Patents Issued in September 4, 2007
-
Patent number: 7264983Abstract: A method to enhance the connection strength of suspended membrane leads and substrate contacts is described. A reading circuit chip is provided and a sacrificial layer is formed thereon. Subsequently, an electrical contact window is created in the sacrificial layer to expose a conductive layer of the reading circuit chip. A metal layer is filled into the contact window and a conductive membrane is formed thereon to couple electrically to the metal layer. Afterward, an infrared measuring membrane and an upper dielectric layer are formed thereon.Type: GrantFiled: November 4, 2004Date of Patent: September 4, 2007Assignee: UniMEMS Manufacturing Co., Ltd.Inventors: Tzong-Sheng Lee, Jing-Hung Chiou, Jeng-Long Ou
-
Patent number: 7264984Abstract: The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal.Type: GrantFiled: December 21, 2004Date of Patent: September 4, 2007Assignee: Touchdown Technologies, Inc.Inventors: Raffi Garabedian, Salleh Ismail, Nim Hak Tea, Tseng-Yang Hsu, Melvin B Khoo, Weilong Tang
-
Patent number: 7264985Abstract: An integrated circuit device (300) comprises a substrate (301) and MRAM architecture (314) formed on the substrate (308). The MRAM architecture (314) includes a MRAM circuit (318) formed on the substrate (301); and a MRAM cell (316) coupled to and formed above the MRAM circuit (318). Additionally a passive device (320) is formed in conjunction with the MRAM cell (316). The passive device (320) can be one or more resistors and one or more capacitor. The concurrent fabrication of the MRAM architecture (314) and the passive device (320) facilitates an efficient and cost effective use of the physical space available over active circuit blocks of the substrate (404, 504), resulting in three-dimensional integration.Type: GrantFiled: August 31, 2005Date of Patent: September 4, 2007Assignee: Freescale Semiconductor, Inc.Inventors: Young Sir Chung, Robert W. Baird, Mark A. Durlam, Gregory W. Grynkewich, Eric J. Salter
-
Patent number: 7264986Abstract: According to one aspect of the present invention, a method is provided for forming a microelectronic assembly. The method comprises forming first and second trenches on a semiconductor substrate, filling the first and second trenches with an etch stop material, forming an inductor on the semiconductor substrate, forming an etch hole in at least one of the etch stop layer and the semiconductor substrate to expose the substrate between the first and second trenches, isotropically etching the substrate between the first and second trenches through the etch hole to create a cavity within the substrate, and forming a sealing layer over the etch hole to seal the cavity.Type: GrantFiled: September 30, 2005Date of Patent: September 4, 2007Assignee: Freescale Semiconductor, Inc.Inventor: Bishnu P. Gogoi
-
Patent number: 7264987Abstract: Provided is a method of fabricating an optoelectronic integrated circuit chip. In particular, a method of fabricating an optoelectronic integrated circuit chip is provided, in which an optical absorption layer of a wave-guide type optical detector is grown to be thicker than a collector layer of a hetero-junction bipolar transistor by using a selective area growth by metal organic chemical vapor deposition (MOCVD) method, and the wave-guide type optical detector and the hetero-junction bipolar transistor are integrated as a single chip on a semi-insulated InP substrate, thereby readily realizing the wave-guide type optical detector improved in quantum efficiency and having the ultra-high speed characteristics.Type: GrantFiled: December 16, 2004Date of Patent: September 4, 2007Assignee: Electronics and Telecommunications Research InstituteInventors: Eun Soo Nam, Ho Young Kim, Myoung Sook Oh, Dong Yun Jung, Seon Eui Hong, Kyoung Ik Cho
-
Patent number: 7264988Abstract: Non-volatile, resistance variable memory devices, integrated circuit elements, and methods of forming such devices are provided. According to one embodiment of a method of the invention, a memory device can be fabricated by depositing a chalcogenide material onto a first (lower) electrode, sputter depositing a thin diffusion layer of a conductive material over the chalcogenide material, diffusing metal from the diffusion layer into the chalcogenide material resulting in a metal-comprising resistance variable material, and then plating a conductive material to a desired thickness to form a second (upper) electrode.Type: GrantFiled: November 2, 2005Date of Patent: September 4, 2007Assignee: Micron Technology, Inc.Inventor: Rita J. Klein
-
Patent number: 7264989Abstract: An organic thin-film transistor and a method for manufacturing the same are described. The method forms a gate layer on a substrate, an insulator layer on the substrate, forming a semiconductor layer on the insulator layer, and a strip for defining a channel length on the semiconductor layer. An electrode layer is screen printed on the semiconductor layer, and a passivation layer is coated on the electrode layer. The organic thin-film transistor manufactured by the method of the invention has a substrate, a gate layer formed on the substrate, an insulator layer formed on the substrate, a semiconductor layer formed on the insulator layer, a strip for defining a channel length formed on the semiconductor layer, an electrode layer screen-printed on the semiconductor layer, and a passivation layer coated on the electrode layer. Thereby, an organic thin-film transistor with a top-contact/bottom-gate structure is obtained.Type: GrantFiled: May 7, 2004Date of Patent: September 4, 2007Assignee: Industrial Technology Research InstituteInventors: Liang-Ying Huang, Jia-Chong Ho, Cheng-Chung Lee, Tarng-Shiang Hu, Wen-Kuei Huang, Wei-Ling Lin, Cheng-Chung Hsieh
-
Patent number: 7264990Abstract: Nanotube films and articles and methods of making the same are disclosed. A conductive article includes an aggregate of nanotube segments in which the nanotube segments contact other nanotube segments to define a plurality of conductive pathways along the article. The nanotube segments may be single walled carbon nanotubes, or multi-walled carbon nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. The articles so formed may be disposed on substrates, and may form an electrical network of nanotubes within the article itself. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining a pattern within the fabric in which the pattern corresponds to the conductive article.Type: GrantFiled: December 13, 2004Date of Patent: September 4, 2007Assignee: Nantero, Inc.Inventors: Thomas Rueckes, Brent M. Segal
-
Patent number: 7264991Abstract: A method of connecting a conductive trace to a semiconductor chip includes providing a semiconductor chip that includes a conductive pad, providing a conductive trace, then disposing a conductive adhesive between the conductive trace and the chip, thereby mechanically attaching the conductive trace to the chip such that the conductive trace overlaps the pad and the conductive adhesive contacts and is sandwiched between and electrically connects the conductive trace and the pad, and then removing a portion of the conductive adhesive such that the conductive adhesive still contacts and is sandwiched between and electrically connects the conductive trace and the pad and the conductive adhesive no longer electrically connects the conductive trace to a conductor external to the chip.Type: GrantFiled: November 12, 2002Date of Patent: September 4, 2007Assignee: Bridge Semiconductor CorporationInventor: Charles W. C. Lin
-
Patent number: 7264992Abstract: A removable Flash integrated memory module card has a plastic shell and an integral Flash memory module. On the backside of the card, there are exposed contact pads. When the card is inserted into a card-hosting device, the card can communicate with the device through the exposed pads. The manufacturing method includes manufacturing of the memory module and utilizing plastic molding techniques for making the card outer body. The method involves preparing the substrate, mounting the components, testing the module, preparing the molding device, and molding the card body.Type: GrantFiled: August 6, 2004Date of Patent: September 4, 2007Inventors: Paul Hsueh, Jim Ni, Sun-Teck See, Kuang-Yu Wang
-
Patent number: 7264993Abstract: The invention relates to a method for producing information carriers (11), such as labels, tickets or the like, in particular contactless information carriers (11), which have integrated circuits (ICs, 30) and antennas (12, 13) connected to them, wherein antennas (12, 13) are formed at intervals one after the other on surface regions (27, 28) of a web (14), and moreover, one IC (30) provided per antenna (12, 13) is connected electrically conductively by its housing or its contacts (31, 32) to associated contact faces (33, 34) of the antenna (12) (FIG. 1).Type: GrantFiled: January 19, 2005Date of Patent: September 4, 2007Assignee: Atlantic Zeiser GmbHInventor: Anders Berndtsson
-
Patent number: 7264994Abstract: A package substrate is placed in a first predetermined position on a supporting equipment. A chip guide equipment and a magnetic-field-generating equipment in a second predetermined position are placed near the package substrate. A semiconductor chip having a photoelectric element and a solenoid electrically connected to the photoelectric element in a surface region of the semiconductor chip is placed on the package substrate with the surface region facing away from the package substrate. The photoelectric element of the semiconductor chip is exposed to light so as to move the semiconductor chip toward the chip guide equipment by an interaction between a first magnetic field of the solenoid and a second magnetic field of the magnetic-field-generating equipment. A manufacturing step to the semiconductor chip is performed while keeping the position of the semiconductor chip near the chip guide equipment.Type: GrantFiled: April 20, 2005Date of Patent: September 4, 2007Assignee: Kabushiki Kaisha ToshibaInventor: Takatoshi Noda
-
Patent number: 7264995Abstract: The present invention provides a method for manufacturing a wafer level chip scale package using a redistribution substrate, which has patterned bump pairs connected by redistribution lines and formed on a transparent insulating substrate. The redistribution substrate is produced separately from a wafer and then bonded to the wafer. One part of each bump pair is in contact with a chip pad on the active surface of the wafer, and the other part coincides with one of holes formed in the wafer. Conductive lines are formed in the holes and on the non-active surface of the wafer. External connection terminals are formed on the conductive lines at the non-active surface.Type: GrantFiled: October 7, 2005Date of Patent: September 4, 2007Assignee: Epworks Co., Ltd.Inventor: Jae-June Kim
-
Patent number: 7264996Abstract: This invention relates to a method for separating at least two wafers (1, 2) bonded together to form a stacked structure. At least one bending force is applied to all or part of the stacked structure to separate the stacked structure into two parts along a required separation plane. Application particularly for producing a thin semiconducting layer.Type: GrantFiled: September 23, 2004Date of Patent: September 4, 2007Assignee: Commissariat a l'Energie AtomiqueInventors: Hubert Moriceau, Frank Fournel, Bernard Aspar
-
Patent number: 7264997Abstract: A semiconductor device comprises a semiconductor element and electrodes electrically connected to the semiconductor element, the semiconductor element and the electrodes being sealed by a sealing agent having an insulating property, the electrodes being exposed around a mounting surface that is joined via a joining agent to an external mounting circuit board, wherein the electrodes are shaped so that the joining agent is visually identifiable from side surfaces surrounding the mounting surface when the mounting surface is joined via the joining agent to the mounting circuit board.Type: GrantFiled: July 16, 2004Date of Patent: September 4, 2007Assignees: Sanyo Electric Co., Ltd., Kanto Sanyo Semiconductors Co., Ltd.Inventors: Koujiro Kameyama, Kiyoshi Mita
-
Patent number: 7264998Abstract: In an unnecessary matter removal method of joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the separation tape is separated from the semiconductor wafer in such a manner that an edge member is brought into contact with the separation tape joined to the semiconductor wafer, and a tip end of the edge member is pressed to the semiconductor wafer at a separation completion end portion where the unnecessary matter is separated from the wafer.Type: GrantFiled: January 6, 2005Date of Patent: September 4, 2007Assignee: Nitto Denko CorporationInventor: Masayuki Yamamoto
-
Patent number: 7264999Abstract: A semiconductor device is provided having a single-piece clip that interlocks into a lead frame using one or more forks on the clip that mate with one or more corresponding slots in the lead frame. A semiconductor die is mounted to a pad of the lead frame and the clip couples the die to a conductive lead of the lead frame. The interlocking coupling forms a lever that allows adjustment of a position of the clip relative to a region of the semiconductor die. Interference between the clip fork and a slot corresponding to the clip fork confines the lever motion or pivoting of the clip relative to the mounted semiconductor die. The coupling between the clip fork and the slot furthermore confines motion of the clip in each of a first dimension and a second dimension relative to a position of the lead frame.Type: GrantFiled: May 26, 2006Date of Patent: September 4, 2007Assignee: Diodes, Inc.Inventors: Tan Xiaochun, Shi Jingping
-
Patent number: 7265000Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.Type: GrantFiled: February 14, 2006Date of Patent: September 4, 2007Assignee: SanDisk 3D LLCInventors: Vivek Subramanian, James M. Cleeves
-
Patent number: 7265001Abstract: Disclosed are methods of fabricating a semiconductor device, by which the pad and fuse layers play their roles smoothly and to enhance a quality of a final semiconductor device. According to one example, a disclosed method includes forming an insulating layer covering a pad and a fuse on prescribed portions of a substrate, simultaneously forming a first trench exposing an anti-reflective coating layer provided as a top layer of the pad and a second trench having a portion of the insulating layer underneath over the fuse by selectively removing the first insulating layer, filling up the first and second trenches with an etch rate adjustment layer, exposing the anti-reflective coating layer to leave a portion of the etch rate adjustment layer within the second trench by selectively removing the etch rate adjustment layer, and simultaneously removing the anti-reflective coating layer and the portion of the etch rate adjustment layer from the second trench.Type: GrantFiled: December 28, 2004Date of Patent: September 4, 2007Assignee: Dongbu Electronics Co., Ltd.Inventor: Jun Seok Lee
-
Patent number: 7265002Abstract: A method for making a semiconductor device may include providing a substrate, and forming at least one MOSFET adjacent the substrate by forming a superlattice including a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.Type: GrantFiled: January 25, 2005Date of Patent: September 4, 2007Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Patent number: 7265003Abstract: Embodiments of methods, apparatuses, components, and/or systems for forming transistor having a dual layer dielectric are described.Type: GrantFiled: October 22, 2004Date of Patent: September 4, 2007Assignee: Hewlett-Packard Development Company, L.P.Inventors: Randy Hoffman, Peter Mardilovich
-
Patent number: 7265004Abstract: An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.Type: GrantFiled: November 14, 2005Date of Patent: September 4, 2007Assignee: Freescale Semiconductor, Inc.Inventors: Voon-Yew Thean, Brian J. Goolsby, Linda B. McCormick, Bich-Yen Nguyen, Colita M. Parker, Mariam G. Sadaka, Victor H. Vartanian, Ted R. White, Melissa O. Zavala
-
Patent number: 7265005Abstract: A method of forming a dual gate fin-type field effect transistor (FinFET) structure patterns silicon fins over an insulator and patterns a gate conductor at an angle to the fins. The gate conductor is formed laterally adjacent to and over center portions of the fins. The gate conductor is planarized such that the gate conductor is separated into distinct gate conductor portions that are separated by the fins. These gate conductor portions include front gates and back gates. The front gates and the back gates alternate along the structure, such that each fin has a front gate on one side and a back gate on the opposite side. Then front gate wiring is formed to the front gates and back gate wiring is formed to the back gates.Type: GrantFiled: November 2, 2005Date of Patent: September 4, 2007Assignee: International Business Machines CorporationInventors: Edward J. Nowak, Richard Q. Williams
-
Patent number: 7265006Abstract: A method of fabricating heterojunction devices, in which heterojunction devices are epitaxially formed on active area regions surrounded by field oxide regions and containing embedded semiconductor wells. The epitaxial growth of the heterojunction device layers may be selective or not and the epitaxial layer may be formed so as to contact individually each one of a plurality of heterojunction devices or contact a plurality of heterojunction devices in parallel. This method can be used to fabricate three-terminal devices and vertically stacked devices.Type: GrantFiled: July 7, 2005Date of Patent: September 4, 2007Assignee: Quantum Semiconductor LLCInventors: Carlos J.R.P. Augusto, Lynn Forester
-
Patent number: 7265007Abstract: Provided is a method for fabricating gate electrode structures each having at least one individual polysilicon layer and a metal layer. A polysilicon layer is provided and patterned prior to the application of the gate metal. Trenches between the resulting gate structures are filled, and the polysilicon is drawn back to below the top edge of the fillings. The relief formed from the fillings and the polysilicon which has been caused to recede forms a shape which is used to pattern the gate metal without a lithographic step. The provision of a gate sacrificial layer, which is patterned together with the polysilicon layer, makes it possible to form contact structures from a contact metal prior to the application of the gate metal.Type: GrantFiled: June 27, 2005Date of Patent: September 4, 2007Assignee: Infineon Technologies AGInventors: Johann Harter, Thomas Schuster
-
Patent number: 7265008Abstract: By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.Type: GrantFiled: July 1, 2005Date of Patent: September 4, 2007Assignee: Synopsys, Inc.Inventors: Tsu-Jae King, Victor Moroz
-
Patent number: 7265009Abstract: A method of forming an HDP-CVD pre-metal dielectric (PMD) layer to reduce plasma damage and/or preferential sputtering at a reduced a thermal budget including providing a semiconductor substrate comprising at least two overlying semiconductor structures separated by a gap; forming a PMD layer according to an HDP-CVD process over the at least two overlying semiconductor structures without applying a chucking bias Voltage to hold the semiconductor substrate.Type: GrantFiled: February 24, 2005Date of Patent: September 4, 2007Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventor: Yao-Hsiang Chen
-
Patent number: 7265010Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.Type: GrantFiled: June 8, 2004Date of Patent: September 4, 2007Assignee: International Business Machines CorporationInventors: Peter B. Gray, Jeffrey B. Johnson
-
Patent number: 7265011Abstract: A method of manufacturing a transistor according to some embodiments includes sequentially forming a dummy gate oxide layer and a dummy gate electrode on an active region of a semiconductor substrate, ion-implanting a first conductive impurity into source/drain regions to form first impurity regions, and ion-implanting the first conductive impurity to form second impurity regions that are overlapped by the first impurity regions. The method includes forming a pad polysilicon layer on the source/drain regions, sequentially removing the pad polysilicon layer and the dummy gate electrode from a gate region of the semiconductor substrate, annealing the semiconductor substrate, and ion-implanting a second conductive impurity to form a third impurity region in the gate region. The method includes removing the dummy gate oxide layer, forming a gate insulation layer, and forming a gate electrode on the gate region.Type: GrantFiled: July 22, 2004Date of Patent: September 4, 2007Assignee: Samsung Electronics Co., Ltd.Inventors: Jae-Man Yoon, Dong-gun Park, Makoto Yoshida, Gyo-Young Jin, Jeong-dong Choe, Sang-Yeon Han
-
Patent number: 7265012Abstract: Wells are formed in a substrate where standard Vt and low Vt devices of both a first and second type are to be fabricated. Wells defining the locations of first type standard Vt devices are masked, and a first voltage threshold implant adjustment is performed within wells defining the second type standard Vt devices, and each of the first and second type low Vt devices. Wells that define the locations of second type standard Vt devices are masked, and a second voltage threshold implant adjustment is performed to the wells defining the first type standard Vt devices, and each of the first and second type low Vt devices. Doped polysilicon gate stacks are then formed over the wells. Performance characteristics and control of each device Vt is controlled by regulating at least one of the first and second voltage threshold implant adjustments, and the polysilicon gate stack doping.Type: GrantFiled: August 31, 2005Date of Patent: September 4, 2007Assignee: Micron Technology, Inc.Inventors: Mark Helm, Xianfeng Zhou
-
Patent number: 7265013Abstract: A structure fabrication method. The method comprises providing a structure which comprises (a) a to-be-etched layer, (b) a memory region, (c) a positioning region, (d) and a capping region on top of one another. Then, the positioning region is indented. Then, a conformal protective layer is formed on exposed-to-ambient surfaces of the structure. Then, portions of the conformal protective layer are removed so as to expose the capping region to the surrounding ambient without exposing the memory region to the surrounding ambient. Then, the capping region is removed so as to expose the positioning region to the surrounding ambient. Then, the positioning region is removed so as to expose the memory region to the surrounding ambient. Then, the memory region is directionally etched with remaining portions of the conformal protection layer serving as a blocking mask.Type: GrantFiled: September 19, 2005Date of Patent: September 4, 2007Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Kirk D. Peterson
-
Patent number: 7265014Abstract: A method and device for avoiding oxide gouging in shallow trench isolation (STI) regions of a semiconductor device. A trench may be etched in an STI region and filled with insulating material. An anti-reflective coating (ARC) layer may be deposited over the STI region and extend beyond the boundaries of the STI region. A portion of the ARC layer may be etched leaving a remaining portion of the ARC layer over the STI region and extending beyond the boundaries of the STI region. A protective cap may be deposited to cover the remaining portion of the ARC layer as well as the insulating material. The protective cap may be etched back to expose the ARC layer. However, the protective cap still covers and protects the insulating material. By providing a protective cap that covers the insulating material, gouging of the insulating material in STI regions may be avoided.Type: GrantFiled: March 12, 2004Date of Patent: September 4, 2007Assignee: Spansion LLCInventors: Angela T. Hui, Jusuke Ogura, Yider Wu
-
Patent number: 7265015Abstract: Chlorine is incorporated into pad oxide (110) formed on a silicon substrate (120) before the etch of substrate isolation trenches (134). The chlorine enhances the rounding of the top corners (140C) of the trenches when a silicon oxide liner (150.1) is thermally grown on the trench surfaces. A second silicon oxide liner (150.2) incorporating chlorine is deposited by CVD over the first liner (150.1), and then a third liner (150.3) is thermally grown. The chlorine concentration in the second liner (150.2) and the thickness of the three liners (150.1, 150.2, 150.3) are controlled to improve the corner rounding without consuming too much of the active areas (140).Type: GrantFiled: June 30, 2005Date of Patent: September 4, 2007Assignee: ProMOS Technologies Inc.Inventors: Zhong Dong, Tai-Peng Lee
-
Patent number: 7265016Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.Type: GrantFiled: October 25, 2005Date of Patent: September 4, 2007Assignee: Micron Technology, Inc.Inventors: H. Montgomery Manning, Kunal Parekh
-
Patent number: 7265017Abstract: There is closed a semiconductor device which comprises a semiconductor substrate including an SOI region where a first insulating film is buried, and a non-SOI region, the semiconductor substrate being provided with a boundary region formed between the SOI region and the non-SOI region and having a second insulating film buried therein, the second insulating film being inclined upward from the SOI region side toward the non-SOI region side, the second insulating film having a thickness smaller than the thickness of the first insulating film and being tapered from the SOI region side to the non-SOI region side, a pair of element isolating insulating regions separately formed in the non-SOI region of semiconductor substrate and defining element regions, a pair of impurity diffusion regions formed in the element regions, and a gate electrode formed via a gate insulating film in the element region of the semiconductor substrate.Type: GrantFiled: June 29, 2005Date of Patent: September 4, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Hajime Nagano, Ichiro Mizushima
-
Patent number: 7265018Abstract: The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.Type: GrantFiled: September 21, 2004Date of Patent: September 4, 2007Assignee: International Business Machines CorporationInventors: James S. Dunn, Alvin J. Joseph, Qizhi Liu
-
Patent number: 7265019Abstract: A micro electro-mechanical system (MEMS) variable capacitor is described, wherein movable comb electrodes of opposing polarity are fabricated simultaneously on the same substrate and are independently actuated. The electrodes are formed in an interdigitated fashion to maximize capacitance. The MEMS variable capacitor includes CMOS manufacturing steps in combination with elastomeric material selectively used in areas under greatest stress to ensure that the varactor will not fail as a result of stresses that may result in the separation of dielectric material from the conductive elements. The combination of a CMOS process with the conducting elastomeric material between vias increases the overall sidewall area, which provides increased capacitance density.Type: GrantFiled: June 30, 2004Date of Patent: September 4, 2007Assignee: International Business Machines CorporationInventors: Anil K. Chinthakindi, Henri D. Schnurmann
-
Patent number: 7265020Abstract: A method of manufacturing a semiconductor device includes forming a trench in a semiconductor substrate, isotropically forming a trench surface insulating film on an inner surface of the trench, the trench surface insulating film including a deep part functioning as a capacitor insulating film, forming a surface layer side insulating film on the inner surface of the trench so that the surface layer side insulating film is continuously rendered thinner from the surface side of the substrate toward the deep side of the trench, and forming an electrode layer inside the surface layer side insulating film and the trench surface insulating film both formed on the inner surface of the trench.Type: GrantFiled: September 27, 2005Date of Patent: September 4, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Takeo Furuhata, Takahito Nakajima
-
Patent number: 7265021Abstract: Aspects of the invention can provide an alignment method that is preferably applicable when manufacturing equipments by liquid-phase processing. The alignment method in a device manufacturing process can include forming of a functional film on a substrate by liquid-phase processing, forming an alignment mark on the substrate on which the functional film is formed so as to make a pattern of the alignment mark appear on a film that is formed after forming the functional film, and aligning the film that is formed after forming the functional film by using the alignment mark.Type: GrantFiled: December 21, 2004Date of Patent: September 4, 2007Assignee: Seiko Epson CorporationInventors: Ichio Yudasaka, Hideki Tanaka
-
Patent number: 7265022Abstract: A method of fabricating a semiconductor device, includes depositing, on a semiconductor substrate, a gate insulating film, a polycrystalline or amorphous silicon film, a silicon nitride film and a silicon oxide film sequentially, patterning a resist for forming a plurality of trenches on an upper surface of the substrate so as to have opening widths differing from each other, etching the silicon oxide film and the silicon nitride film formed on the substrate by an reactive ion etching (RIE) process with the resist serving as a mask, and etching the polycrystalline or amorphous silicon film, the gate insulating film and the substrate by the RIE process with the etched silicon oxide film and silicon nitride film serving as a mask using reactive plasma including a halogen gas, fluorocarbon gas, Ar and O2, thereby simultaneously forming the trenches with opening widths differing from each other.Type: GrantFiled: March 23, 2005Date of Patent: September 4, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Katsuya Ito, Hiroaki Tsunoda, Takanori Matsumoto
-
Patent number: 7265023Abstract: The present invention provides a fabrication method for a semiconductor structure having the steps of providing a semiconductor substrate (1); providing and patterning a silicon nitride layer (3) on the semiconductor substrate (1) as topmost layer of a trench etching mask; forming a trench (5) in a first etching step by means of the trench etching mask; conformally depositing a liner layer (10) made of silicon oxide above the resulting structure, which leaves a gap (SP) reaching into the depth in the trench (5); carrying out a V plasma etching step for forming a V profile of the line layer (10) in the trench (5); wherein the liner layer (10) is pulled back to below the top side of the silicon nitride layer (3); an etching gas mixture comprises C5F8, O2 and an inert gas is used in the V plasma etching step; the ratio (V) of C5F8/O2 lies between 2.5 and 3.5; and the selectivity of the V plasma etching step between silicon oxide and silicon nitride is at least 10.Type: GrantFiled: April 6, 2005Date of Patent: September 4, 2007Assignee: Infineon Technologies AGInventors: Moritz Haupt, Andreas Klipp, Hans-Peter Sperlich, Momtchill Stavrev, Stephan Wege
-
Patent number: 7265024Abstract: A DMOS device having a trench bus structure thereof is introduced. The trench bus structure comprises a field oxide layer formed on a P substrate, and a trench extending from an top surface of the field oxide layer down to a lower portion of the P substrate. A gate oxide layer and a polysilicon bus are formed to fill the trench as a main portion of the bus structure. In addition, an isolation layer and a metal line are formed atop the polysilicon bus and the field oxide layer. An opening is formed in the isolation layer to form connections between the polysilicon bus and the metal line. In specific embodiments, the bus trench and the gate trenches of the DMOS device are formed simultaneously, and the polysilicon bus and the gate electrode are formed simultaneously as well. Therefore, the bus structure is able to form the DMOS transistor without demanding any lithographic step for defining the position of the polysilicon bus.Type: GrantFiled: January 10, 2006Date of Patent: September 4, 2007Assignee: Mosel Vitelic, Inc.Inventors: Hsin-Huang Hsieh, Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng
-
Patent number: 7265025Abstract: A method teaches how to fill trench structures formed in a semiconductor substrate. The trench structures are coated in a first deposition process with a first primary filling layer with a high conformity and minimal roughness. A V etching reaching down to a predetermined depth of the trench structure is subsequently performed in order to produce a V-profile.Type: GrantFiled: December 10, 2004Date of Patent: September 4, 2007Assignee: Infineon Technologies AGInventors: Dietmar Temmler, Barbara Lorenz, Daniel Koehler, Matthias Foerster
-
Patent number: 7265026Abstract: An isolation method in a semiconductor device is disclosed. The example method sequentially forms a pad oxide layer and a pad nitride layer on a semiconductor substrate, patterns the pad nitride and oxide layers to form an opening exposing a portion of the substrate, and forms a trench in exposed portion of the substrate. The example method also etches the patterned pad nitride layer to extend the opening, carries out SAC oxidation on the extended opening and the trench to provide a rounded corner to an upper corner of the substrate in the vicinity of the trench, and fills the trench with an insulating layer.Type: GrantFiled: December 28, 2004Date of Patent: September 4, 2007Assignee: Dongbu Electronics Co., Ltd.Inventor: Chee Hong Choi
-
Patent number: 7265027Abstract: A method for bonding substrate structures. The method includes providing a transparent substrate structure, the transparent substrate structure comprising a face region and an incident light region, providing a spacer structure, the spacer structure comprising a selected thickness of material, the spacer structure having a spacer face region and a spacer device region, and providing a device substrate structure, the device substrate having a device face region and a device backside region. The method further includes applying a first glue material to the spacer face region and bonding the spacer face region to the face region of the transparent substrate structure. The method also includes applying a second glue material to the spacer device region and bonding the spacer device region to the device face region.Type: GrantFiled: June 14, 2005Date of Patent: September 4, 2007Assignee: Miradia Inc.Inventor: Xiao Yang
-
Patent number: 7265028Abstract: A method for forming dislocation-free strained silicon thin film includes the step of providing two curved silicon substrates. One substrate is curved by the presence of silicon dioxide on a back surface. The other substrate is curved by the presence of a silicon nitride layer. One of the substrates is subject to hydrogen implantation and the two substrates are bonded to one another in an annealing process. The two substrates are separated, thereby leaving a layer of strained silicon on a front side of one of the substrates. A back side layer of silicon dioxide or silicon nitride is then removed to restore the substrate to a substantially planar state. The method may be employed to form dislocation-free strained silicon thin films. The films may be under tensile or compressive strain.Type: GrantFiled: February 8, 2007Date of Patent: September 4, 2007Assignee: The Regents of the University of CaliforniaInventor: Ya-Hong Xie
-
Patent number: 7265029Abstract: Methods for fabricating a semiconductor substrate. In an embodiment, the technique includes providing an intermediate support, providing a nucleation layer, and providing at least one bonding layer between the intermediate support and the nucleation layer to improve the bonding energy therebetween, and to form an intermediate assembly. The method also includes providing at least one layer of a semiconductor material upon the nucleation layer, bonding a target substrate to the deposited semiconductor material to form a final support assembly comprising the target substrate, the deposited semiconductor material, and the intermediate assembly, and processing the final support assembly to remove the intermediate assembly. The result is a semiconductor substrate that includes the at least one layer of semiconductor material on the target substrate.Type: GrantFiled: July 1, 2004Date of Patent: September 4, 2007Assignee: S.O.I.Tec Silicon on Insulator TechnologiesInventors: Fabrice Letertre, Bruno Ghyselen, Olivier Rayssac
-
Patent number: 7265030Abstract: A method of fabricating a silicon-on-glass layer via layer transfer includes depositing a layer of SiGe on a silicon substrate; relaxing the SiGe layer; depositing a layer of silicon on the relaxed SiGe layer; implanting hydrogen ions in a second hydrogen implantation step to facilitate splitting of the wafer; bonding a glass substrate to the strained silicon layer to form a composite wafer; splitting the composite wafer to provide a split wafer; and processing the split wafer to prepare it for subsequent device fabrication.Type: GrantFiled: July 20, 2004Date of Patent: September 4, 2007Assignee: Sharp Laboratories of America, Inc.Inventors: Jer-Shen Maa, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
-
Patent number: 7265031Abstract: An SOI substrate is fabricated by providing a substrate having a sacrificial layer thereon, an active semiconductor layer on the sacrificial layer remote from the substrate and a supporting layer that extends along at least two sides of the active semiconductor layer and the sacrificial layer and onto the substrate, and that exposes at least one side of the sacrificial layer. At least some of the sacrificial layer is etched through the at least one side thereof that is exposed by the supporting layer to form a void space between the substrate and the active semiconductor layer, such that the active semiconductor layer is supported in spaced-apart relation from the substrate by the supporting layer. The void space may be at least partially filled with an insulator lining.Type: GrantFiled: October 25, 2004Date of Patent: September 4, 2007Assignee: Samsung Electronics Co., Ltd.Inventors: Chang-Woo Oh, Dong-Gun Park, Sung-Young Lee, Jeong-Dong Choe
-
Patent number: 7265032Abstract: A method including forming a chemically soluble coating on a plurality exposed contacts on a surface of a circuit substrate; scribing the surface of the substrate along scribe areas; and after scribing, removing a portion of the coating. A method including forming a circuit structure comprises a plurality of exposed contacts on a surface, a location of the exposed contacts defined by a plurality of scribe streets; forming a coating comprising a chemically soluble material on the exposed contacts; scribing the surface of the substrate along the scribe streets; and after scribing, removing the coating. A method including coating a surface of a circuit substrate comprising a plurality of exposed contacts with a chemically soluble material; scribing the surface of the substrate along scribe areas; removing the coating; and sawing the substrate in the scribe areas.Type: GrantFiled: September 30, 2003Date of Patent: September 4, 2007Assignee: Intel CorporationInventors: Sujit Sharan, Thomas J. Debonis