac tissue to substantially fix a position of housing 30 within a chamber of heart 16, e.g., at or near an apex of right ventricle 18. Fixation tines 32 are configured to anchor housing 30 to the cardiac tissue such that LPD 12A moves along with the cardiac tissue during cardiac contractions. Fixation tines 32 may be fabricated from any suitable material, such as a shape memory material (e.g., Nitinol). The number and configuration of fixation tines 32 illustrated in FIG. 2 is merely one example, and other numbers and configurations of fixation tines for anchoring an LPD housing to cardiac tissue are contemplated. Additionally, although LPD 12A includes a plurality of fixation tines 32 that are configured to anchor LPD 12A to cardiac tissue in a chamber of a heart, in other examples, LPD 12A may be fixed to cardiac tissue using other types of fixation mechanisms, such as, but not limited to, barbs, coils, and the like.

LPD 12A is configured to sense electrical activity of heart 16, i.e., a cardiac electrogram, and deliver pacing pulses to right ventricle 18, via electrodes 34 and 36. Electrodes 34 and 36 may be mechanically connected to housing 30, or may be defined by a portion of housing 30 that is electrically conductive. In either case, electrodes are electrically isolated from each other. Electrode 34 may be referred to as a tip electrode, and fixation tines 32 may be configured to anchor LPD 12A to cardiac tissue such that electrode 34 maintains contact with the cardiac tissue. Electrode 36 may be defined by a conductive portion of housing 30 and, in some examples, may define at least part of a power source case that houses a power source (e.g., a battery) of LPD 12A. In some examples, a portion of housing 30 may be covered by, or formed from, an insulative material to isolate electrodes 34 and 36 from each other and/or to provide a desired size and shape for one or both of electrodes 34 and 36.

Outer housing 30 houses electronic components of LPD 12A, e.g., an electrical sensing module for sensing cardiac electrical activity via electrodes 34 and 36, a motion sensor, a mechanical sensing module for detecting cardiac contractions, and an electrical stimulation module for delivering pacing pulses via electrodes 34 and 36. Electronic components may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to an LPD described herein. Additionally, housing 30 may house a memory that includes instructions that, when executed by one or more processors housed within housing 30, cause LPD 12A to perform various functions attributed to LPD 12A herein. In some examples, housing 30 may house a communication module that enables LPD 12A to communicate with other electronic devices, such as medical device programmer 22. In some examples, housing 30 may house an antenna for wireless communication. Housing 30 may also house a power source, such as a battery.

FIG. 3 is a conceptual diagram illustrating another example leadless pacing system 10B that comprises another example LPD 12B configured to deliver atrio-synchronous ventricular pacing based on atrial contraction detection. Leadless pacing system 10B and LPD 12B may be substantially the same as leadless pacing system 10A and LPD 12A described above with respect to FIGS. 1 and 2. Unlike LPD 12A, however, LPD 12B includes a sensing extension 40 that includes an electrode 42. In some examples, sensing extension 40 may include one or more additional electrodes having the same polarity as electrode 42. Although not illustrated in FIG. 3, LPD 12B may include an electrode 34, but may not include electrode 36, as described above with respect to LPD 12A and FIG. 2.

Electrode 42 is electrically connected to electronics within a housing of LPD 12B (e.g., an electrical sensing module and a stimulation module) via an electrical conductor of sensing extension 40. In some examples, the electrical conductor of sensing extension 40 is connected to the electronics via an electrically conductive portion of the housing of LPD 12B, which may correspond to electrode 36 of LPD 12A (FIG. 2), but may be substantially completely insulated (e.g., completely electrically insulated or nearly completely electrically insulated). Substantially completely electrically insulating the conductive portion of the housing may allow an electrical sensing module of LPD 12B to sense electrical cardiac activity with electrode 42 of sensing extension 40, rather than the conductive portion of the housing.

Additionally, as shown in FIG. 3, sensing extension 40 extends away from LPD 12, which enables electrode 42 to be positioned relatively close to right atrium 20. As a result, a cardiac electrogram sensed by LPD 12B via electrodes 34 (FIGS. 2) and 42 may include a higher amplitude far-field atrial depolarization signal than a cardiac electrogram sensed by LPB 12A via electrodes 34 and 36 (FIG. 2). In this way, sensing extension 40 may facilitate detection of atrial depolarizations when LPD 12B is implanted in right ventricle 18. In some examples, sensing extension 40 is sized to be entirely implanted within right ventricle 18. In other examples, sensing extension 40 is sized to extend into right atrium 20.

LPD 12B is configured to detect atrial depolarizations within a cardiac electrogram signal. Accordingly, LPD 12B may be configured to deliver atrio-synchronous ventricular pacing based on detection of atrial depolarizations. For example, LPD 12B may be configured to deliver a pacing pulse to right ventricle 18 if an intrinsic depolarization of right ventricle 18 is not detected within an AV interval after detection of a depolarization of right atrium 20.

However, despite sensing extension 40, LPD 12B may, at times, be unable to detect depolarizations of right atrium 20, e.g., due to reduced cardiac electrogram signal quality. Reduced cardiac electrogram signal quality may include reduced amplitude of the atrial component of the cardiac electrogram signal and/or increased noise. Reduced cardiac electrogram signal quality may be caused by, for example, movement of sensing extension 40 relative to right atrium 20, which may be caused by posture or activity of patient 14, or other conditions of patient 14, heart 16, and/or LPD 12B. Consequently, LPD 12B is also configured to detect atrial contractions, and deliver atrio-synchronous ventricular pacing based on the atrial contractions, as described with respect to LPD 12A.

In some examples, LPD 12B is configured to determine that an atrial depolarization was not detected during a cardiac cycle. For example, LPD 12B may be configured to determine that an atrial depolarization was not detected between consecutive ventricular depolarizations. In some examples, in response to determining that a depolarization of the atrium was not detected during a predetermined number of cardiac cycles, LPD 12B is configured to switch from delivering atrio-synchronous ventricular pacing based on detection of atrial depolarization and using an electrical AV interval, to delivering atrio-synchronous ventricular pacing based on detection of atrial contractions and using a mechanical AV interval. Because mechanical contraction of the atrium occurs after electrical depolarization of the atrium, the mechanical AV interval may be shorter than the electrical AV interval.

FIG. 4 is a functional block diagram illustrating an example configuration of an LPD 12A to deliver atrio-synchronous ventricular pacing based on atrial contraction detection. LPD 12B of FIG. 3 may have a similar configuration. However, electrode 36 of LPD 12A may be replaced by electrode 42 of LPD 12B, which may be positioned a greater distance away from electrode 34 and LPD 12B, as described above with respect to FIG. 3.

LPD 12A includes a processing module 50, memory 52, stimulation module 54, electrical sensing module 56, motion sensor 58, mechanical sensing module 60, communication module 62, and power source 64. Power source 64 may include a battery, e.g., a rechargeable or non-rechargeable battery.

Modules included in LPD 12A represent functionality that may be included in LPD 12A of the present disclosure. Modules of the present disclosure may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to the modules herein. For example, the modules may include analog circuits, e.g., amplification circuits, filtering circuits, and/or other signal conditioning circuits. The modules may also include digital circuits, e.g., combinational or sequential logic circuits, memory devices, and the like. The functions attributed to the modules herein may be embodied as one or more processors, hardware, firmware, software, or any combination thereof. Depiction of different features as modules is intended to highlight different functional aspects, and does not necessarily imply that such modules must be realized by separate hardware or software components. Rather, functionality associated with one or more modules may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.

Processing module 50 may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or equivalent discrete or integrated logic circuitry. In some examples, processing module 50 includes multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, or one or more FPGAs, as well as other discrete or integrated logic circuitry. Additionally, although illustrated as separate functional components in FIG. 4, some or all of the functionality attributed to stimulation module 54, electrical sensing module 56, mechanical sensing module 60, and communication module 62 may implemented in the one or more combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, one or more FPGAs, and/or other discrete or integrated logic circuitry that implements processing module 50.

Processing module 50 may communicate with memory 52. Memory 52 may include computer-readable instructions that, when executed by processing module 50, cause processing module 50 and any other modules of LPD 12A to perform the various functions attributed to them herein. Memory 52 may include any volatile, non-volatile, magnetic, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), Flash memory, or any other memory device.

Stimulation module 54 and electrical sensing module 56 are electrically coupled to electrodes 34, 36. Processing module 50 is configured to control stimulation module 54 to generate and deliver pacing pulses to heart 16 (e.g., right ventricle 18 in the example shown in FIG. 1) via electrodes 34, 36. In addition, processing module 50 is configured to control electrical sensing module 56 monitor a signal from electrodes 34, 36 in order to monitor electrical activity of heart 16. Electrical sensing module 56 may include circuits that acquire an electrical signal from electrodes 34, 36, as well as circuits to filter, amplify, and otherwise process the electrical signal. The electrical signal includes intrinsic cardiac electrical activity, such as depolarizations and repolarizations of the ventricles and, in some cases, depolarizations of the atria, and may be referred to as a cardiac electrogram signal. Electrical sensing module 56 detects ventricular depolarizations within the cardiac electrogram signal and, in some examples, detects atrial depolarizations within the cardiac electrogram signal.

LPD 12A also includes motion sensor 58. In some examples, motion sensor 58 comprises one or more accelerometers. In some examples, motion sensor 58 comprises a plurality of accelerometers, e.g., three accelerometers, each of which is oriented to detect motion in the direction of a respective axis or vector. The axes or vectors may be orthogonal. In other examples, motion sensor 58 may comprises one or more different sensors that generate a signal as a function of motion, instead of or in addition to the one or more accelerometers, such as gyros, mercury switches, or bonded piezoelectric crystals.

Mechanical sensing module 60 includes circuitry to receive the motion signal from motion sensor 58, as well as circuits to filter, amplify, and otherwise process the motion signal. Because LPD 12A is affixed to heart 16, motion sensor 60 generates a motion signal that varies as a function of motion of the heart, including motion associated with the contraction of the atria, and motion associated with the subsequent contraction of the ventricles. Because LPD 12A is implanted within patient 14, the motion signal generated by motion sensor 58 also varies as a function of any motion of (or experienced by) the patient, e.g., due to patient activity.

As described in greater detail below, mechanical sensing module 60 analyzes the motion signal generated by motion sensor 58 to detect contraction of an atrium. Mechanical sensing module 60 may also analyze the motion signal to detect ventricular contraction. To detect atrial or ventricular contractions, mechanical sensing module 60 may filter the motion signal to exclude components other than cardiac motion, e.g., components of the motion signal associated with motion engaged in or experienced by patient 14. For example, to detect contraction of an atrium, mechanical sensing module 60 may high-pass filter the motion signal, e.g., to exclude frequencies lower than about 40 Hz. As another example, to detect contraction of a ventricle, mechanical sensing module 60 may high-pass filter the motion signal, e.g., to exclude frequencies lower than about 60 Hz.

Mechanical sensing module 60 may also analyze the motion signal to detect other parameters of patient 14, such as patient activity level. To detect patient activity level, mechanical sensing module 60 may filter the motion signal to exclude components other than those resulting from patient activity, such as components associated with cardiac contraction. For example, mechanical sensing module 60 may low-pass filter the motion signal generated by motion sensor 58, e.g., to exclude frequencies above about 40 Hz. Processing module 50 may control stimulation module 54 to deliver rate responsive ventricular pacing based on the activity level determined by motion sensing module 60. For example, processing module 50 may adjust an AV interval based on the activity level.

In examples in which motion sensor 58 includes a plurality of accelerometers or other sensors, a motion signal generated by motion sensor 58 may include one or more of the signals generated by the sensors, respectively, or a combination of one or more of the respective signals, which may be referred to as component signals of the motion signal. Mechanical sensing module 60 may derive the motion signal based on one or more of the component signals according to a sensing vector, where different sensing vectors specify a different one or more of the component signals. In some examples, mechanical sensing module 60 is configured to derive the motion signal according to a variety of different sensing vectors. In some examples, mechanical sensing module 60 may be configured to sense different parameters or events, e.g., atrial contractions, ventricular contractions, and patient activity, using different sensing vectors. In some examples, mechanical sensing module 60 is configured to detect an event or parameter, e.g., atrial contraction, according to a plurality of sensing vectors, and identify one or more sensing vectors that provide adequate detection of the event.

Communication module 62 may include any suitable hardware (e.g., an antenna), firmware, software, or any combination thereof for communicating with another device, such as programmer 22 (FIGS. 1 and 3) or a patient monitor. Under the control of processing module 50, communication module 62 may receive downlink telemetry from and send uplink telemetry to other devices, such as programmer 22 or a patient monitor, with the aid of an antenna included in communication module 62.

Memory 52 may include data recorded by LPD 12A, e.g., cardiac electrograms, motion signals, heart rates, information regarding detection of atrial contractions, ventricular pacing efficacy, etc. Under the direction of processing module 50, communication module 62 may transfer data recorded by LDP 12A to another device, such as programmer 22. Memory 52 may also store programming data received by processing module 50 from another device, such as programmer 22, via communication module 62. The programming data stored in memory 52 may include, as examples, lengths of any AV intervals, atrial contraction detection delay periods, and atrial contraction detection windows described herein. The programming data stored in memory 52 may additionally or alternatively include any threshold values described herein, such as for detecting atrial and/or ventricular contractions, determining whether pacing is efficacious, or determining whether atrio-synchronous ventricular pacing should by suspended in favor of asynchronous pacing. The programming data stored in memory 52 may additionally or alternatively include data used by processing module 50 to determine any values described herein, e.g., based determined parameters of heart 16, patient 14, or LPD 12A.

FIG. 5 is a graph illustrating a cardiac electrogram signal 70 and a corresponding motion signal 72 generated by one or more accelerometers. Cardiac electrogram signal 70 includes ventricular depolarizations (R-waves) 74A and 74B, and corresponding ventricular repolarizations (T-waves) 76A and 76B. A cardiac cycle 78 may be defined as the period from one ventricular depolarization 74A to the next ventricular depolarization 74B, or the period between any repeating fiducial features of cardiac electrogram signal 70 or motion signal 72.

As illustrated by FIG. 5, cardiac cycle 78 includes an ejection phase, which may also be referred to as systole. During the ejection phase a ventricular contraction 80A occurs as a result of ventricular depolarization 74A. The S1 and S2 heart sounds, which are associated with ventricular contraction, occur at the beginning and end, respectively, of the ejection phase. The S1 and S2 heart sounds are produced by closing of the atrioventricular values and semilunar valves of heart 16, respectively.

After the ejection phase, cardiac cycle 78 includes a passive filing stage during diastole, during which passive filling of the ventricles may produce the S3 heart sound. Additionally, near the end of diastole, an atrial contraction 82 occurs, actively filling of the ventricles. The active filing of the ventricles may produce the S4 heart sound. The atrial depolarization that resulted in atrial contraction 82 is not present in cardiac electrogram 70. Another cardiac cycle begins with ventricular depolarization 74B, and the resulting ventricular contraction 80B.

Mechanical sensing module 60 detects atrial contractions, and may also detect ventricular contractions, based on an analysis of a motion signal generated by motion sensor 58. The motion signal generated by motion sensor 58 may vary based on the movement of tissue of heart 16, as well as any associated mechanical perturbations or vibrations, during contraction of heart 16. Mechanical perturbations or vibrations may include those associated with the S1-S4 hearts sounds discussed above. For example, mechanical sensing module 60 may detect an atrial contraction based on features in motion signal 72 that are indicative of movement of cardiac tissue during atrial contraction, and/or the presence of mechanical perturbations associated with the S4 heart sound. As another example, mechanical sensing module 60 may detect a ventricular contraction based on features in motion signal 72 that are indicative of movement of cardiac tissue during ventricular contraction, and/or the presence of mechanical perturbations associated with the S1 heart sound.

FIG. 6 is a timing diagram illustrating an example technique for delivering atrio-synchronous ventricular pacing based on atrial contraction detection. The timing diagram of FIG. 6 includes a ventricular marker channel, and a corresponding motion signal. According to the example technique for delivering atrio-synchronous ventricular pacing based on atrial contraction detection, mechanical sensing module 60 identifies an activation of a ventricle, e.g., right ventricle 18. An activation of a ventricle may be an intrinsic or paced depolarization of the ventricle, or a mechanical contraction of the ventricle. Mechanical sensing module 60 may identify activation of a ventricle by determining that electrical sensing module 56 detected an intrinsic depolarization 90A of the ventricle, by determining that stimulation module 54 delivered a pacing pulse to the ventricle, or by detecting mechanical contraction 92A of ventricle.

In response to identifying activation of the ventricle, mechanical sensing module 60 waits for an atrial contraction detection delay period 94, and then analyzes the motion signal generated by motion sensor 58 within an atrial contraction detection window 96 that begins the atrial contraction detection delay period 94 after the activation of the ventricle, i.e., that begins upon completion of the atrial contraction detection delay period 94. In the example of FIG. 6, mechanical sensing module 60 determined that electrical sensing module detected ventricular depolarization 90A, and analyzes the motion signal within atrial contraction detection window 96 that begins atrial contraction detection delay period 94 after detection of ventricular depolarization 90A.

Starting atrial contraction detection window 96 upon completion of atrial contraction delay period 94 may allow mechanical sensing module 60 to avoid misidentifying ventricular contraction 92A, or other motion of heart during the cardiac cycle prior to atrial depolarization and contraction, as an atrial contraction. In some examples, atrial contraction delay period 94 is at least approximately 300 milliseconds. In some examples, atrial contraction delay period 94 is at least approximately 400 milliseconds, or is approximately 400 milliseconds. In some examples, atrial contraction detection delay period 94 is at least approximately 600 milliseconds. In some examples, processing module 50 and/or mechanical sensing module 60 adjusts atrial contraction detection delay period 94 based on a heart rate of patient 14, e.g., based on one or more intervals between consecutive intrinsic ventricular depolarizations detected by electrical sensing module 56. For example, processing module 50 and/or mechanical sensing module 60 may increase atrial contraction detection delay period 94 as heart rate decreases, and decrease atrial contraction detection delay period 94 as heart rate increases. In some examples, a clinician or other user may program a length of atrial contraction delay period 94, e.g., using programmer 22. The user may select the length of atrial contraction delay period 94 based on individual patient characteristics.

Based on the analysis of the motion signal within atrial contraction detection window 96, mechanical sensing module 60 may detect atrial contraction 98. Mechanical sensing module 60 may extend atrial contraction detection window 96, and the associated analysis of the motion signal, until detection of atrial contraction 98, or until a subsequent intrinsic ventricular depolarization 90B is detected by electrical sensing module 56, or a subsequent ventricular pacing pulse 104 is delivered by stimulation module 54. In some examples, as described above, mechanical sensing module 60 filters the motion signal within atrial contraction detection window 96. Mechanical sensing module 60 may also rectify the motion signal within atrial contraction detection window 96. In some examples, mechanical sensing module 60 detects atrial contraction 98 by comparing an amplitude of the motion signal within atrial contraction detection window 96 to a threshold 100. In some examples, mechanical sensing module 60 determines a derivative signal of the motion signal, e.g., the filtered and/or rectified motion signal, and compares an amplitude of the derivative signal, which represents the rate of change of the motion signal, to threshold 100. In some examples, mechanical sensing module 60 detects the time of atrial contraction 98 as the earliest time point at which the amplitude of the motion signal, or it derivative signal, exceeds threshold 100.

In some examples, threshold 100 is a constant value, which may be determined by a manufacturer of an LPD 12A, or programmed by a clinician using programmer 22. In other examples, mechanical sensing module 60 and/or processing module 50 determines threshold 100 based on a peak amplitude of the motion signal during one or more previously detected atrial contractions. For example, mechanical sensing module 60 and/or processing module 50 may determine that threshold 100 is a value within a range from approximately 20 percent to approximately 80 percent, such as approximately 50 percent, of the peak amplitude of the motion signal during the most recently detected atrial contraction, or of an average peak amplitude of the motion signal during a plurality of previously detected atrial contractions.

In some examples, instead of or in addition to detection of atrial contraction 98 based on a comparison of the motion signal to threshold 100, mechanical sensing module 60 may detect atrial contraction 98 using morphological comparison techniques. For example, mechanical sensing module 60 may compare the motion signal within atrial contraction detection window 96 to one or more templates representing one or more features of a motion signal during atrial contraction. Mechanical sensing module 60 may detect atrial contraction 98 at the point when a statistic resulting from the comparison indicates a sufficient level of similarity between the motion signal and the one or more templates.

In some examples, processing module 50 determines whether electrical sensing module 56 detects an intrinsic ventricular depolarization 90B resulting from the atrial depolarization that led to atrial contraction 98. For example, processing module 50 may determine whether electrical sensing module 56 detects intrinsic ventricular depolarization 90B within an AV interval 102 that begins upon detection of atrial contraction 98 by mechanical sensing module 60. If electrical sensing module 56 does not detect intrinsic depolarization 90B within AV interval 102, e.g., because it did not occur due to AV nodal block, then processing module 50 controls electrical stimulation module 54 to generate and deliver ventricular pacing pulse 104 at the expiration of AV interval 102. In this manner, LPD 12A delivers atrio-synchronous ventricular pacing based on detection of atrial contractions.

Due to the delay between atrial depolarization and atrial contraction 98, and the resulting temporal proximity between atrial contraction 98 and the time at which a paced or intrinsic ventricular depolarization should occur, AV interval 102, which may be referred to as a mechanical AV interval, may be shorter than an (electrical) AV interval employed by a pacemaker that provides atrio-synchronous ventricular pacing based on detection of atrial depolarizations. In some examples, AV interval 102 is less than approximately 100 milliseconds. In some examples, AV interval 102 is less than approximately 50 milliseconds. In some examples, AV interval 102 is approximately 30 milliseconds. In some examples, mechanical AV interval 102 is approximately 20 to 30 milliseconds shorter than an electrical AV interval for the patient.

In some examples, processing module 50 does not employ an AV interval. In such examples, upon detection of atrial contraction 98 by mechanical sensing module 60, processing module determines whether electrical sensing module 56 has detected intrinsic ventricular depolarization 90B. If electrical sensing module 56 has not detected intrinsic ventricular depolarization 90B, then processing module 50 controls stimulation module 54 to generate and deliver a ventricular pacing pulse.

In some examples, LPD 12A determines whether the delivery of ventricular pacing pulse 104 was effective based on detection of the ventricular contraction 92B resulting from the delivery of pacing pulse 104. In such examples, mechanical sensing module 60 detects ventricular contraction 92B based on the motion signal, e.g., based on a comparison of the motion signal to a threshold 106 in a manner similar to that employed for detection of atrial contraction 98 based on threshold 100, or based on a morphological analysis. In some examples, mechanical sensing module 60 detects the time of ventricular contraction 110 to be the first time-point after delivery of pacing pulse 104 when the amplitude of the motion signal exceeds threshold 106. Mechanical sensing module 60 and/or processing module 50 may determine an interval 108 from delivery of pacing pulse 104 to a time of detection of ventricular contraction 92B. Mechanical sensing module 60 may also determine a peak amplitude 110 of the motion signal during ventricular contraction 92B.

In some examples, processing module 50 adjusts AV interval 102 based on the determination of whether the delivery of pacing pulse 104 to the ventricle was effective. For example, processing module 50 may decrease AV interval 102 in response to determining that interval 108 is less than a threshold. Additionally or alternatively, processing module 50 may increase AV interval 102 in response to determining that peak amplitude 110 is greater than a threshold.

FIG. 7 is a flow diagram of an example technique for delivering atrio-synchronous ventricular pacing based on atrial contraction detection that may be performed by a LPD implanted within a ventricle, such as LPD 12A or LPD 12B implanted within right ventricle 18 of heart 16. The example technique of FIG. 7 may be performed, at least in part, by a processing module 50 of such an LPD. According to the example technique of FIG. 7, the LPD identifies ventricular activation (120), and detects a subsequent atrial contraction based on a motion signal generated by a motion sensor of the LPD (122). The LPD then determines whether an intrinsic ventricular depolarization resulting from the atrial depolarization that caused the detected atrial contraction has been detected, e.g., within an AV interval beginning upon detection of the atrial contraction (124).

If the LPD detects an intrinsic ventricular depolarization resulting from the atrial depolarization that caused the detected atrial contraction (YES of 124), then the LPD identifies the intrinsic ventricular depolarization as a ventricular activation that begins the next cardiac cycle (120). If the LPD does not detect an intrinsic ventricular depolarization resulting from the atrial depolarization that caused the detected atrial contraction (NO of 124), then the LPD delivers a ventricular pacing pulse (126). For example, the LPD may deliver a ventricular pacing pulse upon expiration of the AV interval without detecting an intrinsic ventricular depolarization. The LPD identifies delivery of the ventricular pacing pulse as a ventricular activation that begins the next cardiac cycle (120). The LPD may also determine whether the delivery of the cardiac pacing pulse was effective, e.g., as described above with respect to FIG. 6 (128).

FIG. 8 is a flow diagram illustrating an example technique for detecting an atrial contraction based on analysis of a motion signal (e.g., 122 of FIG. 7) that may be performed by a LPD implanted within a ventricle, such as LPD 12A or LPD 12B implanted within right ventricle 18 of heart 16. The example technique of FIG. 8 may be performed, at least in part, by a processing module 50 of such an LPD. According to the example technique of FIG. 8, the LPD begins an atrial contraction detection delay period upon identification of a ventricular activation event (130). The LPD begins an atrial contraction detection window upon expiration of the atrial contraction delay period (132). The LPD analyzes the motion signal generated by the motion sensor of the LPD within the atrial contraction detection window.

The LPD filters the motion signal within the atrial contraction detection window, rectifies the filtered signal, and generates a derivative signal of the filtered and rectified motion signal within the atrial contraction detection window (134). The LPD determines whether an amplitude of the derivative signal within the atrial contraction detection window exceeds a threshold (136). In response to determining that the amplitude of the derivative signal within the atrial contraction detection window exceeds the threshold (YES of 136), the LPD detects an atrial contraction (138).

FIG. 9 is a flow diagram illustrating an example technique for verifying efficacy of atrio-synchronous ventricular pacing based on atrial contraction detection that may be performed by a LPD implanted within a ventricle, such as LPD 12A or LPD 12B implanted within right ventricle 18 of heart 16. According to the example technique of FIG. 9, the LPD detects a ventricular contraction resulting from a ventricular pacing pulse based on the motion signal generated by a motion sensor of the LPD after delivery of the ventricular pacing pulse (140). For example, the LPD may detect a time of the ventricular contraction as a time when an amplitude of the motion signal, e.g., an amplitude of a derivative signal generated from a filtered and rectified motion signal, exceeds a threshold.

The LPD determines an interval from the delivery of the ventricular pacing pulse to the time of detection of the ventricular contraction (142). The LPD determines whether the interval is less than a threshold (144). If the interval is less than the threshold (YES of 144), then the LPD decreases an AV interval used for delivery of atrio-synchronous ventricular pacing pulses after detection of an atrial contraction (146).

If the interval is not less than the threshold, e.g., is greater than the threshold (NO of 144), then the LPD determines a peak amplitude of the motion signal during the detected ventricular contraction (148). The LPD determines whether the peak amplitude of the motion signal during the detected ventricular contraction is greater than a threshold (150). If the peak amplitude is greater than the threshold (YES of 150), then the LPD increases an AV interval used for delivery of atrio-synchronous ventricular pacing pulses after detection of an atrial contraction (152). If the peak amplitude is not greater than the threshold, e.g., is less than the threshold (NO of 150), then the LPD maintains the AV interval at its current value (154).

FIG. 10 is a flow diagram illustrating an example technique for switching between an atrio-synchronous ventricular pacing mode and an asynchronous pacing mode that may be performed by a LPD implanted within a ventricle, such as LPD 12A or LPD 12B implanted within right ventricle 18. The example technique of FIG. 10 may be performed, at least in part, by a processing module 50 of such an LPD. According to the example technique of FIG. 10, the LPD operates in an atrio-synchronous ventricular pacing mode in which the LPD delivers atrio-synchronous ventricular pacing based detection of atrial contractions, as described herein (160). The atrio-synchronous ventricular pacing mode in which the LPD delivers atrio-synchronous ventricular pacing based detection of atrial contractions may be similar to a conventional VDD pacing mode, and may be referred to as a VDD pacing mode.

The LPD determines whether a patient activity level, or a level of motion experienced by the patient, exceeds a threshold (162). The LPD may determine the patient activity or motion level based on the motion signal generated by the motion sensor of the LPD. If the activity or motion level exceeds the threshold (YES of 162), then the LPD switches to an asynchronous ventricular pacing mode (164). In the asynchronous ventricular pacing mode, the LDP may deliver pacing pulses to the ventricle if an intrinsic ventricular depolarization is not detected within a VV interval from the last paced or intrinsic ventricular depolarization. The asynchronous ventricular pacing mode of the LPD may be similar to a conventional VVI or VVIR pacing mode, and may be referred to as a WI or VVIR pacing mode.

If the activity or motion level does not exceed the threshold, e.g., is less than the threshold (NO of 162), then the LPD determines whether the heart rate is greater than a threshold, e.g., greater than approximately 80 beats-per-minute or approximately 100 beats-per-minute, and/or irregular (166). The LPD may determine the heart rate and its regularity based on intervals between previous ventricular depolarizations. If the heart rate is greater than the threshold and/or irregular (YES of 166), then the LPD switches to the asynchronous ventricular pacing mode (164).

If the heart rate is not greater than the threshold and/or not irregular (NO of 166), then the LPD determines whether it is able to detect atrial contractions based on an analysis of the motion signal generated by a motion sensor of the LPD (168). For example, the LPD may determine that it is unable to detect atrial contractions if it determines that it has not detected atrial contractions for a predetermined number of cardiac cycles. The predetermined number of cardiac cycles may be any number of one or more cardiac cycles, which may be consecutive or non-consecutive. For example, the predetermined number of cardiac cycles may be three. If LPD determines that it is unable to detect atrial contraction (NO of 168), then the LPD switches to the asynchronous ventricular pacing mode (170). If the LPD determines that it is unable to detect atrial contractions (NO of 168), then the LPD may also change a motion signal sensing vector according to which the LPD derives the motion signal from one or more of a plurality of signals generated by the motion sensor, e.g., the plurality accelerometers of the motion sensor (172).

If the LPD determines that it is able to detect atrial contractions (YES of 168), then LPD may continue to deliver ventricular pacing according to the atrio-synchronous ventricular pacing mode (160). Further, after delivering pacing according to the asynchronous pacing mode (164, 170) for a period of time, or until a condition that led to the switch to the asynchronous mode has abated, the LPD may switch to delivery of ventricular pacing according to the atrio-synchronous ventricular pacing mode.

FIG. 11 is a flow diagram illustrating an example technique for switching between atrio-synchronous ventricular pacing in response to atrial depolarizations and atrio-synchronous ventricular pacing in response to atrial contractions that may be performed by a LPD implanted within a ventricle, such as right ventricle 18, that is able to detect depolarizations of an atrium, such as right atrium 20. LPD 12B that is coupled to sensing extension 40 is one example of such an LPD, although LPD 12A may also be configured to detect depolarizations of the atrium. The example technique of FIG. 11 may be performed by a processing module 50 of such an LPD.

According to the example technique of FIG. 11, the LPD delivers atrio-synchronous pacing a first, electrical AV interval after detection of atrial depolarizations (180). The LPD determines whether it is unable to detect atrial depolarizations (182). For example, the LPD may determine that it is unable to detect atrial depolarizations if it determines that it has not detected atrial depolarizations for a predetermined number of cardiac cycles, e.g., has not detected an atrial depolarization between consecutive ventricular depolarizations of a predetermined number of cardiac cycles. The predetermined number of cardiac cycles may be any number of one or more cardiac cycles, which may be consecutive or non-consecutive. If LPD determines that it is unable to detect atrial depolarizations (YES of 182), then the LPD may activate atrial contraction detection, and switch to delivery of atrio-synchronous pacing a second, mechanical AV interval after detection of atrial contractions (184). If LPD determines that it is able to detect atrial depolarizations (NO of 182), or some time delivering atrio-synchronous ventricular pacing based on atrial contraction detection (184), then the LPD may continue or switch back to delivery of atrio-synchronous ventricular pacing based on atrial depolarization detection (180).

The techniques described in this disclosure, including those attributed to LPDs 12, programmer 22, or various constituent components, may be implemented, at least in part, in hardware, software, firmware or any combination thereof. For example, various aspects of the techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components, embodied in programmers, such as physician or patient programmers, stimulators, image processing devices or other devices. The term “processor” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry.

Such hardware, software, firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.

When implemented in software, the functionality ascribed to the systems, devices and techniques described in this disclosure may be embodied as instructions on a computer-readable medium such as RAM, ROM, NVRAM, EEPROM, FLASH memory, magnetic data storage media, optical data storage media, or the like. The instructions may be executed to support one or more aspects of the functionality described in this disclosure.

Various examples have been described. These and other examples are within the scope of the following claims.

Claims

1. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module circuitry is configured to: determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within an atrioventricular (AV) interval beginning timed from when the mechanical sensing module circuitry detected the contraction of the atrium; and control the stimulation module circuitry to generate the pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and,
wherein the mechanical sensing module circuitry is configured to detect a contraction of the ventricle based on the motion signal after delivery of the pacing pulse to the ventricle, and the processing module circuitry is configured to: determine whether the delivery of the pacing pulse to the ventricle was effective based on the detection of the contraction of the ventricle; and adjust the AV interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.

2. The leadless pacing device of claim 1, wherein the processing module circuitry is configured to:

determine that an interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than a threshold; and
decrease the AV interval in response to the determination that the interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than the threshold.

3. The leadless pacing device of claim 1,

wherein the mechanical sensing module circuitry is configured to: detect a peak of the ventricular contraction of the ventricle based on the motion signal; and determine an amplitude of the motion signal at the peak, and
wherein the processing module circuitry is configured to: determine that the amplitude is greater than the threshold; and increase the AV interval in response to the determination that the amplitude is greater than the threshold.

4. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes, wherein the electrical sensing circuitry is further configured to detect depolarizations of at least one atrium of the heart;
a mechanical sensing module circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a one or more pacing pulse pulses and deliver the pacing pulse pulses to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module is configured to: determine that the electrical sensing module did not detect a depolarization of the ventricle within an atrioventricular (AV) interval beginning when the mechanical sensing module detected the contraction of the atrium; and control the stimulation module to generate the pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and,
wherein the AV interval comprises a mechanical AV interval,
wherein the electrical sensing module is configured to detect depolarizations of the atrium within the cardiac electrogram sensed via the plurality of electrodes,
wherein, in response to the electrical sensing module circuitry detecting a depolarization of the atrium, the processing module circuitry is configured to: determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within an electrical atrioventricular (AV) interval beginning timed from when the electrical sensing module circuitry detected the depolarization of the atrium; and control the stimulation module circuitry to generate a one of the pacing pulse pulses and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination that the electrical sensing module circuitry did not detect a depolarization of the ventricle,
wherein the processing module circuitry is further configured to determine that the electrical sensing module circuitry did not detect a depolarization of the atrium during a predetermined number of one or more cardiac cycles and, in response to the determination: control the mechanical sensing module circuitry to detect a the contraction of the atrium based on the motion signal; determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within the a mechanical AV interval beginning timed from when the mechanical sensing module circuitry detected the contraction of the atrium; and control the stimulation module circuitry to generate a one of the pacing pulse pulses and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination that the mechanical sensing module circuitry did not detect a depolarization of the ventricle, and
wherein the electrical AV interval is greater than the mechanical AV interval.

5. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module circuitry is configured to: determine a heart rate of the patient based on depolarizations detected by the electrical sensing module circuitry; determine that the heart rate exceeds a threshold; and control the stimulation module circuitry to generate pacing pulses and deliver the pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination that the heart rate exceeds the threshold.

6. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the motion sensor comprises a plurality of accelerometers, each of the plurality of accelerometers oriented along a respective axis and configured to generate a respective accelerometer signal,
wherein mechanical sensing module circuitry derives the motion signal based on a first one or more of the accelerometer signals according to a first sensing vector, and
wherein the processing module circuitry is configured to: determine that the mechanical sensing module circuitry did not detect a contraction of the atrium during a predetermined number of one or more cardiac cycles; and control the mechanical sensing module circuitry to derive the motion signal based on a second one or more of the accelerometer signals according to a second sensing vector in response to based on the determination.

7. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:

identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (AV) interval beginning when the contraction of the atrium was detected;
delivering the pacing pulse to the ventricle in response to the determination;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (AV) interval beginning timed from when the contraction of the atrium was detected; and
delivering the a pacing pulse to the ventricle in response to the determination;
detecting a contraction of the ventricle based on the motion signal after delivery of the pacing pulse to the ventricle; and
determining whether the delivery of the pacing pulse to the ventricle was effective based on the detection of the contraction of the ventricle; and
adjusting the AV interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.

8. The method of claim 7, further comprising:

determining that an interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than a threshold; and
decreasing the AV interval in response to the determination that the interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than the threshold.

9. The method of claim 7, further comprising:

detecting a peak of the ventricular contraction of the ventricle based on the motion signal;
determining an amplitude of the motion signal at the peak;
determining that the amplitude is greater than the threshold; and
increasing the AV interval in response to the determination that the amplitude is greater than the threshold.

10. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:

identifying an activation of the ventricle;
upon identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (AV) interval beginning when the contraction of the atrium was detected;
delivering the pacing pulse to the ventricle in response to the determination;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (AV) interval beginning when the contraction of the atrium was detected; and
delivering the pacing pulse to the ventricle in response to the determination;
wherein the leadless pacing device is configured to detect depolarizations of the atrium, and the AV interval comprises a mechanical AV interval, the method further comprising:
in response to detecting a depolarization of the an atrium of the heart: determining that a depolarization of the ventricle was not detected within an electrical atrioventricular (AV) interval beginning when the electrical sensing module detected timed from the detection of the depolarization of the atrium; and delivering a pacing pulse to the ventricle in response to the determination that a depolarization of the ventricle was not detected, and
in response to determining that a depolarization of the atrium was not detected during a predetermined number of one or more cardiac cycles: detecting a contraction of the atrium based on the a motion signal; determining that a depolarization of the ventricle was not detected within the a mechanical AV interval beginning timed from when the contraction of the atrium was detected; and delivering a pacing pulse to the ventricle in response to the determination that a depolarization of the ventricle was not detected, and
wherein the electrical AV interval is greater than the mechanical AV interval, and
wherein detecting the contraction of the atrium based on the motion signal comprises: identifying an activation of the ventricle; in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period; analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the pacing device based on movement of the heart; and detecting the contraction of the based on the analysis of the motion signal within the atrial contraction detection window.

11. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:

identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, wherein the motion signal is further generated by the motion sensor based on motion of the patient, the method further comprising: determining an amount of motion of the patient based on the motion signal; and delivering the pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the amount of motion of the patient exceeding a threshold.

12. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:

identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, the method further comprising: determining a contraction of the atrium was not detected during a predetermined number of one or more cardiac cycles; and delivering pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination.

13. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:

identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, the method further comprising: determining that a heart rate of the heart exceeds a threshold; and delivering the one or more additional pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination that the heart rate exceeds the threshold.

14. The leadless pacing device of claim 1, wherein the AV interval begins when the mechanical sensing circuitry detected the contraction of the atrium.

15. The leadless pacing device of claim 1, wherein the processing circuitry is configured to adjust the AV interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.

16. The leadless pacing device of claim 4, wherein the electrical sensing circuitry is configured to detect the depolarizations of the at least one atrium via the plurality of electrodes.

17. The leadless pacing device of claim 4, wherein the processing circuitry is configured to control the mechanical sensing circuitry to detect the contraction of the atrium based on the motion signal in response to determining that the electrical sensing circuitry did not detect a depolarization of the atrium during a predetermined number of one or more cardiac cycles.

18. The method of claim 7, further comprising adjusting the AV interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.

19. The method claim 10, wherein detecting the contraction of the atrium based on the motion signal comprises detecting the contraction of the atrium in response to determining that the depolarization of the atrium was not detected during a predetermined number of one or more cardiac cycles.

20. The method of claim 12, wherein determining the contraction of the atrium was not detected during one or more cardiac cycles comprises determining the contraction of the atrium was not detected during a predetermined number of one or more cardiac cycles.

21. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal based on movement of a heart of a patient;
stimulation circuitry coupled to the plurality of electrodes, wherein the stimulation circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
electrical sensing circuitry coupled to the plurality of electrodes, wherein the electrical sensing circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
mechanical sensing circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
processing circuitry configured to: determine that the electrical sensing circuitry did not detect a depolarization of the ventricle within an atrioventricular (AV) interval timed from when the mechanical sensing circuitry detected the contraction of the atrium; and control the stimulation circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation circuitry, the electrical sensing circuitry, the mechanical sensing circuitry, and the processing circuitry;
wherein the processing circuitry is further configured to: determine a heart rate of the heart; and adjust the atrial contraction detection delay period based on the determined heart rate.

22. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:

a plurality of electrodes;
a motion sensor configured to generate a motion signal based on movement of a heart of a patient;
stimulation circuitry coupled to the plurality of electrodes, wherein the stimulation circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
electrical sensing circuitry coupled to the plurality of electrodes, wherein the electrical sensing circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
mechanical sensing circuitry coupled to the motion sensor and configured to: receive the motion signal from the motion sensor; identify an activation of the ventricle; in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period; analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
processing circuitry configured to: determine that the electrical sensing circuitry did not detect a depolarization of the ventricle within an atrioventricular (AV) interval timed from when the mechanical sensing circuitry detected the contraction of the atrium; and control the stimulation circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation circuitry, the electrical sensing circuitry, the mechanical sensing circuitry, and the processing circuitry;
wherein the processing circuitry is further configured to: identify a condition inconsistent with atrio-synchronous ventricular pacing; and control the stimulation circuitry to deliver one or more additional pacing pulses to the ventricle according to an asynchronous ventricular pacing mode based on the identification of the condition.

23. The leadless pacing device of claim 22, wherein the motion sensor is configured to generate the motion signal based on motion of the patient and, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine, based on the motion signal, that an amount of motion of the patient satisfies a threshold.

24. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a contraction of the atrium was not detected during one or more cardiac cycles.

25. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a heart rate of the heart satisfies a threshold.

26. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a heart rate irregularity of the heart satisfies a threshold.

Referenced Cited
U.S. Patent Documents
3486506 December 1969 Auphan
3659615 May 1972 Enger
3678937 July 1972 Cole et al.
3693625 September 1972 Auphan
3835864 September 1974 Rasor et al.
3943936 March 16, 1976 Rasor et al.
4091818 May 30, 1978 Brownlee et al.
4157720 June 12, 1979 Greatbatch
RE30366 August 12, 1980 Rasor et al.
4256115 March 17, 1981 Bilitch
4333469 June 8, 1982 Jeffcoat et al.
5170784 December 15, 1992 Ramon et al.
5179947 January 19, 1993 Meyerson et al.
5193539 March 16, 1993 Schulman et al.
5193540 March 16, 1993 Schulman et al.
5243977 September 14, 1993 Trabucco et al.
5312439 May 17, 1994 Loeb
5324316 June 28, 1994 Schulman et al.
5404877 April 11, 1995 Nolan et al.
5405367 April 11, 1995 Schulman et al.
5411535 May 2, 1995 Fujii et al.
5438990 August 8, 1995 Wahlstrand et al.
5441527 August 15, 1995 Erickson et al.
5496361 March 5, 1996 Moberg et al.
5529578 June 25, 1996 Struble
5549650 August 27, 1996 Bornzin et al.
5674259 October 7, 1997 Gray
5697958 December 16, 1997 Paul et al.
5722998 March 3, 1998 Prutchi et al.
5792208 August 11, 1998 Gray
5814089 September 29, 1998 Stokes et al.
5843132 December 1, 1998 Ilvento
5891175 April 6, 1999 Walmsley et al.
5895414 April 20, 1999 Sanchez-Zambrano
5954757 September 21, 1999 Gray
5970986 October 26, 1999 Bolz et al.
5987352 November 16, 1999 Klein et al.
6044300 March 28, 2000 Gray
6051017 April 18, 2000 Loeb et al.
6141588 October 31, 2000 Cox et al.
6144879 November 7, 2000 Gray et al.
6175764 January 16, 2001 Loeb et al.
6181965 January 30, 2001 Loeb et al.
6185452 February 6, 2001 Schulman et al.
6185455 February 6, 2001 Loeb et al.
6198972 March 6, 2001 Hartlaub et al.
6208894 March 27, 2001 Schulman et al.
6208900 March 27, 2001 Ecker et al.
6208901 March 27, 2001 Hartung
6214032 April 10, 2001 Loeb et al.
6240316 May 29, 2001 Richmond et al.
6315721 November 13, 2001 Schulman et al.
6348070 February 19, 2002 Teissl et al.
6366811 April 2, 2002 Carlson
6415184 July 2, 2002 Ishikawa et al.
6445953 September 3, 2002 Bulkes et al.
6580947 June 17, 2003 Thompson
6592518 July 15, 2003 Denker et al.
6628989 September 30, 2003 Penner et al.
6654638 November 25, 2003 Sweeney
6662050 December 9, 2003 Olson
6733485 May 11, 2004 Whitehurst et al.
6735474 May 11, 2004 Loeb et al.
6735475 May 11, 2004 Whitehurst et al.
6738672 May 18, 2004 Schulman et al.
6764446 July 20, 2004 Wolinsky et al.
6788975 September 7, 2004 Whitehurst et al.
6804561 October 12, 2004 Stover
6871099 March 22, 2005 Whitehurst et al.
6901292 May 31, 2005 Hrdlicka et al.
6907285 June 14, 2005 Denker et al.
6917833 July 12, 2005 Denker et al.
6925328 August 2, 2005 Foster et al.
6937906 August 30, 2005 Terry et al.
6941171 September 6, 2005 Mann et al.
6947782 September 20, 2005 Schulman et al.
7003350 February 21, 2006 Denker et al.
7006864 February 28, 2006 Echt et al.
7024248 April 4, 2006 Penner et al.
7047074 May 16, 2006 Connelly et al.
7050849 May 23, 2006 Echt et al.
7054692 May 30, 2006 Whitehurst et al.
7076283 July 11, 2006 Cho et al.
7082328 July 25, 2006 Funke
7082336 July 25, 2006 Ransbury et al.
7103408 September 5, 2006 Haller et al.
7114502 October 3, 2006 Schulman et al.
7120992 October 17, 2006 He et al.
7132173 November 7, 2006 Daulton
7167751 January 23, 2007 Whitehurst et al.
7177698 February 13, 2007 Klosterman et al.
7184830 February 27, 2007 Echt et al.
7198603 April 3, 2007 Penner et al.
7200437 April 3, 2007 Nabutovsky et al.
7203548 April 10, 2007 Whitehurst et al.
7212863 May 1, 2007 Strandberg
7214189 May 8, 2007 Zdeblick
7236821 June 26, 2007 Cates et al.
7236829 June 26, 2007 Farazi et al.
7242981 July 10, 2007 Ginggen
7260436 August 21, 2007 Kilgore et al.
7283873 October 16, 2007 Park et al.
7283874 October 16, 2007 Penner
7286883 October 23, 2007 Schulman et al.
7292890 November 6, 2007 Whitehurst et al.
7294108 November 13, 2007 Bornzin et al.
7295879 November 13, 2007 Denker et al.
7310556 December 18, 2007 Bulkes
7330756 February 12, 2008 Marnfeldt
7343204 March 11, 2008 Schulman et al.
7351921 April 1, 2008 Haller et al.
7363082 April 22, 2008 Ransbury et al.
7428438 September 23, 2008 Parramon et al.
7437193 October 14, 2008 Parramon et al.
7444180 October 28, 2008 Kuzma et al.
7450996 November 11, 2008 MacDonald et al.
7450998 November 11, 2008 Zilberman et al.
7493172 February 17, 2009 Whitehurst et al.
7513257 April 7, 2009 Schulman et al.
7519421 April 14, 2009 Denker et al.
7519424 April 14, 2009 Dennis et al.
7529589 May 5, 2009 Williams et al.
7532932 May 12, 2009 Denker et al.
7532933 May 12, 2009 Hastings et al.
7535296 May 19, 2009 Bulkes et al.
7555345 June 30, 2009 Wahlstrand et al.
7558631 July 7, 2009 Cowan et al.
7561915 July 14, 2009 Cooke et al.
7565195 July 21, 2009 Kroll et al.
7587241 September 8, 2009 Parramon et al.
7606621 October 20, 2009 Brisken et al.
7610092 October 27, 2009 Cowan et al.
7616990 November 10, 2009 Chavan et al.
7616992 November 10, 2009 Dennis et al.
7617007 November 10, 2009 Williams et al.
7627371 December 1, 2009 Wang et al.
7627376 December 1, 2009 Dennis et al.
7627383 December 1, 2009 Haller et al.
7630767 December 8, 2009 Poore et al.
7634313 December 15, 2009 Kroll et al.
7637867 December 29, 2009 Zdeblick
7640060 December 29, 2009 Zdeblick
7640061 December 29, 2009 He et al.
7647109 January 12, 2010 Hastings et al.
7650186 January 19, 2010 Hastings et al.
7706892 April 27, 2010 Colvin et al.
7713194 May 11, 2010 Zdeblick
7734343 June 8, 2010 Ransbury et al.
7747335 June 29, 2010 Williams
7751881 July 6, 2010 Cowan et al.
7766216 August 3, 2010 Daulton
7771838 August 10, 2010 He et al.
7781683 August 24, 2010 Haller et al.
7809438 October 5, 2010 Echt et al.
7822480 October 26, 2010 Park et al.
7826903 November 2, 2010 Denker et al.
7840282 November 23, 2010 Williams et al.
7848815 December 7, 2010 Brisken et al.
7848823 December 7, 2010 Drasler et al.
7860564 December 28, 2010 Root et al.
7860570 December 28, 2010 Whitehurst et al.
7890173 February 15, 2011 Brisken et al.
7894907 February 22, 2011 Cowan et al.
7899541 March 1, 2011 Cowan et al.
7899542 March 1, 2011 Cowan et al.
7899554 March 1, 2011 Williams et al.
7904167 March 8, 2011 Klosterman et al.
7930031 April 19, 2011 Penner
7937148 May 3, 2011 Jacobson
7945333 May 17, 2011 Jacobson
7957805 June 7, 2011 He
7979126 July 12, 2011 Payne et al.
7991467 August 2, 2011 Markowitz et al.
7996097 August 9, 2011 DiBernardo et al.
8010209 August 30, 2011 Jacobson
8019419 September 13, 2011 Panescu et al.
8032219 October 4, 2011 Neumann et al.
8032227 October 4, 2011 Parramon et al.
8078279 December 13, 2011 Dennis et al.
8078283 December 13, 2011 Cowan et al.
8103344 January 24, 2012 Bjorling
8116883 February 14, 2012 Williams et al.
8126561 February 28, 2012 Chavan et al.
8127424 March 6, 2012 Haller et al.
8165696 April 24, 2012 McClure et al.
8185212 May 22, 2012 Carbunaru et al.
8204595 June 19, 2012 Pianca et al.
8224449 July 17, 2012 Carbunaru et al.
8239045 August 7, 2012 Ransbury et al.
8240780 August 14, 2012 Klimes
8295939 October 23, 2012 Jacobson
8301242 October 30, 2012 Root et al.
8301262 October 30, 2012 Mi et al.
8311627 November 13, 2012 Root et al.
8315701 November 20, 2012 Cowan et al.
8321036 November 27, 2012 Brockway et al.
8332036 December 11, 2012 Hastings et al.
8340780 December 25, 2012 Hastings et al.
8352025 January 8, 2013 Jacobson
8352028 January 8, 2013 Wenger
8359098 January 22, 2013 Lund et al.
8364267 January 29, 2013 Schleicher et al.
8364276 January 29, 2013 Willis
8364278 January 29, 2013 Pianca et al.
8364280 January 29, 2013 Marnfeldt et al.
8368051 February 5, 2013 Ting et al.
8374696 February 12, 2013 Sanchez et al.
8386051 February 26, 2013 Rys
8457742 June 4, 2013 Jacobson
8478408 July 2, 2013 Hastings et al.
8478431 July 2, 2013 Griswold et al.
8489205 July 16, 2013 Stotts et al.
8494637 July 23, 2013 Cowan et al.
8494642 July 23, 2013 Cowan et al.
8494644 July 23, 2013 Cowan et al.
8504156 August 6, 2013 Bonner et al.
8527068 September 3, 2013 Ostroff
8532790 September 10, 2013 Griswold
8541131 September 24, 2013 Lund et al.
8543190 September 24, 2013 Wasson et al.
8543204 September 24, 2013 Demmer et al.
8543205 September 24, 2013 Ostroff
8543216 September 24, 2013 Carbunaru et al.
8548605 October 1, 2013 Ollivier
8560892 October 15, 2013 Nicholes
8565897 October 22, 2013 Regnier et al.
8588926 November 19, 2013 Moore et al.
8626294 January 7, 2014 Sheldon et al.
8634912 January 21, 2014 Bornzin et al.
8634919 January 21, 2014 Hou et al.
8639335 January 28, 2014 Peichel et al.
8644922 February 4, 2014 Root et al.
8660660 February 25, 2014 Dai et al.
8670842 March 11, 2014 Bornzin et al.
9399140 July 26, 2016 Cho et al.
20030114905 June 19, 2003 Kuzma
20030144704 July 31, 2003 Terry et al.
20030204212 October 30, 2003 Burnes et al.
20040015204 January 22, 2004 Whitehurst et al.
20040073267 April 15, 2004 Holzer
20040088012 May 6, 2004 Kroll et al.
20040093039 May 13, 2004 Schumert
20040122477 June 24, 2004 Whitehurst et al.
20040133242 July 8, 2004 Chapman et al.
20040147973 July 29, 2004 Hauser
20040162590 August 19, 2004 Whitehurst et al.
20040172089 September 2, 2004 Whitehurst et al.
20040215264 October 28, 2004 van Bentem
20040225332 November 11, 2004 Gebhardt et al.
20050038482 February 17, 2005 Yonce et al.
20050055061 March 10, 2005 Holzer
20050070962 March 31, 2005 Echt et al.
20050256549 November 17, 2005 Holzer
20050288717 December 29, 2005 Sunagawa
20060074449 April 6, 2006 Denker et al.
20060135999 June 22, 2006 Bodner et al.
20060136005 June 22, 2006 Brisken et al.
20060167496 July 27, 2006 Nelson et al.
20060173295 August 3, 2006 Zeijlemaker
20060173497 August 3, 2006 Mech et al.
20060241705 October 26, 2006 Neumann et al.
20060241732 October 26, 2006 Denker et al.
20060293591 December 28, 2006 Wahlstrand et al.
20060293714 December 28, 2006 Salo et al.
20070027508 February 1, 2007 Cowan et al.
20070060961 March 15, 2007 Echt et al.
20070073353 March 29, 2007 Rooney et al.
20070075905 April 5, 2007 Denker et al.
20070078490 April 5, 2007 Cowan et al.
20070088396 April 19, 2007 Jacobson
20070088397 April 19, 2007 Jacobson
20070106332 May 10, 2007 Denker et al.
20070106357 May 10, 2007 Denker et al.
20070118187 May 24, 2007 Denker et al.
20070129773 June 7, 2007 Bulkes
20070135883 June 14, 2007 Drasler et al.
20070150037 June 28, 2007 Hastings et al.
20070156204 July 5, 2007 Denker et al.
20070173890 July 26, 2007 Armstrong
20070185538 August 9, 2007 Denker et al.
20070210862 September 13, 2007 Denker et al.
20070219590 September 20, 2007 Hastings et al.
20070238975 October 11, 2007 Zeijlemaker
20070255327 November 1, 2007 Cho et al.
20070276444 November 29, 2007 Gelbart et al.
20070288076 December 13, 2007 Bulkes et al.
20070288077 December 13, 2007 Bulkes et al.
20070293904 December 20, 2007 Gelbart et al.
20070293908 December 20, 2007 Cowan et al.
20070293912 December 20, 2007 Cowan et al.
20070293913 December 20, 2007 Cowan et al.
20080009910 January 10, 2008 Kraetschmer
20080033497 February 7, 2008 Bulkes et al.
20080039904 February 14, 2008 Bulkes et al.
20080051854 February 28, 2008 Bulkes et al.
20080058886 March 6, 2008 Williams
20080077184 March 27, 2008 Denker et al.
20080077188 March 27, 2008 Denker et al.
20080097529 April 24, 2008 Parramon et al.
20080109054 May 8, 2008 Hastings et al.
20080119911 May 22, 2008 Rosero
20080132961 June 5, 2008 Jaax et al.
20080140154 June 12, 2008 Loeb et al.
20080154342 June 26, 2008 Digby et al.
20080234771 September 25, 2008 Chinchoy et al.
20080269816 October 30, 2008 Prakash et al.
20080269825 October 30, 2008 Chinchoy et al.
20080288039 November 20, 2008 Reddy
20080294208 November 27, 2008 Willis et al.
20080294210 November 27, 2008 Rosero
20080319502 December 25, 2008 Sunagawa et al.
20090024180 January 22, 2009 Kisker et al.
20090048583 February 19, 2009 Williams et al.
20090082827 March 26, 2009 Kveen et al.
20090082828 March 26, 2009 Ostroff
20090105779 April 23, 2009 Moore et al.
20090157146 June 18, 2009 Linder et al.
20090171408 July 2, 2009 Solem
20090192570 July 30, 2009 Jaax et al.
20090198293 August 6, 2009 Cauller et al.
20090198295 August 6, 2009 Dennis et al.
20090198308 August 6, 2009 Gross et al.
20090326601 December 31, 2009 Brisken et al.
20100049270 February 25, 2010 Pastore et al.
20100094367 April 15, 2010 Sen
20100161002 June 24, 2010 Aghassian et al.
20100179628 July 15, 2010 Towe et al.
20100198294 August 5, 2010 Kaiser
20100249883 September 30, 2010 Zdeblick
20100249885 September 30, 2010 Colvin et al.
20100286744 November 11, 2010 Echt et al.
20100304209 December 2, 2010 Lund et al.
20100305627 December 2, 2010 Anderson
20100305628 December 2, 2010 Lund et al.
20100305629 December 2, 2010 Lund et al.
20100312320 December 9, 2010 Faltys et al.
20110054555 March 3, 2011 Williams et al.
20110060392 March 10, 2011 Zdeblick et al.
20110071585 March 24, 2011 Ransbury et al.
20110071586 March 24, 2011 Jacobson
20110077707 March 31, 2011 Maile et al.
20110077708 March 31, 2011 Ostroff
20110077721 March 31, 2011 Whitehurst et al.
20110137378 June 9, 2011 Klosterman et al.
20110160792 June 30, 2011 Fishel
20110160801 June 30, 2011 Markowitz et al.
20110208260 August 25, 2011 Jacobson
20110245782 October 6, 2011 Berthiaume et al.
20110270339 November 3, 2011 Murray, III et al.
20110270340 November 3, 2011 Pellegrini et al.
20110282423 November 17, 2011 Jacobson
20110313490 December 22, 2011 Parramon et al.
20120059431 March 8, 2012 Williams et al.
20120081201 April 5, 2012 Norgaard et al.
20120095521 April 19, 2012 Hintz
20120095539 April 19, 2012 Khairkhahan et al.
20120101392 April 26, 2012 Bhunia et al.
20120109149 May 3, 2012 Bonner et al.
20120109236 May 3, 2012 Jacobson et al.
20120116489 May 10, 2012 Khairkhahan et al.
20120143271 June 7, 2012 Root et al.
20120158090 June 21, 2012 Chavan et al.
20120158111 June 21, 2012 Khairkhahan et al.
20120165827 June 28, 2012 Khairkhahan et al.
20120172690 July 5, 2012 Anderson et al.
20120172891 July 5, 2012 Lee
20120172892 July 5, 2012 Grubac et al.
20120172943 July 5, 2012 Limousin
20120179219 July 12, 2012 Kisker et al.
20120197352 August 2, 2012 Carbunaru et al.
20120197373 August 2, 2012 Khairkhahan et al.
20120215274 August 23, 2012 Koh et al.
20120232371 September 13, 2012 Mech et al.
20120271186 October 25, 2012 Siejko et al.
20120290021 November 15, 2012 Saurkar et al.
20120290025 November 15, 2012 Keimel
20120316622 December 13, 2012 Whitehurst et al.
20120323099 December 20, 2012 Mothilal et al.
20120330174 December 27, 2012 Carlson et al.
20130023975 January 24, 2013 Locsin
20130030483 January 31, 2013 Demmer et al.
20130035748 February 7, 2013 Bonner et al.
20130053907 February 28, 2013 Kirchner et al.
20130053913 February 28, 2013 Koh et al.
20130066169 March 14, 2013 Rys et al.
20130073004 March 21, 2013 Root et al.
20130079798 March 28, 2013 Tran et al.
20130079861 March 28, 2013 Reinert et al.
20130085407 April 4, 2013 Siejko et al.
20130103047 April 25, 2013 Steingisser et al.
20130103109 April 25, 2013 Jacobson
20130110127 May 2, 2013 Bornzin et al.
20130110219 May 2, 2013 Bornzin et al.
20130116529 May 9, 2013 Min et al.
20130116738 May 9, 2013 Samade et al.
20130116740 May 9, 2013 Bornzin et al.
20130123872 May 16, 2013 Bornzin et al.
20130123875 May 16, 2013 Varady et al.
20130131159 May 23, 2013 Ko et al.
20130131693 May 23, 2013 Berthiaume et al.
20130138006 May 30, 2013 Bornzin et al.
20130150695 June 13, 2013 Biela et al.
20130184790 July 18, 2013 Schleicher et al.
20130226259 August 29, 2013 Penner et al.
20130231710 September 5, 2013 Jacobson
20130234692 September 12, 2013 Liang et al.
20130235663 September 12, 2013 Walsh et al.
20130235672 September 12, 2013 Walsh et al.
20130238044 September 12, 2013 Penner
20130238056 September 12, 2013 Poore et al.
20130238072 September 12, 2013 Deterre et al.
20130238073 September 12, 2013 Makdissi et al.
20130238840 September 12, 2013 Walsh et al.
20130253309 September 26, 2013 Allan et al.
20130253344 September 26, 2013 Griswold et al.
20130253345 September 26, 2013 Griswold et al.
20130253346 September 26, 2013 Griswold et al.
20130253347 September 26, 2013 Griswold et al.
20130261497 October 3, 2013 Pertijs et al.
20130268042 October 10, 2013 Hastings et al.
20130274828 October 17, 2013 Willis
20130274847 October 17, 2013 Ostroff
20130282070 October 24, 2013 Cowan et al.
20130282073 October 24, 2013 Cowan
20130302665 November 14, 2013 Zhao et al.
20130303872 November 14, 2013 Taff et al.
20130324825 December 5, 2013 Ostroff et al.
20130325081 December 5, 2013 Karst et al.
20130331903 December 12, 2013 Lovett et al.
20130345770 December 26, 2013 Dianaty et al.
20140012342 January 9, 2014 Penner et al.
20140012344 January 9, 2014 Hastings et al.
20140018688 January 16, 2014 Song et al.
20140018876 January 16, 2014 Ostroff
20140018877 January 16, 2014 Demmer et al.
20140026016 January 23, 2014 Nicholes
20140031836 January 30, 2014 Ollivier
20140031837 January 30, 2014 Perryman et al.
20140039570 February 6, 2014 Carroll et al.
20140039578 February 6, 2014 Whithurst et al.
20140039588 February 6, 2014 Ok et al.
20140039591 February 6, 2014 Drasler et al.
20140046200 February 13, 2014 Patangay et al.
20140046395 February 13, 2014 Regnier et al.
20140058240 February 27, 2014 Mothilal et al.
20140072872 March 13, 2014 Hodgkinson et al.
20140100627 April 10, 2014 Min
20140121720 May 1, 2014 Bonner et al.
Foreign Patent Documents
101185789 May 2008 CN
101284160 October 2008 CN
1493460 January 2005 EP
1493460 January 2005 EP
1541191 June 2005 EP
2526999 November 2012 EP
1251986 March 2006 TW
1252007 March 2006 TW
2005035048 April 2005 WO
2006081434 August 2006 WO
2006099425 September 2006 WO
2007117835 October 2007 WO
2009006531 January 2009 WO
2009052480 April 2009 WO
2012057662 May 2012 WO
2012154599 November 2012 WO
2013080038 June 2013 WO
2013121431 August 2013 WO
2012150000 November 2013 WO
2014046662 March 2014 WO
Other references
  • Delnoy, Peter Paul et al., “Validation of a peak endocardial acceleration-based algorithm to optimize cardiac resynchronization: early clinical results,” Europace, 10:801-8, Jul. 2008.
  • International Search Report and the Written Opinion from International Application No. PCT/US2015/040863, dated Oct. 9, 2015, 10 pages.
  • International Preliminary Report on Patentability from International Application No. PCT/US2015/040863, dated Feb. 9, 2017, 8 pp.
  • First Office Action, and translation thereof, from counterpart Chinese Patent Application No. 201580041159.0, dated Jul. 4, 2018, 20 pp.
  • Prosecution History from U.S. Appl. No. 14/579,105, dated from Nov. 27, 2015 through Apr. 5, 2016, 35 pp.
  • U.S. Pat. No. 8,116,861, Feb. 2011, Root et al (withdrawn).
  • (PCT/US2015/040863) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Oct. 9, 2015, 11 pages.
Patent History
Patent number: RE48197
Type: Grant
Filed: Jul 25, 2018
Date of Patent: Sep 8, 2020
Assignee: Medtronic, Inc. (Minneapolis, MN)
Inventors: Yong K. Cho (Excelsior, MN), Aleksandre T. Sambelashvili (Maple Grove, MN), Todd J. Sheldon (North Oaks, MN)
Primary Examiner: Beverly M Flanagan
Application Number: 16/045,277
Classifications
Current U.S. Class: Plural Sensed Conditions (607/18)
International Classification: A61N 1/00 (20060101); A61N 1/365 (20060101); A61N 1/372 (20060101); A61N 1/375 (20060101); A61N 1/06 (20060101);