Semiconductor integrated circuit
A semiconductor integrated circuit able to reduce a load of layout design when arranging switches in a power lines for preventing leakage current and able to reduce the influence of a voltage drop occurring in the switches on a signal delay, wherein a plurality of groups of power lines are arranged in stripe shapes, power is supplied to circuit cells by a plurality of groups of branch lines branching from the groups of power lines, power switch cells arranged in the groups of branch lines turn on or off the supply of power to the circuit cells, the power switch cells are arranged dispersed in the area of arrangement of the circuit cells, and the supply of power by the power switch cells is finely controlled for every relatively small number of circuit cells.
Latest Sony Corporation Patents:
- Electronic device and method for spatial synchronization of videos
- Information processing apparatus for responding to finger and hand operation inputs
- Surgical support system, data processing apparatus and method
- Wireless communication device and wireless communication method
- Communication terminal, sensing device, and server
More than one reissue application has been filed based upon reissue application Ser. No. 12/289,571, filed Oct. 30, 2008, now U.S. Pat. No. 7,696,788. Specifically, reissue application Ser. No. 13/340,130, filed on Dec. 29, 2011, reissue application Ser. No. 13/687,996, filed on Nov. 28, 2012, and reissue application Ser. No. 14/301,197, filed on Jun. 10, 2014, claim the benefit of application Ser. No. 12/289,571. The present application is a continuation reissue application of its parent reissue application Ser. No. 13/340,130, filed Dec. 29, 2011, now U.S. Reissued Pat. No. RE43,912, issued Jan. 8, 2013, which is a reissue of application Ser. No. 12/289,571, filed Oct. 30, 2008, now U.S. Pat. No. 7,696,788, issued Apr. 13, 2010, which is a Continuation Application of Continuation application Ser. No. 11/808,975, filed Jun. 14, 2007, now U.S. Pat. No. 7,459,934, issued Dec. 2, 2008, which is a continuation of Parent application Ser. No. 11/070,205, filed Mar. 3, 2005, now U.S. Pat. No. 7,274,210, issued Sep. 25, 2007. U.S. application Ser. No. 14/301,197 is a continuation reissue application of the present application.
The present invention contains subject matter related to Japanese Patent Application JP 2004-067489 filed in the Japanese Patent Office on Mar. 10, 2004, the entire contents of which is also incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor integrated circuit, and, more particularly, to a semiconductor integrated circuit achieving a reduction of power consumption by using a transistor having a high threshold voltage to cut the supply of power to an unused circuit.
2. Background Art
The power supply voltage of semiconductor integrated circuits has fallen year by year along with the reduction of power consumption and the miniaturization of processing dimensions. When a signal amplitude becomes small due to the reduction of the power supply voltage, the threshold voltage of a transistor becomes high relative to the signal amplitude, so an on current of the transistor decreases and a delay increases. For this reason, the threshold voltage of the transistor also must be made lower along with the power supply voltage. However, a leakage current in an off state increases when the threshold voltage of the transistor is lowered, so there is the disadvantage that reduction of the power consumption is obstructed.
As technology preventing the increase of such leakage current, the “multi-threshold complementary metal oxide semiconductor” (MTCMOS) circuit technology is known. In a MTCMOS, for example, a transistor switch having a high threshold voltage is arranged in a power line of each circuit block performing a specific function. When the circuit block becomes unused in state, the transistor switch is set to the off position and the leakage current flowing through each transistor in the circuit block is shut off. By this, useless leakage current flowing through unused circuit blocks can be greatly reduced.
SUMMARY OF THE INVENTIONIn the design of semiconductor integrated circuits incorporating MTCMOS technology, however, the layout design for arranging the transistor switches in the power lines is generally carried out manually. For example, the arrangement and interconnect lines of circuit cells inside each circuit block performing a specific function are automatically designed by a CAD device for each circuit block, then a transistor switch is manually arranged in the power line at the outside of the circuit block. For this reason, there are the disadvantages that the load of the design work increases and the development period of the product becomes long.
Further, along with the reduction of the power supply voltage, a slight voltage drop occurring in a resistive component of the power line starts to exert a large influence upon the delay of the signal. Namely, the lower the power supply voltage, the smaller the margin of the signal amplitude with respect to the threshold voltage of a transistor, so a large signal delay occurs even if the drop of the power supply voltage is small.
When a transistor switch is arranged in a power line under such a situation, the voltage drop due to this is further added, so the above problem becomes more serious. Especially, the signal delay at the center of the circuit block where the distance from the external power line becomes long becomes large. As a result, there is the problem that even if the circuit block normally operates by itself, it no longer operates when a transistor switch is arranged in the external power line. Further, when the circuit block is further connected to a block of a higher level, there is the problem that the requested timing can no longer be satisfied.
There is a need for providing a semiconductor integrated circuit able to reduce the load of the layout design for arranging the power switches and able to reduce the influence of the voltage drop occurring in power switches exerted upon signal delay.
According to one embodiment of the present invention, there is provided a semiconductor integrated circuit including a plurality of circuit cells; a plurality of groups of power lines arranged in stripe shapes; a plurality of groups of branch lines branching from the groups of power lines and supplying power to at least one of the circuit cells; and a power switch cell arranged in at least one group of branch lines and turning on or off the supply of power to the circuit cell in accordance with an input control signal.
According to one embodiment of the present invention, a plurality of groups of power lines are arranged in stripe shapes, and power is supplied to the circuit cells by a plurality of groups of branch lines branching from the groups of power lines. The power switch cell arranged in the group of branch lines controls the supply of power to the circuit cell.
For this reason, the power switch cells are arranged dispersed in the area of arrangement of the circuit cells. The supply of power by the power switch cells is finely controlled for each relatively small number of circuit cells. Due to this, in comparison with the method of providing a power switch for each circuit block, the voltage drop of the power by the power switch becomes small and the degree of freedom of arrangement of the power switch cells is raised.
Preferably, each group of branch lines is formed extending in a direction forming a predetermined angle with the group of power lines from which the group of branch lines branch. Due to this, the symmetry of the interconnect line structures of the power rises.
Further, preferably, each power switch cell includes at least one transistor arranged in at least one branch line included in the group of branch lines and turning on or off in accordance with the control signal. This transistor has a drive capability according to the power consumption of the circuit cell to which power is supplied through the branch line when the transistor is in the on state. For example, the larger the power consumption, the larger the drive capability.
By setting the drive capability of the switch transistor to a suitable magnitude in accordance with the power consumption of the circuit cell to which power is supplied through the switch transistor, in comparison with the case where the drive capability of the transistor switch is uniformly set, it becomes possible to reduce the circuit area and the leakage current while suppressing the reduction of the power supply voltage.
At least part of each power switch cell may be included in an area under a group of power lines. In this case, the group of branch lines may include a via interconnect line branching from a power line of the group of power lines and extending to the lower layer. Due to this, the density of arrangement of the circuit cells is improved.
Each power switch cell may include a first interconnect line connected to two branch lines supplying power to the circuit cell, facing each other across the power switch cell, and extending in opposite directions from each other; a second interconnect line connected to a branch line branching from a power line of the group of power lines; and a switch circuit connected between the first interconnect line and the second interconnect line and turning on or off in accordance with the control signal as well.
The power switch cell may include a third interconnect line connected to a branch line supplying power to the circuit cell; a fourth interconnect line connected to a branch line, the branch line branching from a power line of the group of power lines and extending in an opposite direction of the branch line connected to the third interconnect line; and a switch circuit connected between the third interconnect line and the fourth interconnect line and turning on or off in accordance with the control signal as well.
The group of branch lines may include a first branch line and a second branch line connected to a power line of the group of power lines as well. In this case, the power switch cell may turn on or off a connection between the first branch line and the second branch line in accordance with the control signal as well. Further, the plurality of circuit cells may include a first circuit cell supplied with power from the first branch line and a second circuit cell supplied with power from the second branch line as well.
In this case, the first branch line and the second branch line may be formed in a same interconnect line layer side by side or may be formed in different interconnect line layers and facing each other.
Further, in this case, each power switch cell may comprise a fifth interconnect line connected to the first branch line; a sixth interconnect line connected to the second branch line; and a switch circuit connected between the fifth interconnect line and the sixth interconnect line and turning on or off in accordance with the control signal.
According to one embodiment of the present invention, the degree of freedom of arrangement of the power switch cells becomes high, and automatic design of the layout by the CAD device can be easily realized, so the load of the layout design can be reduced.
Further, the voltage drop of the power due to the power switch cells can be suppressed, so the influence of the voltage drop occurring in the power switch cells exerted upon the signal delay can be reduced.
These and other objects and features of the present invention will become clearer from the following description of the preferred embodiments given with reference to the attached drawings, wherein:
Below, an explanation will be given of six embodiments of the present invention by referring to the drawings.
First EmbodimentThe semiconductor integrated circuit shown in
Note that the groups of power lines PL1 are embodiments of the groups of power lines of the present invention, the groups of branch lines BL2 are embodiments of the groups of branch lines of the present invention, the circuit cells 10 are embodiments of the circuit cells of the present invention, and the power switch cells 20 are embodiments of the power switch cells of the present invention.
The groups of power lines PL1 are arranged in stripe shapes in the example of
The groups of power lines PL1 and PL2 have power lines VDD and VSS. At intersecting points of the lattice stripe shaped power line patterns, the power lines VDD and the power lines VSS of the groups of power lines PL1 and PL2 are connected to each other.
In the lattice stripe shaped power line patterns, power input cells 41 and 42 are connected to the groups of power lines PL1 and PL2 of a rectangular frame. The power line VSS is connected to the power input cell 41, and the power line VDD is connected to the power input cell 42.
The power supply voltage is supplied through these power input cells 41 and 42 to the power lines VSS and VDD from the outside of the semiconductor integrated circuit.
The groups of branch lines BL1 and BL2 branch from the groups of power lines PL1 and supply power to the basic units of the circuit in the semiconductor integrated circuit, that is, the circuit cells 10. Further, the groups of branch lines BL1 and BL2 are formed extending in directions forming predetermined angles with the groups of power lines PL1. For example, as shown in
A plurality of such groups of branch lines branch from one group of power lines PL1. A plurality of circuit cells 10 are connected to the groups of branch lines. The circuit cells 10 included in the semiconductor integrated circuit are basically supplied with power from these groups of branch lines. Note that the circuits not needing cutoff of power since they are always operating, etc., include circuits directly supplied with power from the groups of power lines without going through the groups of branch lines, for example, the circuit block 30 shown in
Each group of branch lines BL1 has two branch lines (VDDA and VSSA). The branch line VDDA is connected to the power line VDD, while the branch line VSSA is connected to the power line VSS. On the other hand, each group of branch lines BL2 has two branch lines (VDDB and VSSB). The branch line VDDB is connected to the power line VDD, while the branch line VSSB is connected to the power line VSS. The difference of the groups of branch lines BL1 and BL2 resides in the insertion or non-insertion of the power switch cell 20. Namely, the power switch cell 20 only is inserted in the group of branch lines BL2.
The power switch cell 20 receives as input a not illustrated control signal and accordingly turns on or off the supply of power to the circuit cell 10 connected to the group of branch lines BL2. For example, the power switch cell 20 includes a switch transistor. The switch transistor is arranged in at least one branch line of the group of branch lines BL2 and turns on or off in accordance with the input control signal.
In the case of a MTCMOS type semiconductor integrated circuit, a high threshold voltage MOS transistor is used for this switch transistor. For example, when cutting the branch line VSSB in accordance with the control signal, a high threshold voltage n-type MOS transistor is used as the switch transistor. When cutting the branch line VDDB in accordance with the control signal, a high threshold voltage p-type MOS transistor is used.
A plurality of input/output use cells 40 are arranged in lines on the four sides of a rectangular semiconductor chip on which a semiconductor integrated circuit is formed. Lattice stripe shaped power line patterns are formed inside the semiconductor chip surrounded by these input/output use cells 40.
The inside of the lattice stripe shaped power line patterns may be roughly divided into a non-power cutoff area A1, a power cutoff area A2, and other areas. In the non-power cutoff area A1, a circuit cell 10 connected to the group of branch lines BL1 is arranged. In the power cutoff area A2, a circuit cell 10 connected to the group of branch lines BL2 is arranged. In the other areas, circuit cells not connected to the groups of branch lines BL1 and BL2 are arranged. It is possible to freely determine ranges of the power cutoff areas A1 and A2 shown in
In the example of
As described above, according to the semiconductor integrated circuit according to the present embodiment, a plurality of groups of power lines PL1 are arranged in stripe shapes, and power is supplied to the circuit cells 10 by a plurality of groups of branch lines BL2 branching from the groups of power lines PL1. Power switch cells 20 arranged in the groups of branch lines BL2 turn on and off the supply of power to the circuit cells 10.
For this reason, a plurality of power switch cells 20 are widely arranged dispersed in the area where the circuit cells 10 can be arranged. It then becomes possible to finely control the supply of power for every relatively small number of circuit cells by each power switch cell 20.
Due to this, in comparison with the method of providing a power switch for each large scale circuit block, the power current flowing through each power switch cell 20 is reduced, and the power supply voltage drop can be made small. As a result, the influence of the voltage drop occurring in the power switch cells 20 exerted upon the signal delay can be reduced.
Further, in comparison with the conventional method of arranging each power switch outside of the circuit block, the degree of freedom of arrangement of the power switch cells 20 becomes high, and the power cutoff area can be freely determined as shown in
Further, each group of branch lines BL2 is formed extending in a direction perpendicular to the group of power lines PL1 from which it branches, so the symmetry of the interconnect line structures of the power switch cell becomes high. Due to this, it becomes possible to more easily realize automatic design of a layout including the power switch cells 20.
Further, as shown in
Next, a second embodiment of the present invention will be explained.
The semiconductor integrated circuit according to the second embodiment shows the configurations of the power switch cells and circuit cells and the structures of the groups of branch lines connecting them in more detail than the semiconductor integrated circuit according to the first embodiment. The overall configuration, such as the arrangement of the groups of power lines, is the same as that of the semiconductor integrated circuit according to the first embodiment.
The interconnect line L111 is connected to a branch line VSSB supplying a potential VSS to the circuit cell 11. The interconnect line L111 has the same potential as the power line VSS when the power switch cell 21 explained later is in the on state.
The interconnect line L112 is connected to a branch line VDDB branching from the power line VDD. The interconnect line L112 has the same potential as the power line VDD.
These interconnect lines L111 and L112 are formed at opposite side portions of the rectangular circuit cell 11. The inverter circuit is arranged between these facing side portions.
The interconnect line L211 is an interconnect line connected to two branch lines VSSB supplying the potential VSS to different circuit cells 11. These two branch lines VSSB extend in opposite directions to each other across the power switch cell 21 as shown in
The interconnect line L212 is connected to a branch line branching from the power line VSS. The interconnect line L212 has the same potential as that of the power line VSS.
The interconnect line L213 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L213 has the same potential as that of the power line VDD.
The n-type MOS transistor Qn2 has a drain that is connected to the interconnect line L211, a source and a substrate that are connected to the interconnect line L212, and a gate that receives as input a control signal Sc. The n-type MOS transistor Qn2 turns on or off in accordance with the control signal Sc.
When the n-type MOS transistor Qn2 turns on, the interconnect line L211 and the interconnect line L212 are connected, and power is supplied to the circuit cell 11 connected to the two branch lines VSSB. When the n-type MOS transistor Qn2 turns off, the interconnect line L211 and the interconnect line L212 are disconnected, and the supply of power to the circuit cell 11 is cut off.
The interconnect line L211 is formed at one side portion of the rectangular power switch cell 2. A part thereof is sunken in an U-shape toward the inside of the power switch cell 21. The interconnect line L212 is formed in this U-shape recess. The interconnect line L213 is formed in the side portion facing to the interconnect line L211. The n-type MOS transistor Qn2 is arranged between the interconnect lines L211 and L213.
The groups of branch lines BL2-1 and BL2-2 are adjacent to each other and share the branch line VSSB. The groups of branch lines BL2-3 and BL2-4 are adjacent to each other and share the branch line VSSB.
The groups of branch lines BL2-1 and BL2-3 branch from a common branch point of the groups of power lines PL1 and extend in opposite directions to each other across a common power switch cell 21. The groups of branch lines BL2-2 and BL2-4 branch from a common branch point of the groups of power lines PL1 and extend in opposite directions to each other across a common power switch cell 21.
Further, at least parts of the power switch cell 21 connected to the groups of branch lines BL2-1 and BL2-3 and the power switch cell 21 connected to the groups of branch lines BL2-2 and BL2-4 are included in areas under the groups of power lines PL1.
The interconnect line branching from the power line VSS to the interconnect line L212 includes via interconnect lines CT2 branching from the power line VSS and extending to the lower layer. The via interconnect lines CT2 connect the power line VSS and the interconnect line L212 in the lower layer. The interconnect line branching from the power line VDD to the interconnect line L213 includes via interconnect lines CT1 branching from the power line VDD and extending to the lower layer. The via interconnect lines CT1 connect the power line VDD and the interconnect line L213 in the lower layer.
Further, these two power switch cells 21 are adjacent to each other, and interconnect lines L211 of the two are electrically connected, and therefore they function as two parallel connected switches. Accordingly, the n-type MOS transistors Qn2 of these two power switch cells 21 are controlled so as to turn on or off together by the same control signal Sc.
As explained above, according to the present embodiment, in place of the two power lines (VDD, VSS) configuring the group of power lines PL1, two branch lines (VDDB, VSSB) configuring the group of branch lines are connected to the circuit cell 11, and therefore it is possible to use a general circuit cell used in a conventional semiconductor integrated circuit for the circuit cell 11 of the present embodiment.
Further, since each power switch cell 21 is arranged so that at least a part thereof is included in an area under the group of power lines PL1, the density of arrangement of the circuit cells 11 can be raised.
Further, since adjacent groups of branch lines and power switch cells share interconnect lines, the circuit area can be reduced. In addition, the same effect can be exhibited by the same configuration as that of the semiconductor integrated circuit according to the first embodiment.
Note that, in the example of
Next, a third embodiment of the present invention will be explained.
The semiconductor integrated circuit according to the third embodiment is obtained by changing parts of the configurations of the power switch cells and the interconnect line structures in the second embodiment explained above. The overall configuration, such as the arrangement of the groups of power lines and the configuration of the circuit cells, is the same as those of the semiconductor integrated circuits according to the first and second embodiments.
The interconnect line L221 is connected to a branch line VSSB1 supplying the potential VSS to the circuit cell 11. Unlike the interconnect line L211 of the power switch cell 21 explained above, the number of branch lines connected to the interconnect line L221 is one.
The interconnect line L222 is connected to a branch line VSSB2 branching from the power line VSS. The interconnect line VSSB2 extends in an opposite direction to the branch line VSSB1 as shown in
The interconnect line L223 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L223 has the same potential as that of the power line VDD.
The n-type MOS transistor Qn3 has a drain that is connected to the interconnect line L221, a source and substrate that are connected to the interconnect line L222, and a gate that receives as input a control signal Sc. The n-type MOS transistor Qn3 tunas on or off in accordance with the control signal Sc. When the n-type MOS transistor Qn3 turns on, the interconnect line L221 and the interconnect line L222 are connected, and power is supplied to the circuit cell 11 connected to the branch line VSSB1. When the n-type MOS transistor Qn3 turns off, the interconnect line L221 and the interconnect line L222 are disconnected, and the supply of power to the circuit cell 11 is cut off.
The interconnect line L222 starting from one corner of the rectangular power switch cell 22 extends along the side of the rectangle. The terminal end of the interconnect line L222 stops before reaching the other corner. The interconnect line L221 starting from that other corner extends along the same side as the interconnect line L222 and, in the middle of the side, bends toward the inside of the power switch cell 22 in order to avoid the interconnect line L221. Then, it extends in parallel to the interconnect line L221 in a line from this bent portion to the terminal end. The interconnect line L223 is formed in the other side portion facing the side on which the interconnect line L222 is formed. The n-type MOS transistor Qn3 is formed in an area between the interconnect line L221 and the interconnect line L223.
Each branch line VDDB is connected to a power line VDD through via interconnect lines CT3. Each branch line VSSB2 is connected to a power line VSS through via interconnect lines CT4. Each branch line VSSB1 is connected to a branch line VSSB2 through a power switch cell 22. These branch lines all extend in a direction perpendicular to the group of power lines PL1.
The groups of branch lines BL3-1 and BL3-2 are adjacent to each other and share the branch lines VSSB (VSSB1 and VSSB2). The groups of branch lines BL3-3 and BL3-4 are adjacent to each other and share the branch lines. VSSB (VSSB1 and VSSB2).
The groups of branch lines BL3-1 and BL3-3 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other from this branch point. The groups of branch lines BL3-2 and BL3-4 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other from this branch point.
The power switch cells 22 inserted in the groups of branch lines BL3-1 and BL3-2 are adjacent to each other and are electrically connected to the interconnect line L221. For this reason, these two power switch cells 22 function as two switches connected in parallel. Accordingly, the n-type MOS transistors Qn3 of these two power switch cells 22 are controlled so as to turn on or off together by the same control signal Sc. The same is also true for the two power switch cells 22 inserted in the groups of branch lines BL3-3 and BL3-4 and controlled by the same control signal Sc.
As explained above, according to the present embodiment, in the same way as the second embodiment, in place of the two power lines (VDD, VSS) configuring the group of power lines PL1, the two branch lines (VDDB, VSSB) configuring the group of the branch lines are connected to each circuit cell 11, so it is possible to easily use general circuit cells used in a conventional semiconductor integrated circuit for the circuit cells 11 of the present embodiment.
Further, of the two branch lines VSSB1 and VSSB2 extending in opposite directions across the power switch cell 22, the branch line VSSB1 is controlled in power by the n-type MOS transistor Qn3, and the branch line VSSB2 is constantly supplied with power from the power line VSS. For this reason, it is also possible to arrange a constantly operated circuit cell 11 in an empty space between the group of power lines PL1 and the power switch cell 22 as shown in
Further, when there are no constantly operated circuit cells 11, it is also possible that at least part of each power switch cell 22 is included in the area under the group of power lines PL1. Due to this, the density of arrangement of the circuit cells 11 can be improved.
Further, the example of
Further, in the present embodiment, in the same way as the first embodiment, the groups of branch lines and the power switch cells adjacent to each other share interconnect lines, so the circuit area can be reduced. Other than this, the same effect can be exhibited by the same configuration as that of the semiconductor integrated circuit according to the first embodiment.
Fourth EmbodimentNext, a fourth embodiment of the present invention will be explained.
The semiconductor integrated circuit according to the fourth embodiment is obtained by changing the configuration of the semiconductor integrated circuits according to the second and third embodiments in which the groups of branch lines were configured by two branch lines to a configuration in which the groups of branch lines are configured by three branch lines so that circuit cells constantly needing power can be freely arranged at the groups of branch lines. The overall configuration, such as the arrangement of the groups of power lines, is the same as that of the semiconductor integrated circuit according to the first embodiment.
The inverter circuit (Qp1, Qn1) is connected between the interconnect lines L121 and L123 and supplied with power from these interconnect lines. Accordingly, when a power switch cell 23 explained later is in the off state, the supply of power to the inverter circuit is cut off.
Note that, in the example of
The interconnect line L121 is connected to a branch line VSSB3 supplying the power potential VSS to the circuit cell 12. The interconnect line L121 has the same potential as that of the power line VSS when a power switch cell 23 explained later is in the on state.
The interconnect line L122 is connected to a branch line VSSB4 in the same interconnect line layer as the branch line VSSB3. The interconnect line L122 has the same potential as that of the power line VSS.
The interconnect line L123 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L123 has the same potential as that of the power line VDD.
The interconnect lines L122 and L123 are formed at opposite side portions of the rectangular circuit cell 12. The interconnect line L121 is formed at a position adjacent to the interconnect line L122 while extending in a direction parallel to this. The inverter circuit is arranged in an area between these interconnect lines L121 and L123.
Interconnect lines L131, L132, and L133 in the circuit cell 13 correspond to the interconnect lines L121, L122, and L123 in the circuit cell 12 explained above. The structures of the two and the branch lines to which they are connected are the same.
The difference of the circuit cell 12 and the circuit cell 13 resides in the interconnect lines supplying power to the inverter circuit (Qp1, Qn1). Namely, the circuit cell 12 is supplied with power from the interconnect lines L121 and L123, and therefore the supply of power is cut off when the power switch cell 23 is off, but the circuit cell 13 is supplied with power from the interconnect lines L132 and L133, therefore power is constantly supplied regardless of the state of the power switch cell 23.
The interconnect line L231 is an interconnect line connected to the branch line VSSB3 supplying power to the circuit cell 12. When the n-type MOS transistor Qn4 is on, it has the same potential as that of the power line VSS.
The interconnect line L232 is connected to the branch line VSSB4 branching from the power line VSS. The interconnect line L232 has the same potential as that of the power line VSS.
The interconnect line L233 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L233 has the same potential as that of the power line VDD.
The n-type MOS transistor Qn4 has a drain that is connected to the interconnect line L231, a source and a substrate that are connected to the interconnect line L232, and a gate that receives as input a control signal Sc. The n-type MOS transistor Qn4 turns on or off in accordance with the control signal Sc.
When the n-type MOS transistor Qn4 turns on, the interconnect line L231 and the interconnect line L232 are connected, and power is supplied to the circuit cell 12 connected to the branch line VSSB3. When the n-type MOS transistor Qn4 turns off, the interconnect line L231 and the interconnect line L232 are disconnected, and the supply of power to the circuit cell 12 is cut off
The interconnect lines L232 and L233 are formed at opposite side portions of the rectangular power switch cell 23. The interconnect-line L231 is formed at a position adjacent to the interconnect line L232 while extending in a direction parallel to this. The n-type MOS transistor Qn4 is arranged in the area between these interconnect lines L231 and L233.
The groups of branch lines BL4-1 and BL4-2 are adjacent to each other and share the branch line VSSB4. The groups of branch lines BL4-3 and BL4-4 are adjacent to each other and share the branch line VSSB4.
The groups of branch lines BL4-1 and BL4-3 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other across a common power switch cell 23. The groups of branch lines BL4-2 and BL4-4 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other across a common power switch cell 23.
Further, at least parts of both of the power switch cell 23 connected to the groups of branch lines BL4-1 and BL4-3 and the power switch cell 23 connected to the groups of branch lines BL4-2 and BL4-4 are included in areas under the group of power lines PL1.
The interconnect line branching from the power line VSS to the interconnect line L232 includes via interconnect lines CT6 branching from the power line VSS and extending to the lower layer. The via interconnect lines CT6 connect the power line VSS and the interconnect line L232 in the lower layer. The interconnect line branching from the power line VDD to the interconnect line L233 includes via interconnect lines CT5 branching from the power line VDD and extending to the lower layer. The via interconnect line CT5 connects the power line VDD and the interconnect line L233 in the lower layer.
As explained above, the present embodiment has a branch line VSSB3 (first branch line) connected to a power line VSS through a switch circuit (Qn4) of a power switch cell 23 and a branch line VSSB4 (second branch line) directly connected to the power line VSS without going through the switch circuit (Qn4) and separately provides a circuit cell 12 (first circuit cell) supplied with power from the branch line VSSB3 and a circuit cell 13 (second circuit cell) supplied with power from the branch line VSSB4.
For this reason, as shown in
Further, each power switch cell 23 is arranged so that at least a part thereof is included in an area under the group of power lines PL1, so the density of arrangement of the circuit cells 12 and 13 can be improved.
Further, in the present embodiment, the groups of branch lines adjacent to each other share branch lines. For example, in the example of
For this reason, in comparison with the case where the branch lines are separately provided, the circuit area can be reduced.
Other than this, the same effects can be exhibited by the same configuration as the semiconductor integrated circuit according to the first embodiment.
Fifth EmbodimentNext, a fifth embodiment of the present invention will be explained.
The semiconductor integrated circuit according to the fifth embodiment is obtained by changing the branch lines formed in the same interconnect line layer side by side (first branch lines and second branch lines) in the semiconductor integrated circuit according to the fourth embodiment to branch lines formed in different interconnect line layers facing each other. The overall configuration, such as the arrangement of the groups of power lines, is the same as that of the semiconductor integrated circuit according to the first embodiment.
The inverter circuit (Qp1, Qn1) is connected between the interconnect lines L141 and L143 and supplied with power from these interconnect lines. Accordingly, when a power switch cell 24 explained later is in the off state, the supply of power to the inverter circuit is cut off. Note that, in the example of
The interconnect line L141 is connected to a branch line VSSB5 supplying the power potential VSS to the circuit cell 14. The interconnect line L141 has the same potential as that of the power line VSS when a power switch cell 24 explained later is in the on state.
The interconnect line L142 is connected to a branch line VSSB6 in the layer below the branch line VSSB5. The branch line VSSB6 is an interconnect line branching from the power line VSS. The interconnect line L142 has the same potential as that of the power line VSS.
The interconnect line L143 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L143 has the same potential as that of the power line VDD.
The interconnect lines L142 and L143 are formed at opposite side portions of the rectangular circuit cell 12. The interconnect line L141 is formed in a layer above the interconnect line L142 so as to face the interconnect line L142. The inverter circuit is arranged in the area between the interconnect line L143 and the interconnect line L142.
Interconnect lines L151, L152, and L153 in the circuit cell 15 correspond to the interconnect lines L141, L142, and L143 in the circuit cell 14 explained above. The structures of the two and the branch lines to which they are connected are the same.
The difference of the circuit cell 14 and the circuit cell 15 resides in the interconnect lines supplying power to the inverter circuit (Qp1, Qn1). Namely, the circuit cell 14 is supplied with power from the interconnect lines L141 and L143, therefore the supply of power is cut off when the power switch cell 24 is off, but the circuit cell 15 is supplied with power from the interconnect lines L152 and L153, so power is always supplied regardless of the state of the power switch cell 24.
The interconnect line L241 is connected to the branch line VSSB5 supplying the potential VSS to the circuit cell 14. The interconnect line L241 has the same potential as that of the power line VSS when the n-type MOS transistor Qn5 is on.
The interconnect line L242 is connected to the branch line VSSB6 branching from the power line VSS. The interconnect line L242 has the same potential as that of the power line VSS.
The interconnect line L243 is connected to the branch line VDDB branching from the power line VDD. The interconnect line L243 has the same potential as that of the power line VDD.
The n-type MOS transistor Qn5 has a drain that is connected to the interconnect line L241, a source and a substrate that are connected to the interconnect line L242, and a gate that receives as input a control signal Sc. The n-type MOS transistor Qn5 turns on or off in accordance with the control signal Sc. When the n-type MOS transistor Qn5 turns on, the interconnect line L241 and the interconnect line L242 are connected, and power is supplied to the circuit cell 14 connected to the branch line VSSB5. When the n-type MOS transistor Qn5 turns off, the interconnect line L241 and the interconnect line L242 are disconnected, and the supply of power to the circuit cell 14 is cut off.
The interconnect lines L242 and L243 are formed at opposite side portions of the rectangular power switch cell 24. The interconnect line L241 is formed in an interconnect line layer above the interconnect line L242 so as to face the interconnect line L242. Note that at the center portion of the side, the interconnect line L242 is sunken in an U-shape toward the inside of the power switch cell 24. In this recess, via interconnect lines CT8 (refer to
The groups of branch lines BL5-1 and BL5-2 are adjacent to each other and share the branch lines VSSB5 and VSSB6. The groups of branch lines BL5-3 and BL5-4 are adjacent to each other and share the branch lines VSSB5 and VSSB6.
The groups of branch lines BL5-1 and BL5-3 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other across a common power switch cell 24. The groups of branch lines BL5-2 and BL5-4 branch from a common branch point of the group of power lines PL1 and extend in opposite directions to each other across a common power switch cell 24.
Further, at least parts of both of the power switch cell 24 connected to the groups of branch lines BL5-1 and BL5-3 and the power switch cell 24 connected to the groups of branch lines BL5-2 and BL5-4 are included in an area under the group of power lines PL1.
The interconnect line branching from the power line VSS to the interconnect line L242 includes via interconnect lines CT8 branching from the power line VSS and extending to the lower layer. The via interconnect lines CT8 connect the power line VSS and the interconnect line L242 in the lower layer. The interconnect line branching from the power line VDD to the interconnect line L243 includes via interconnect lines CT7 branching from the power line VDD and extending to the lower layer. The via interconnect lines CT7 connect the power line VDD and the interconnect line L243 in the lower layer.
Further, these two power switch cells 24 are adjacent to each other and are electrically connected to the interconnect line L241, so they function as two parallel connected switches. Accordingly, the n-type MOS transistors Qns5 of these two power switch cells 24 are controlled so as to turn on or off together by the same control signal Sc.
As explained above, according to the present embodiment, the branch lines VSSB5 and VSSB6 are formed facing each other with a space between layers, and therefore the circuit area can be reduced in comparison with the case where they are formed in the same interconnect line layer.
Further, the power switch cells 24 are arranged so that at least parts thereof are included in the area under the group of power lines PL1, so the density of arrangement of the circuit cells 14 and 15 can be improved.
Further, in the example of
Other than this, the same effect can be exhibited by the same configuration as that of the semiconductor integrated circuit according to the fourth embodiment.
Sixth EmbodimentNext, a sixth embodiment of the present invention will be explained.
The switch transistor used in the power switch cell desirably has a drive capability as large as possible in order to reduce the drop of the power supply voltage, but when this is made too large, the disadvantages of an increase of the circuit area and leakage current are induced.
Therefore, in the semiconductor integrated circuit according to the present embodiment, the drive capabilities of the switch transistors are set in accordance with the power consumption of the circuit cells turned on/off in supply of power according to this switch transistor. For example, the larger power consumption the circuit cells have, the larger drive capabilities the switch transistors controlling the supply of power to the circuit cells have.
Namely, in the semiconductor integrated circuit according to the second embodiment, the drive capability of the n-type MOS transistor Qn2 is set according to the power consumption of the circuit cell 11 connected to the drain of the n-type MOS transistor Qn2 through the interconnect line L211 of the power switch cell 21 and the branch line VSSB.
In the semiconductor integrated circuit according to the third embodiment, the drive capability of the n-type MOS transistor Qn3 is set according to the power consumption of the circuit cell 11 connected to the drain of the n-type MOS transistor Qn3 through the interconnect line L221 of the power switch cell 22 and the branch line VSSB1.
In the semiconductor integrated circuit according to the fourth embodiment, the drive capability of this n-type MOS transistor Qn4 is set according to the power consumption of the circuit cell 12 connected to the drain of the n-type MOS transistor Qn4 through the interconnect line L231 of the power switch cell 23 and the branch line VSSB3.
In the semiconductor integrated circuit according to the fifth embodiment, the drive capability of this n-type MOS transistor Qn5 is set according to the power consumption of the circuit cell 14 connected to the drain of the n-type MOS transistor Qn5 through the interconnect line L241 of the power switch cell 24 and the branch line VSSB5.
By setting the drive capabilities of the switch transistors at the suitable magnitudes according to the power consumptions of the circuit cells supplied with power via the switch transistors in this way, in comparison with the case where the drive capabilities of the switch transistors are uniformly set, the circuit area and the leakage current can be reduced while suppressing the drop of the power supply voltage.
While several preferred embodiments of the present invention were explained above, the present invention is not limited to only these embodiments.
For example, it is also possible to use a two-interconnect line type power structure in the second and third embodiments and a three-interconnect line type structure in the fourth and fifth embodiments in combination in a single semiconductor integrated circuit.
Further, in the above embodiments, the number of power lines included in the group of power lines is two, but the present invention is not limited to this and may include three or more power lines.
Further, in the above embodiments, the example of disconnecting the branch line connected to the power line VSS on the low voltage side by the power switch cell is shown, but the present invention is not limited to this. It is also possible to disconnect the branch line connected to the power line VDD on the high voltage side by the power switch cell or disconnect both of them by the power switch cell.
Further, in the above embodiments, in the lattice stripe shaped power line patterns, the branch lines branch from only vertical stripe shaped power lines, but the present invention is not limited to this and may include also an area where the branch lines branch from horizontal stripe shaped power lines.
It should be understood by those skilled in the art that various modification, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Claims
1. A semiconductor integrated circuit comprising:
- a first branch line adapted to provide a potential to a first circuit cell, a power line being at said potential;
- a second branch line adapted to provide said potential to a second circuit cell; and
- a third branch line adapted to provide another potential to said first and second circuit cells, another power line being at said another potential,
- wherein an electrical connection between said first branch line and said power line is controlled in accordance with a state of a control signal.
2. A semiconductor integrated circuit as set forth in claim 1, wherein said first circuit cell and said second circuit cell can be arranged mixed at any positions on said first and second branch lines.
3. A semiconductor integrated circuit as set forth in claim 1, wherein said potential is VSS.
4. A semiconductor integrated circuit as set forth in claim 1, wherein an interconnection between said power line and said second branch line is present regardless of said state of the control signal.
5. A semiconductor integrated circuit as set forth in claim 1, wherein said another potential is VDD.
6. A semiconductor integrated circuit as set forth in claim 1, wherein said third branch line connects said another power line to said first and second circuit cells regardless of said state of the control signal.
7. A semiconductor integrated circuit as set forth in claim 1, further comprising:
- a power switch cell adapted to control said electrical connection between said first branch line and said power line.
8. A semiconductor integrated circuit as set forth in claim 7, wherein said power switch cell comprises:
- a first interconnect line connected to said first branch line;
- a second interconnect line connected to said power line; and
- a switch circuit between said first interconnect line and said second interconnect line connecting said first interconnect line to said second interconnect line in accordance with said state of the control signal.
9. A semiconductor integrated circuit comprising:
- a first power line configured to receive a first potential that differs from a second potential;
- a second power line configured to receive the second potential when the first power line receives the first potential;
- a first branch line electrically connected to a first circuit cell so that, when a power switch cell electrically connects the first power line to the first branch line, the first branch line supplies the first potential from the first power line to the first circuit cell;
- a second branch line electrically connected to a second circuit cell so that, when the power switch cell electrically disconnects the first power line from the first branch line, the second branch line continues to supply the first potential from the first power line to the second circuit cell; and
- a third branch line electrically connected to the first circuit cell and the second circuit cell so that, when the power switch cell electrically disconnects the first power line from the first branch line, the third branch line continues to supply the second potential from the second power line to the first circuit cell and the second circuit cell.
10. A semiconductor integrated circuit as set forth in claim 9, wherein the first potential is VSS.
11. A semiconductor integrated circuit as set forth in claim 9, wherein the second potential is VDD.
12. A semiconductor integrated circuit as set forth in claim 9, wherein the first power line is in parallel with the second power line.
13. A semiconductor integrated circuit as set forth in claim 9, wherein the first power line is perpendicular to the first branch line.
14. A semiconductor integrated circuit as set forth in claim 9, wherein the first branch line is between the second power line and the third branch line.
15. A semiconductor integrated circuit as set forth in claim 9, wherein the first branch line is in parallel with the second branch line.
16. A semiconductor integrated circuit as set forth in claim 9, wherein the first branch line is in parallel with the third branch line.
17. A semiconductor integrated circuit as set forth in claim 9, wherein the second branch line is in parallel with the third branch line.
18. A semiconductor integrated circuit as set forth in claim 9, wherein when the power switch cell electrically disconnects the first power line from the first branch line, the power switch cell obstructs the first branch line from supplying the first potential from the first power line to the first circuit cell.
19. A semiconductor integrated circuit as set forth in claim 9, wherein when the power switch cell electrically connects the first power line to the first branch line, the second branch line continues to supply the first potential from the first power line to the second circuit cell.
20. A semiconductor integrated circuit as set forth in claim 9, wherein when the power switch cell electrically connects the first power line to the first branch line, the third branch line to continues to supply the second potential from the second power line to the first circuit cell and the second circuit cell.
21. A semiconductor integrated circuit as set forth in claim 9, wherein when the power switch cell electrically connects the first power line to the first branch line, the second branch line remains electrically connected to the second circuit cell in the manner that permits the second branch line to supply the first potential from the first power line to the second circuit cell.
22. A semiconductor integrated circuit as set forth in claim 9, wherein when the power switch cell electrically connects the first power line to the first branch line, the third branch line remains electrically connected to the first circuit cell and the second circuit cell in the manner that permits the third branch line to supply the second potential from the second power line to the first circuit cell and the second circuit cell.
6107869 | August 22, 2000 | Horiguchi et al. |
6239614 | May 29, 2001 | Morikawa |
6433584 | August 13, 2002 | Hatae |
6900478 | May 31, 2005 | Miyagi |
6989686 | January 24, 2006 | Arakawa |
7274207 | September 25, 2007 | Sugawara |
7279926 | October 9, 2007 | Severson et al. |
20030137321 | July 24, 2003 | Arakawa |
20040070427 | April 15, 2004 | Miyagi |
20090179688 | July 16, 2009 | Igarashi et al. |
1 575 091 | September 2005 | EP |
05-206420 | August 1993 | JP |
05-206420 | August 1993 | JP |
07-245347 | September 1995 | JP |
2000-208713 | July 2000 | JP |
2001-298090 | October 2001 | JP |
2003-158189 | May 2003 | JP |
2003-347917 | December 2003 | JP |
2004-067489 | March 2004 | JP |
2004-186666 | July 2004 | JP |
WO-2006/114875 | November 2006 | WO |
- Machine translation of JP 2001-298090 by Hiroaki which was published Oct. 2001.
- Horowiitz and Hill: The Art of Electronics by Paul Horowitz and Winfield Hill, Cambridge University Press 1980, pp. 224, 245 and publication page.
- Won, Hyo-Sig, et al. “An MTCMOS Design Methodology and Its Application to Mobile Computing,” ISLPED '03, Aug. 25-27, Seoul, Korea, Copyright 2003, ACM 1-58113-682-X/03/0008, pp. 110 to 112.
- Kosonocky, Stephen V., et al. “Enhanced Multi-Threshold (MTCMOS) Circuits Using Variable Well Bias” ISLEPD'01, Aug. 6-7, 2001, Huntington Beach California, USA, Copyright 2001 ACM 1-58113-3371-5/01/0008.
- Extended European Search Report dated Mar. 19, 2015 for corresponding European Application No. 14190409.4.
- Extended European Search Report dated Mar. 23, 2015 for corresponding European Application No. 14190410.2.
- European Search Report dated Feb. 13, 2009 for corresponding European Application No. 05 29 0530.
- Japanese Office Action issued in corresponding application No. JP2004-067489 dated Aug. 7, 2007.
Type: Grant
Filed: Nov 28, 2012
Date of Patent: Aug 17, 2021
Assignee: Sony Corporation (Tokyo)
Inventor: Hiromi Ogata (Kanagawa)
Primary Examiner: My Trang Ton
Application Number: 13/687,996
International Classification: H03K 19/173 (20060101); H01L 27/02 (20060101); H01L 27/118 (20060101); H03K 19/00 (20060101); H01L 23/528 (20060101);