Plural Sensed Conditions Patents (Class 607/18)
  • Patent number: 11911183
    Abstract: An implantable medical system includes at least four electrodes forming a dipole emitter and a dipole receiver which is distinct from the dipole emitter. The system is configured to recover physiological mechanical information by way of the two dipoles, by analyzing a received and processed electrical signal, wherein the amplitude has been modulated in accordance with the electrical properties of the propagation medium between the dipole emitter and the dipole receiver. Thus, a parameter which is representative of a pre-ejection period may be extracted from the attenuation of the voltage between the dipole emitter and the dipole receiver by taking an electrocardiogram or an electrogram into account.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 27, 2024
    Assignee: SORIN CRM SAS
    Inventor: Mirko Maldari
  • Patent number: 11806156
    Abstract: Computer implemented methods and systems for monitoring cardiac activity (CA) signals, for a series of beats, over first and second sensing channels having different first and second detection thresholds, respectively. The methods and systems also include analyzing the CA signals over the first and second sensing channels utilizing the first and second detection thresholds, respectively, during an event prediction window to detect a presence of sensed events. The methods and systems also include determining amplitudes of the sensed events detected. The methods and systems also include calculating at least one of an amplitude distribution or amplitude trend for the sensed events detected over the first and second channels and adjusting at least one of the first or second detection thresholds based on the at least one of the amplitude distribution or amplitude trend.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: November 7, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Hanbiao Wang, Xing Pei, Kyungmoo Ryu
  • Patent number: 11794012
    Abstract: Systems and methods are provided for neurostimulation timed relative to respiratory activity. Neurostimulation may be delivered to the spinal cord, the vagus nerve, and/or branches of the vagus nerve to provide therapeutic outcomes by controlling or adjusting stimulation based on pulmonary activity. In particular, the systems and methods use a detecting device to detect respiratory activity over time. Specific points in the respiratory signal are identified where central autonomic nuclei may be more receptive to afferent input and a stimulator is instructed to provide neurostimulation to at least one auricular branch of a vagus nerve, or to a cervical branch of the vagus nerve, or to a spinal cord of the subject. In this regard, the neurostimulation is advantageously correlated to the detected respiratory activity providing improved therapeutic outcomes.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 24, 2023
    Assignee: The General Hospital Corporation
    Inventors: Vitaly Napadow, Jill M. Goldstein, Ronald G. Garcia, Benjamin Pless
  • Patent number: 11752346
    Abstract: A pacemaker having a motion sensor delivers atrial-synchronized ventricular pacing by detecting events from a signal produced by the motion sensor and delivering ventricular pacing pulses at a rate that tracks the rate of the detected events. The pacemaker is configured to confirm atrial tracking of the ventricular pacing pulses by determining if detected events from the motion sensor signal are atrial events. The pacemaker is configured to adjust a control parameter used for detecting events from the motion sensor signal if atrial tracking is not confirmed.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Wade M. Demmer, Greggory R. Herr
  • Patent number: 11717692
    Abstract: Certain embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a temperature sensor to initially detect an onset of patient activity, and then use a motion sensor to confirm or reject the initial detection of the onset of patient activity. Other embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a motion sensor to initially detect an onset of patient activity, and then use a temperature sensor to confirm or reject the initial detection of the onset of patient activity. The use of both a motion sensor and a temperature sensor provides improvements over using just one of the types of sensors for rate responsive pacing.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Paul Paspa
  • Patent number: 11701517
    Abstract: An implantable medical device includes a plurality of electrodes to detect electrical activity, a motion detector to detect mechanical activity, and a controller to determine at least one electromechanical interval based on at least one of electrical activity and mechanical activity. The activity detected may be in response to delivering a pacing pulse according to an atrioventricular (AV) pacing interval using the second electrode. The electromechanical interval may be used to adjust the AV pacing interval. The electromechanical interval may be used to determine whether cardiac therapy is acceptable or whether atrial or ventricular remodeling is successful.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11677885
    Abstract: An image forming apparatus includes a printing section, an electrostatic touch panel, a power source circuit section, and a contact member. The printing section performs printing. The electrostatic touch panel receives a touch operation by a user. The power source circuit section receives supply of power from a commercial power source and supplies power to the printing section and the electrostatic touch panel. The contact member is connected to a ground of an image forming apparatus and is touched by a user operating the electrostatic touch panel.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: June 13, 2023
    Assignee: KYOCERA DOCUMENT SOLUTIONS INC.
    Inventor: Yoshiaki Tamura
  • Patent number: 11642032
    Abstract: A method includes determining that a patient has heart failure with preserved ejection fraction (HFpEF); configuring a cardiovascular (CV) model using patient characterization data; determining one or more therapy parameters using output data of the CV model; and administering HFpEF therapy based on the one or more therapy parameters.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 9, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey M. Gillberg, Troy E. Jackson, Richard Cornelussen
  • Patent number: 11541242
    Abstract: Systems and methods for managing heart failure are described. The system receives physiological information including a first HS signal corresponding to paced ventricular contractions and a second HS signal corresponding to intrinsic ventricular contractions. The system detects worsening heart failure (WHF) using the received physiological information. A signal analyzer circuit can generate a paced HS metric from the first HS signal and a sensed HS metric from the second HS signal, and determine a concordance indicator between the paced and the sensed HS metrics. In response to the detected WHF, the system can use the concordance indicator to generate a therapy adjustment indicator for adjusting electrostimulation therapy, or a worsening cardiac contractility indicator indicating the detected WHF is attributed to degrading myocardial contractility.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: January 3, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Jason Humphrey, David J. Ternes, Qi An, Krzysztof Z. Siejko, Michael James Dufresne, Yinghong Yu
  • Patent number: 11511118
    Abstract: Systems and methods for selecting, positioning, and controlling cardiac resynchronization therapy (CRT) electrodes are disclosed. According to an aspect, a CRT system includes one or more electrodes configured to be positioned on or in proximity to a subject's heart for receiving electrical signals carrying EGM data. The system also includes a CRT device operatively connected to the electrode(s). The CRT device is configured to receive the electrical signals from the electrode(s) when the one or more electrodes are positioned in a first arrangement with respect to the subject's heart. Further, the CRT device is configured to determine a second arrangement of the electrode(s) with respect to the subject's heart based on the carried EGM data. The CRT device is configured to present the second arrangement of the electrode(s).
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: November 29, 2022
    Assignee: Duke University
    Inventors: Brett Atwater, Daniel Friedman
  • Patent number: 11471688
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 18, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Patent number: 11468995
    Abstract: Disclosed herein are implementations of a method and apparatus for stroke self-detection. The method and apparatus may include a mobile platform for stroke detection. The method may include receiving sensor data. The method may include comparing the sensor data with a baseline test result to determine a test score. The method may include determining a passing test result based on a threshold. The method may include transmitting the results or an alert to one or more of an emergency contact, emergency medical services, a physician, or a telemedicine provider.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: October 11, 2022
    Assignee: Destroke, Inc.
    Inventors: Evan Noch, Tomer M. Yaron, Ciarra King, Dmitrii Meleshko, Yubin Xie, Suniyya Waraich, James Hess
  • Patent number: 11363990
    Abstract: A system and method for monitoring one or more physiological parameters of a subject under free-living conditions is provided. The system includes a camera configured to capture and record a video sequence including at least one image frame of at least one region of interest (ROI) of the subject's body. A computer in signal communication with the camera to receive signals transmitted by the camera representative of the video sequence includes a processor configured to process the signals associated with the video sequence recorded by the camera and a display configured to display data associated with the signals.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 21, 2022
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Nongjian Tao, Dangdang Shao
  • Patent number: 11360044
    Abstract: The present invention concerns a sensitive field effect device (100) comprising a semiconductor channel (110), a source electrode (120) connected to said semiconductor channel (110), a drain electrode (130) connected to said semiconductor channel (110), such that said semiconductor channel (110) is interposed between said source electrode (120) and said drain electrode (130), a gate electrode (140) and a dielectric layer (150) interposed between said gate electrode (140) and said semiconductor channel (110), characterized in that said semiconductor channel (110) is a layer and is made of an amorphous oxide and in that said sensor means (170, 171, 172, 173, 174, 175, 175) are configured to change the voltage between said gate electrode (140) and said source electrode (120) upon a sensing event capable of changing their electrical state. The present invention also concerns a sensor and a method for manufacturing said field effect device (100).
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: June 14, 2022
    Assignees: Universidade Nova de Lisboa, Alma Mater Studiorum—Universita di' Bologna
    Inventors: Rodrigo Ferräo De Paiva Martins, Pedro Miguel Cândido Barquinha, Elvira Maria Correia Fortunato, Tobias Cramer, Beatrice Fraboni
  • Patent number: 11262443
    Abstract: An information processing apparatus includes a calculation unit configured to calculate distance spectra based on a beat signal being a difference between a transmitted wave, which is a radio wave that is transmitted by a sensor and that is swept in frequency, and a reflected wave of the transmitted wave, the reflected wave being received by the sensor, and configured to calculate one or more time-sequenced waveforms each indicating time changes in intensity of the distance spectra with respect to respective distances from the sensor, and a detection unit configured to detect respiration of a living organism based on the one or more time-sequenced waveforms.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 1, 2022
    Assignee: SOCIONEXT INC.
    Inventor: Yuji Kuwahara
  • Patent number: 11224347
    Abstract: A biometric information measurement system includes a first measurement apparatus, a second measurement apparatus, and a control apparatus. The first measurement apparatus measures first biometric information of a subject. The second measurement apparatus measures second biometric information which is biometric information of the subject and which is different from the first biometric information. The control apparatus changes a condition of measurement performed by the second measurement apparatus on the basis of the first biometric information.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 18, 2022
    Assignee: Agama-X Co., Ltd.
    Inventors: Masahiro Sato, Motofumi Baba, Monta Ido, Masayoshi Nakao, Kengo Tokuchi
  • Patent number: 11077307
    Abstract: An intracardiac pacemaker system is configured to produce physiological atrial event signals by a sensing circuit of a ventricular intracardiac pacemaker and select a first atrial event input as the physiological atrial event signals. The ventricular intracardiac pacemaker detects atrial events from the selected first atrial event input, determines if input switching criteria are met, and switches from the first atrial event input to a second atrial event input in response to the input switching criteria being met. The second atrial event input includes broadcast atrial event signals produced by a second implantable medical device and received by the ventricular intracardiac pacemaker.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 3, 2021
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Yong K. Cho, Mark K. Erickson, Todd J. Sheldon
  • Patent number: 11071866
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. A medical system includes electrostimulation circuit that may generate His-bundle pacing (HBP) pulses for delivery at or near the His bundle. A capture verification circuit may detect, from a far-field signal representing ventricular response to the HBP pulses, a His-bundle response representative of excitation of the His bundle directly resulting from the HBP pulses, and a myocardial response representative of excitation of the myocardium directly resulting from the HBP pulses. A control circuit may adjust one or more stimulation parameters based on the His-bundle response and myocardial response. The electrostimulation circuit may generate and deliver the HBP pulses according to the adjusted stimulation parameters to excite the His bundle.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: July 27, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Arthur Casavant, David L. Perschbacher, Ramesh Wariar, Stephen J. Hahn, Allan Charles Shuros
  • Patent number: 11033741
    Abstract: Neuromodulation is used to enhance left ventricular relaxation. An exemplary neuromodulation system includes a therapy element positionable in proximity to at least one nerve fiber, and a stimulator configured to energize the therapy element to delivery therapy to the at least one nerve fiber such that left ventricular relaxation and left ventricular contractility are contemporaneously enhanced.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 15, 2021
    Assignee: NuXcel Limited
    Inventors: Michael Cuchiara, Stephen C Masson
  • Patent number: 11033742
    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Eric J. Panken, Jadin C. Jackson, Yizi Xiao, Christopher L. Pulliam
  • Patent number: 11016165
    Abstract: Devices and methods are described for transmitting acoustic waves through a fluid medium to communicate between a macro-scale transceiver and micro-devices or to communicate between micro-devices. Acoustical transmission can be used to communicate data or to provide power to the micro-device(s). The ability to transmit and receive on multiple frequencies can optimize the transmission for a particular situation.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: May 25, 2021
    Assignee: CBN Nano Technologies Inc.
    Inventors: Tad Hogg, Robert A. Freitas, Jr.
  • Patent number: 11006296
    Abstract: A method for determining quality of a communications link between an external instrument (EI) and an implantable medical device (IMD) is provided. The method includes receiving, with a receiver of an EI, data packets sent at intervals from an IMD and determining, with a processor of the EI, an expected time interval between a first data packet and a second data packet. The processor of the EI determines a difference between the expected time interval between the first data packet and the second data packet and an actual time interval between the first data packet and the second data packet. The processor of the EI also provides a time variant communication quality indicator based on the difference between the expected time interval between the first data packet and the second data packet and the actual time interval between the first data packet and the second data packet.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 11, 2021
    Assignee: PACESETTER, INC.
    Inventor: Xing Pei
  • Patent number: 10993659
    Abstract: Described embodiments include an apparatus, including a display and a processor. The processor is configured to navigate a catheter to a particular location within a body of a subject, using each one of a plurality of electrodes coupled to the body of the subject. The processor is further configured to identify, subsequently, from a signal that represents an impedance between a given pair of the electrodes, that a phrenic nerve of the subject was stimulated by a pacing current passed from the catheter into tissue of the subject at the particular location, and to generate an output on the display, in response to the identifying. Other embodiments are also described.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: May 4, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Lior Botzer, Daniel Osadchy
  • Patent number: 10939820
    Abstract: A patient monitoring system includes at least two wireless sensing devices, each configured to measure a different physiological parameter from a patient and wirelessly transmit a parameter dataset. The system further includes a receiver that receives each parameter dataset, a processor, and a monitoring regulation module executable on the processor to assign one of the at least two wireless sensing devices as a dominant wireless sensing device and at least one of the remaining wireless sensing devices as a subordinate wireless sensing device. The physiological parameter measured by the dominant wireless sensing device is a key parameter and the parameter dataset transmitted by the dominant wireless sensing device is a key parameter dataset. The key parameter dataset from the dominant wireless sensing device is processed to determine a stability indicator. The subordinate wireless sensing device is then operated based on the stability indicator for the key parameter.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 9, 2021
    Assignee: General Electric Company
    Inventors: Stanislava Soro, Robert F. Donehoo, Otto Valtteri Pekander
  • Patent number: 10918862
    Abstract: Described is a system for adaptable neurostimulation intervention. The system monitors a set of neurophysiological signals in real-time and updates a physiological and behavioral model. The set of neurophysiological signals are classified in real-time based on the physiological and behavioral model. A neurostimulation intervention schedule is generated based on the classified set of neurophysiological signals. The system activates electrodes via a neurostimulation intervention system to cause a timed neurostimulation intervention to be administered based on the neurostimulation intervention schedule. The neurostimulation intervention schedule and timed neurostimulation intervention are refined based on new sets of neurophysiological signals.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: February 16, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Jaehoon Choe, Praveen K. Pilly, Steven W. Skorheim
  • Patent number: 10918300
    Abstract: A system and method for non-invasively monitoring the hemodynamic state of a patient by determining on a beat-by-beat basis the ratio of lusitropic function to inotropic function as an index of myocardial well-being or pathology for use by clinicians in the hospital or by the patient at home. In one embodiment of the system a smartphone running an application program that is connected through the internet to the cloud processes electronic signals, first, from an electrocardiogram device monitoring electrical cardiac activity, and second, from a seismocardiogram device monitoring mechanical cardiac activity in order to determine such ratio as an instantaneous measurement of the hemodynamic state of the patient, including such states as sepsis, myocardial ischemia, and heart failure.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 16, 2021
    Inventor: Robert Alan Hirsh
  • Patent number: 10918870
    Abstract: A system and method of positioning an atrial pacing lead for delivery of a cardiac pacing therapy that includes sensing electrical activity of tissue of a patient from a plurality of external electrodes and determining a distribution of bi-atrial activation in response to the sensed electrical activity. A target site for delivering the atrial pacing therapy is adjusted based on a change in bi-atrial dyssynchrony that is determined in response to the determined distribution of bi-atrial activation, and placement of the atrial pacing lead for delivery of the atrial pacing therapy is determined in response to the adjusting.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Zhongping Yang
  • Patent number: 10874861
    Abstract: A ventricular implantable medical device that is configured to detect an atrial timing fiducial from the ventricle. The ventricular implantable medical is configured to deliver a ventricular pacing therapy to the ventricle based on the detected atrial timing fiducial. If the ventricular implantable medical device temporarily fails to detect atrial activity because of noise, posture, patient activity or for any other reason, an atrial implantable medical device may be configured to communicate atrial events to the ventricular implantable medical device and the ventricular implantable medical device may synchronize the ventricular pacing therapy with the atrium activity based on those communications.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 29, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Jeffrey E. Stahmann, Allan Charles Shuros, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10870008
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker and an extracardiac device. The extracardiac device is configured to analyze one or more QRS complexes of the patient's heart, determine whether fusion pacing is taking place, and, if not, to communicate with the leadless cardiac pacemaker to adjust intervals used in the CRT in order to generate desirable fusion of the pace and intrinsic signals. The extracardiac device may take the form of a subcutaneous implantable monitor, a subcutaneous implantable defibrillator, or other devices including wearable devices.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Kenneth M. Stein, Yinghong Yu, Scott J. Healy, John Morgan
  • Patent number: 10744329
    Abstract: A pacemaker having a motion sensor delivers atrial-synchronized ventricular pacing by detecting events from a signal produced by the motion sensor and delivering ventricular pacing pulses at a rate that tracks the rate of the detected events. The pacemaker is configured to confirm atrial tracking of the ventricular pacing pulses by determining if detected events from the motion sensor signal are atrial events. The pacemaker is configured to adjust a control parameter used for detecting events from the motion sensor signal if atrial tracking is not confirmed.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Wade M. Demmer, Greggory R. Herr
  • Patent number: 10687725
    Abstract: A method of tracking a position of a catheter within a patient includes securing a navigational reference at a reference location within the patient, defining the reference location as the origin of a coordinate system, determining a location of an electrode moving within the patient relative to that coordinate system, monitoring for a dislodgement of the navigational reference from the initial reference location, for example by measuring the navigational reference relative to a far field reference outside the patient's body, and generating a signal indicating that the navigational reference has dislodged from the reference location. Upon dislodgement, a user may be provided with guidance to help reposition and secure the navigational reference to the initial reference location, or the navigational reference may be automatically repositioned and secured to the initial reference location. Alternatively, a reference adjustment may be calculated to compensate for the changed reference point/origin.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 23, 2020
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Patent number: 10591570
    Abstract: Wireless markers having predetermined relative positions with respect to each other are employed for motion tracking and/or correction in magnetic resonance (MR) imaging. The markers are inductively coupled to the MR receive coil(s). The correspondence between marker signals and markers can be determined by using knowledge of the marker relative positions in various ways. The marker relative positions can be known a priori, or can be obtained from a preliminary scan. This approach is applicable for imaging (both prospective and retrospective motion correction), spectroscopy, and/or intervention.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 17, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melvyn B. Ooi, Julian Maclaren, Murat Aksoy, Roland Bammer, Ronald D. Watkins
  • Patent number: 10511929
    Abstract: Techniques are provided to initiate signal transmissions for possible opportunistic reception by a mobile device, and/or to initiate opportunistic reception of signal transmissions for use in mobile device position location estimation. For example, a mobile device may use assistance data to identify a first signal to be transmitted over a first frequency band and a second signal to be transmitted over a second frequency band during a specific period of time. At least a portion of the second frequency band may be outside of the first frequency band. The mobile device subsequently attempts to opportunistically receive at least the first signal and the second signal via a receiver tuned to a reception frequency band that encompasses at least the first frequency band and the second frequency band. The mobile device may then process the opportunistically received signals to obtain measurements corresponding to at least the first and second signals.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: December 17, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Akash Kumar, Amit Jain, Ankita, Muthukumaran Dhanapal, Shravan Raghunathan, Parthasarathy Krishnamoorthy, Hargovind Bansal
  • Patent number: 10478131
    Abstract: A method for monitoring a health characteristic of a user based on one or more biological measurements may include selecting a context from a plurality of contexts, each context corresponding to a baseline health value, and each context being defined by a plurality of recorded events each comprising one or more of repeated biological states, repeated user activity, or space-time coordinates of the user, and then monitoring the health characteristic of the user based on one or more bio-sensing measurements in comparison to the baseline health value corresponding to the selected context.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 19, 2019
    Assignee: Samsung Electronics Company, Ltd.
    Inventors: Jawahar Jain, James Young, Cody Wortham, Sajid Sadi, Pranav Mistry
  • Patent number: 10456046
    Abstract: Aspects of the invention relates to systems and methods for detecting volume status, volume overload, dehydration, hemorrhage and real time assessment of resuscitation, as well as organ failure including but not limited cardiac, renal, and hepatic dysfunction, of a living subject using non-invasive vascular analysis (NIVA). In one embodiment, a non-invasive device, which includes at least one sensor, is used to acquire vascular signals from the living subject in real time. The vascular signals are sent to a controller, which processes the vascular signals to determine at least one hemodynamic parameter, such as the volume status of the living subject. In certain embodiments, the vascular signals are processed by a spectral fast Fourier transform (FFT) analysis to obtain the peripheral vascular signal frequency spectrum, and the volume status of the living subject may be determined by comparing amplitudes of the peaks of the peripheral vascular signal frequency spectrum.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: October 29, 2019
    Assignee: Vanderbilt University
    Inventors: Susan Eagle, Colleen Brophy, Kyle Hocking, Franz Baudenbacher, Richard Boyer
  • Patent number: 10426399
    Abstract: The present invention provides a method of conducting a sleep analysis by collecting physiologic and kinetic data from a subject, preferably via a wireless in-home data acquisition system, while the subject attempts to sleep at home. The sleep analysis, including clinical and research sleep studies and cardiorespiratory studies, can be used in the diagnosis of sleeping disorders and other diseases or conditions with sleep signatures, such as Parkinson's, epilepsy, chronic heart failure, chronic obstructive pulmonary disorder, or other neurological, cardiac, pulmonary, or muscular disorders. The method of the present invention can also be used to determine if environmental factors at the subject's home are preventing restorative sleep.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Cleveland Medial Devices Inc.
    Inventors: Hani Kayyali, Craig A. Frederick, Christian Martin, Robert N. Schmidt, Brian Kolkowski
  • Patent number: 10390721
    Abstract: A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 27, 2019
    Assignee: NeuroPace, Inc.
    Inventor: Thomas K. Tcheng
  • Patent number: 10368746
    Abstract: Power saving communication techniques for communicating in a medical device system. One example medical device system may be for delivering electrical stimulation therapy to a heart of a patient, and may include a first implantable medical device implanted in a first chamber of the heart and configured to determine one or more parameters, a medical device physically spaced from and communicatively coupled to the first implantable medical device, the medical device configured to deliver electrical stimulation therapy to the heart of the patient, wherein the first implantable medical device is further configured to: compare a value of a first determined parameter to a first threshold; if the value of the first determined parameter passed the first threshold, communicate a first indication to the medical device; and if the value of the first determined parameter has not passed the first threshold, not communicating the first indication to the medical device.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: August 6, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Paul Huelskamp, Keith R. Maile
  • Patent number: 10328270
    Abstract: An intracardiac pacemaker system is configured to produce physiological atrial event signals by a sensing circuit of a ventricular intracardiac pacemaker and select a first atrial event input as the physiological atrial event signals. The ventricular intracardiac pacemaker detects atrial events from the selected first atrial event input, determines if input switching criteria are met, and switches from the first atrial event input to a second atrial event input in response to the input switching criteria being met. The second atrial event input includes broadcast atrial event signals produced by a second implantable medical device and received by the ventricular intracardiac pacemaker.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 25, 2019
    Assignee: Medtronic, Inc.
    Inventors: Wade M Demmer, Yong K Cho, Mark K Erickson, Todd J Sheldon
  • Patent number: 10279180
    Abstract: A method of treating heart failure in a patient is disclosed that includes implanting a stimulation device into the identified patient to electrically stimulate the spinal cord, and activating the device to deliver electrical stimulation to the spinal cord.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: May 7, 2019
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Robert D. Foreman, Jeffrey L. Ardell, John A. Armour, Michael J. L. DeJongste, Bengt G. S. Linderoth
  • Patent number: 10183167
    Abstract: An example of a system for programming a neurostimulator may include a storage device and a pattern generator. The storage device may store a pattern library and one or more neuronal network models. The pattern library may include fields and waveforms of neuromodulation. The one or more neuronal network models may each be configured to allow for evaluating effects of one or more fields in combination with one or more waveforms in treating one or more indications for neuromodulation. The pattern generator may be configured to construct and approximately optimize a spatio-temporal pattern of neurostimulation and/or its building blocks using at least one neuronal network model. The spatio-temporal pattern of neurostimulation may include a series of sub-patterns for treating an indication of the one or more indications for neuromodulation.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 22, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: G. Karl Steinke, Michael A. Moffitt, Hemant Bokil
  • Patent number: 10154813
    Abstract: Methods and apparatus for determining the efficacy of a drug by diagnosing cardiovascular health in a patient by monitoring changes in skin redness levels, which is associated with perfusion and ability of circulatory system to adapt to physical exertion. Color detectors including colorimeters and spectrophotometers may be used to monitor and quantify skin color. Wet run solutions such as acetylcholine solutions may be applied to the skin area being monitored. Skin redness can be monitored during the course of exercise or a stress test, as well as during recovery. Wearable color detector devices can be worn by patients during exercise.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 18, 2018
    Inventor: Spyros Kokolis
  • Patent number: 10086206
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) and a leadless pacing device (LPD) are described. In one or more embodiments, a computer-implemented method includes sensing a first electrical signal from a heart of a patient through a SD. The first signal is stored into memory and serves as a baseline rhythm for a patient. Subsequently, a second signal is sensed from the heart through the SD. A cardiac condition can be detected within the sensed second electrical signal through the SD. A determination is made as to whether cardiac resynchronization therapy (CRT) is appropriate to treat the detected cardiac condition. A determination can then be made as to the timing of pacing pulse delivery to cardiac tissue through a leadless pacing device (LPD).
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: October 2, 2018
    Assignee: Medtronic, Inc.
    Inventor: Aleksandre T. Sambelashvili
  • Patent number: 10032377
    Abstract: Based on the interaction between a mobile end device and a parked vehicle, it is determined whether a parked car will soon exit a parking space within a period of time. A report is selectively sent to a server in accordance with the determination. The report indicates the imminent exit of the motor vehicle.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: July 24, 2018
    Assignee: VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventor: Patrick Bartsch
  • Patent number: 10028698
    Abstract: The various embodiments of the method of the present invention include a method to improving or expanding the capacity of a sleep analysis unit or laboratory, a method sleep analysis testing a patient admitted for diagnosis or treatment of another primary medical condition while being treated or diagnosed for that condition, a method of sleep analysis testing a patient that cannot be easily moved or treated in a sleep analysis unit or laboratory and other like methods.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: July 24, 2018
    Assignee: Cleveland Medical Devices Inc.
    Inventors: Craig A Frederick, Hani Kayyali, Robert N. Schmidt, Brian M. Kolkowski
  • Patent number: 9958351
    Abstract: A pressure sensing system provides signals representative of a magnitude of pressure at a selected site. A sensor module includes a first transducer producing a first signal having an associated first response to pressure and strain applied to the sensor module and a second transducer producing a second signal having an associated second response to pressure and strain applied to the sensor module. A calculated pressure, a bending pressure error and a bend-compensated pressure are computed in response to the first signal and the second signal.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 1, 2018
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Richard J. O'Brien, Jonathan P. Roberts, James D. Reinke, Michael B. Terry, Kamal Deep Mothilal
  • Patent number: 9826940
    Abstract: Systems and methods are provided for determining a pulse rate based on a photoplethysmographic measurement of blood in a portion of subsurface vasculature. A plurality of samples of the photoplethysmographic signal are obtained and a plurality of digital phase-locked loops are operated to generate respective oscillating signals based on the plurality of samples. Respective correlations between the plurality of samples and each of the generated oscillating signals are determined and used to select a subset of the plurality of phase-locked loops. The frequencies of the selected oscillating signals generated by the selected phase-locked loops are determined and used to determine a cardiovascular pulse rate. This method can be performed a plurality of times for a respective plurality of overlapping sets of the obtained plurality of samples to determine pulse rates over time.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: November 28, 2017
    Assignee: Verily Life Sciences LLC
    Inventor: Christopher Towles Lengerich
  • Patent number: 9764143
    Abstract: Systems and methods are described herein for assisting a user in identification of interventricular (V-V) delay for cardiac therapy. The systems and methods may monitor electrical activity of a patient using external electrode apparatus to provide electrical heterogeneity information for a plurality of different V-V intervals and may identify a V-V interval based on the electrical heterogeneity information.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: September 19, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey Gillberg
  • Patent number: 9743859
    Abstract: A device and method can monitor or trend a patient's respiration rate measurements according to the time of day. The device, which may be implantable or external, collects and classifies respiration rate measurements over time. The trended information about particular classes of respiration rate measurements is then communicated to a remote external device, which in turn provides an indication of heart failure decompensation. Examples of classes of respiration rate measurements include a daily maximum respiration rate value, a daily minimum respiration rate value, a daily maximum respiration rate variability value, a daily minimum respiration rate variability value, and a daily central respiration rate value. These respiration rate measurements can be further classified into daytime or nighttime respiration rate measurements.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 29, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron Lewicke, Yi Zhang, John D. Hatlestad
  • Patent number: RE48197
    Abstract: A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Aleksandre T. Sambelashvili, Todd J. Sheldon